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Hyperphosphatemia or even serum phosphate levels within the “normal laboratory
range” are highly associated with increased cardiovascular disease risk and mortality
in the general population and patients suffering from chronic kidney disease (CKD).
As the kidney function declines, serum phosphate levels rise and subsequently
induce the development of hypertension, vascular calcification, cardiac valvular
calcification, atherosclerosis, left ventricular hypertrophy and myocardial fibrosis by
distinct mechanisms. Therefore, phosphate is considered as a promising therapeutic
target to improve the cardiovascular outcome in CKD patients. The current therapeutic
strategies are based on dietary and pharmacological reduction of serum phosphate
levels to prevent hyperphosphatemia in CKD patients. Large randomized clinical trials
with hard endpoints are urgently needed to establish a causal relationship between
phosphate excess and cardiovascular disease (CVD) and to determine if lowering serum
phosphate constitutes an effective intervention for the prevention and treatment of CVD.

Keywords: phosphate, cardiovascular disease, vascular calcification, cardiac valvular calcification,
atherosclerosis, left ventricular hypertrophy, myocardial fibrosis, hypertension

INTRODUCTION

High serum phosphate concentrations associate with cardiovascular disease (CVD) risk in both
the general population and chronic kidney disease (CKD) patients (Lim et al., 2015; Reiss
et al., 2018). Serum phosphate levels are tightly regulated in healthy individuals through several
mechanisms including dietary absorption, bone flux and renal excretion. Hyperphosphatemia
occurs due to a decreasing glomerular filtration rate (GFR) and is known to induce hypertension,
vascular calcification, cardiac valvular calcification, atherosclerosis, left ventricular hypertrophy,
and myocardial fibrosis (Chronic Kidney, Disease Prognosis, Consortium, Matsushita et al., 2010;
Sarnak et al., 2019). In this review, we summarize the current knowledge of the roles of phosphate
homeostasis in health and CKD conditions, as well as the contribution of phosphate to CVD.
Moreover, we discuss therapeutic strategies for lowering serum phosphate level and how this affects
the cardiovascular outcome of CKD patients.
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BIOLOGICAL CHARACTERISTICS OF
PHOSPHATE

Phosphorus is an essential element of the human body. Organic
phosphorus mainly exists in nucleic acid, phospholipid and
high-energy phosphate compounds (Michigami et al., 2018).
Phosphorus is one of the basic components of human genetic
material nucleic acid, participating in genetic metabolism,
growth, and development (Kornberg, 1979). The phospholipid is
the main lipid component on the cell membrane, maintaining
the integrity and permeability of membrane (Tero et al.,
2017). High energy phosphate compounds such as adenosine
triphosphate (ATP) are key substances of energy metabolism
(Müller et al., 2017). Inorganic phosphorus exists in the
form of inorganic phosphate ion H2PO4- or HPO42-. In the
physiological pH state, 80% inorganic phosphate ion in the
serum is HPO42- and 20% is H2PO4-. About 10% inorganic
phosphorus exists in serum as soluble phosphate, which
participates in the phosphorylation and dephosphorylation of
various signal transduction proteins. Phosphate buffering also
participates in the regulation of acid-base balance in vivo.
A total of 90% inorganic phosphorus exists in bones and teeth
in insoluble hydroxyapatite, forming the skeleton of the body.
The body contains about 600–900 g phosphorus, accounting
for about 1% of body weight. Serum phosphorus refers to
the concentration of serum inorganic phosphate, which is
3–4.5 mg/dL in normal adults. Hyperphosphatemia is defined as
plasma phosphate >4.5 mg/dL due to disease or excessive intake.
Excessive phosphate content not only causes hypocalcemia,
hyperparathyroidism and metabolic bone disease but also is
closely related to adverse cardiovascular outcomes (Angelova
et al., 2016; Chande and Bergwitz, 2018).

METABOLIC REGULATION OF
PHOSPHATE

The organs involved in phosphate regulation include intestine,
bone, kidney, and parathyroid gland. The daily intake of
dietary phosphate is about 1.0–1.5 g, which is absorbed by the
intestinal epithelial cell type II sodium-dependent phosphate
co-transporter (Npt)-2a, 2b, and 2c (Masuda et al., 2020).
The phosphate absorbed from the intestine is mainly excreted
through the kidney. About 80% of the phosphate is reabsorbed
through Npt- 2a and 2c in the proximal renal tubular epithelium
(Michigami et al., 2018). The key endocrine hormonal regulators
of phosphate metabolism include fibroblast growth factor-23
(FGF-23), 1,25-dihydroxyvitamin D (calcitriol), and parathyroid
hormone (PTH). FGF-23 is the first discovered bone-derived
endocrine hormone, contains a 32 kd peptide chain of 251 amino
acids and belongs to the FGF superfamily. Phosphate excess can
directly or indirectly stimulate osteoblasts to secrete FGF-23,
which regulates phosphate metabolism by affecting the activity
of Npt-2 (Sabbagh et al., 2009). FGF homologous receptors
(FGFR), including FGFR 1-4, mainly bind to FGF-23 and its
co-receptor α-Klotho, effectively activating FGFR 1c to form
FGF-23- FGFR 1-α-Klotho ternary complex, lead to activation of

mitogen-activated protein kinase (MAPK) pathway, and result in
inhibition of Npt-2a and 2c in phosphorus reabsorption in renal
tubular epithelial cells. It can also inhibit renal 1α-hydroxylase,
reducing the serum calcitriol mediated increment of blood
phosphate. Calcitriol receptor is mainly expressed in the small
intestine, bone, kidney, and parathyroid gland. Its physiological
effect is to increase blood phosphate and calcium. In the small
intestine, calcitriol increases the absorption of phosphate by
up-regulating the activity of Npt-2 in intestinal epithelial cells
(Takashi and Fukumoto, 2020a). Binding of phosphorus to the
calcium-sensitive receptor (CaSR) on parathyroid cells stimulates
parathyroid hormone (PTH) secretion (Centeno et al., 2019). The
target organs of PTH are mainly kidney and bone, and its net
effect is to increase blood calcium and reduce blood phosphate.
PTH promotes the reabsorption of Ca2+ by distal convoluted
tubules and collecting ducts, reducing calcium excretion. On
the other hand, PTH inhibits the reabsorption of phosphorus
in proximal and distal tubules by blocking Npt-2a and 2c,
promoting phosphorus excretion and reducing blood phosphate.
PTH also activates 1α- hydroxylase in mitochondria of proximal
renal tubular cells and facilitates the formation of calcitriol,
which indirectly promotes the absorption of calcium and
phosphate by intestinal epithelial cells. Moreover, PTH activates
osteoclast, enhances its osteolytic effect and releases calcium
and phosphorus. In osteoblasts, the binding of PTH to PTH-
related protein receptor (PPR) 1 promotes FGF-23 secretion by
activating protein kinase A (PKA) and Wnt signaling (Chande
and Bergwitz, 2018). In addition, serum iron, erythropoietin
(EPO) and insulin-like growth factor-1 (IGF-1) are also involved
in the regulation of phosphate. Iron deficiency may promote
FGF-23 synthesis through transcriptional regulation of hypoxia-
inducible factor (HIF) 1α (Tan et al., 2017). EPO can induce the
expression of FGF-23 mRNA in bone marrow erythroid cells (van
Vuren et al., 2020). IGF-1 inhibits transcription factor FoxO1
of FGF-23 through phosphatidylinositol 3-kinase (PI3K)/Akt
pathway, and negatively regulates FGF-23 (Bär et al., 2018).

THE ROLE OF PHOSPHATE IN CVD

High serum phosphate level is independently associated
with increased cardiovascular mortality in CKD patients by
contributing to the development of CVD via distinct mechanisms
(Table 1). Thus, phosphate is considered as a therapeutic target
to improve CKD-associated CVD morbidity, and a detailed
understanding of the molecular insight of hyperphosphatemia
in the development of CVD is essential to explore effective
therapeutic strategies.

Hypertension
An increasing number of publications has revealed a detrimental
role of inorganic phosphate in promoting hypertension in
otherwise healthy individuals. Cross-sectional studies in patients
with end-stage renal disease showed that the presence of
hyperphosphatemia was significantly associated with high
blood pressure (Mendes et al., 2017). Hyperphosphatemia
was associated with a blunted decline in nocturnal blood
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TABLE 1 | Cardiovascular pathomechanisms of hyperphosphatemia.

CVD Underlying mechanisms

Hypertension • Activation of SNS (Mizuno et al., 2016)

• Increasing renin expression leading to increased circulating
angiotensin levels (Bozic et al., 2014)

• Acute impairment of endothelium-dependent vasodilation (Six
et al., 2014)

• Increase endothelin-1 production via up-regulation of aortic
endothelin converting enzyme-1 expression (Olmos et al., 2017)

• Down-regulating α-klotho expression in the kidney (Hu et al.,
2015)

• Deterioration in renal function (Da et al., 2015; Yoon et al.,
2017)

Vascular
calcification

• Up-regulate the expression of pit (Shobeiri et al., 2014)

• Up-regulate osteogenic transcription of VSMCs (Singh et al.,
2019; Voelkl et al., 2019; Bao et al., 2020; Chang et al., 2020;
Takashi and Fukumoto, 2020b)

• Pro-inflammatory cytokines (Voelkl et al., 2019; Alesutan
et al., 2020)

• Apoptosis and autophagy (Shroff et al., 2008; Liu et al., 2017;
Ciceri et al., 2019; Voelkl et al., 2019)

• Reduction of fetuin-A (Voelkl et al., 2019)

• Remodeling of extracellular matrix (Voelkl et al., 2019)

• Oxidative stress (Voelkl et al., 2019)

• α-klotho deficiency (Singh et al., 2019)

Cardiac valve
calcification

• Activation of NF-κB-AKT/ERK pathway (Li et al., 2017; Shuvy
et al., 2019; Zhou et al., 2020)

• Increased expression of pit-1 (Husseini et al., 2013)

Atherosclerosis • Reduction of eNOS and promotes ROS in endothelial
(Stevens et al., 2017; Roumeliotis et al., 2020)

• Increase of FGF-23 and α-klotho deficiency (Hu and Moe,
2012; Mencke et al., 2015; Richter et al., 2016; Verkaik et al.,
2018)

• Endothelial cell apoptosis (Roumeliotis et al., 2020)

• FGF-23 related dyslipidemia (Ellam and Chico, 2012)

• Reduction of calcitriol promoting ox-LDL uptake in
macrophages (Oh et al., 2009)

LVH and VF • α-klotho independent binding of FGF-23 with FGFR4 (Faul
et al., 2011; Grabner et al., 2015; Leifheit-Nestler et al., 2016)

• Ca2+ dependent cardiomyocyte hypertrophy (Ca2+-CAMK II-
IP3 pathway) (Mhatre et al., 2018)

• FGF-23 induced ROS and RAAS (Böckmann et al., 2019;
Dong et al., 2019)

pressure in hypertensive patients without CKD (Wang et al.,
2018). A large prospective observational study in more than
9,000 hypertensive patients showed that elevated baseline
serum phosphate is associated with poor blood pressure
control over 5 years of follow-up (Patel et al., 2015).
Administration of neutral NaPi (each 1 mM Na contains
0.55 mM of Pi) at the dose approximately 30 mmol of Pi
per day for 11 weeks induced a significant increase in 24- h
ambulatory blood pressure by 4/3 mmHg when compared to
the control group treated with equivalent amounts of sodium
as NaCl in combination with phosphate binder lanthanum
carbonate to reduce phosphate absorption (Mohammad et al.,
2018). This prospective randomized study has established

a more definitive blood pressure-raising effect of inorganic
phosphate in healthy young adults without hypertension or an
antihypertensive drug treatment.

Animal experimental data indicate that dietary phosphate
excess engages multiple mechanisms that promote hypertension.
In the normotensive Sprague Dawley (SD) rats fed with a high
phosphate diet (HPD) for 12 weeks, consumption of HPD
induced hypertension and tachycardia in the resting condition
and augments cardiovascular and sympathetic responses during
muscle contraction (Mizuno et al., 2016). This result implicates
that short-term dietary phosphate loading is able to transform
the autonomic regulation of blood pressure in normotensive rats
to the phenotype observed in hypertensive rats. The mechanisms
underlying sympathetic activation induced by dietary phosphate
loading are unknown. Other than the activation of the
sympathetic nervous system, HPD was shown to increase renin
expression, resulting in increased circulating angiotensin levels
in healthy rats (Bozic et al., 2014). Acute impairment in
endothelium-dependent vasodilation will happen when aortic
rings are exposed to culture media with high phosphate milieu
(Six et al., 2014). Increases in endothelin-1 production via
upregulation of aortic endothelin-converting enzyme-1 protein
expression has been demonstrated in one study in aortic
endothelial cell culture upon exposure to high extracellular
phosphate condition (Olmos et al., 2017). HPD has also been
shown to downregulate klotho expression in the kidneys and
reduce soluble klotho levels in the serum of mice (Hu et al.,
2015). CKD is one of the major risk factors for the development
of hypertension, and deterioration in renal function constitutes
another potential mechanism by which dietary phosphate excess
promotes hypertension (Da et al., 2015; Yoon et al., 2017). Large
randomized clinical trials are needed to confirm the findings in
animal experiments, and the results may lead to a new paradigm
in preventing hypertension in the population at high risk for
progression to hypertension.

Vascular Calcification
The risk of cardiovascular death in patients with CKD stage 3a-
4 is increased by 2–3 times, and the most common impairment
is vascular calcification (VC) (Takashi and Fukumoto, 2020a).
To date, there is no epidemiological data with a large
sample to show the incidence of VC in CKD. Adeney et al.
analyzed 439 patients with moderate to severe CKD and
found that the incidence of calcification in the coronary
artery and descending aorta increased by 21 and 33%,
respectively, with the increase of blood phosphate every
1 mg/dL (Sarnak et al., 2019). The prospective cohort study,
CRIC, included 1,123 patients with mild to moderate CKD
(EGFR 20–70 ml/min/1.73 m2), and demonstrated that serum
phosphate > 3.9 mg/dL was significantly associated with
coronary artery calcification (Mendes et al., 2017; Bundy et al.,
2018). Shang et al. (2017) selected 70 peritoneal dialysis
patients without coronary artery calcification as the research
objects, followed up for at least 3 years, and revealed that
hyperphosphatemia was an independent risk factor for coronary
artery calcification in dialysis patients. Two large cohort studies
showed that serum phosphate > 3.9 mg/dL was independently
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associated with coronary artery calcification, even in the normal
range (Patel et al., 2015). These clinical studies provide evidence
that high phosphate might be a causal factor in the development
of vascular calcification in CKD patients.

High phosphate is thought to contribute to the development
of vascular calcification by inducing the formation of osteoblast-
like cells from vascular smooth muscle cells (Cozzolino et al.,
2019). Bao et al. stimulated mice with high phosphate and
showed that aortic rings in high phosphate group were
obviously calcified by calcium staining (Chang et al., 2020).
The perception of extracellular phosphate in vascular smooth
muscle is mediated by type III sodium-dependent phosphate
co-transporters Pit1 and Pit2, and high phosphate up-regulates
the expression of Pit in vascular smooth muscle cells (Shobeiri
et al., 2014). Experimental studies indicated that activation
of GK1/NF-κB, SGK1/NF-κB, Wnt/β-Catenin signaling, up-
regulating osteogenic transcription factors Runx2, Msx2, Sox9
and osterix are classic mechanisms of osteogenic differentiation
of vascular smooth muscle cells, among which Runx2 plays a
decisive role (Voelkl et al., 2019). Pro-inflammatory cytokines are
a class of endogenous peptides mainly produced by immune cells,
including interleukin (IL) -1β, tumor necrosis factor (TNF) –
α, IL-6. In vitro studies showed that IL-1β and TNF-α could
stimulate the intracellular NF-κB signaling, and IL-6 activates
BMP-2-wnt/β-Catenin pathway to induce the calcification of
vascular smooth muscle cells (Voelkl et al., 2019; Alesutan
et al., 2020). Increased FGF-23 levels and pro-inflammatory
cytokines were found in patients with hyperphosphatemia
(Mendoza et al., 2017). A previous prospective study, including
3,879 CKD stage 2–4 patients, indicated that FGF-23 was
positively correlated with pro-inflammatory cytokines such as
IL-6, CRP, and TNF-α, but there was no experiment to confirm
the causal relationship between FGF-23 and pro-inflammatory
cytokines (Mendoza et al., 2012). Recent studies have found that
GAS5/miR-26-5p/PTEN, FGFR1c-MEK/ERK-GALNT3 pathway
and α-Klotho deficiency are also important mechanisms of
vascular calcification. Chang et al. showed that high phosphate
stimulation downregulated the expression of a long-chain non-
coding RNA (IncRNA) growth specific inhibitor GAS5 in human
aortic smooth muscle cells, which weakened the inhibition of
small nucleolar RNA miR-26b-5p, and thereby its downstream
target protein PTEN. PTEN is a protein/lipid phosphatase,
which stimulates the osteogenic differentiation of mesenchymal
cells by increasing the expression of Runx2 (Bao et al., 2020;
Chang et al., 2020). Takashi et al. found that high phosphate
binding to FGFR1c activates downstream extracellular regulated
protein kinase MEK/ERK phosphorylation and promotes the
expression of osteogenic related proteins. Meanwhile, it also
promotes the expression of FGF-23 post-transcriptional modified
gene peptide N-acetylgalactosamine transferase 3 (GALNT3),
which inhibited FGF-23 cleavage at multiple glycosylation sites
(Takashi and Fukumoto, 2020b). Singh et al. (2019) found that
aortic balloon calcification was aggravated and the expression
of osteogenic proteins such as matrix metalloproteinase (MMP)
9 and 13 was up-regulated in klotho gene knockout animal
models. In addition, high phosphate induces apoptosis of
osteoblast-like cells by up-regulating GAS6/AXL, and releases

calcium-containing apoptotic bodies (Shroff et al., 2008;
Voelkl et al., 2019). Iron citrate inhibits the progression of
vascular calcification through anti-apoptosis (Ciceri et al., 2019).
Apoptosis is related to autophagy, and high phosphate promotes
the expression of autophagy-related protein beclin-1 through the
pAMPK-ULK1 pathway (Liu et al., 2017). Other mechanisms
include reduction of fetuin-A (a circulating protein that inhibits
calcification), remodeling of extracellular matrix and degradation
of elastin, oxidative stress, lead to the progression of calcification
(Singh et al., 2019; Voelkl et al., 2019).

Altogether, the clinical and experimental data emphasize that
high phosphate levels may contribute to vascular calcification
not only in CKD patients but also in the general population.
This shows the importance of controlled serum phosphate levels
and underlines that phosphate represents promising therapeutic
targets in preventing vascular calcification in CKD patients.

Valve Calcification
Valve calcification describes pathological depositions of calcium–
phosphate salts on the cardiac valves. Increasing evidence has
shown that mineral metabolism disorder is an important factor
in promoting valve calcification (Rattazzi et al., 2013; Massera
et al., 2020). The level of FGF-23 was positively correlated with
the occurrence of mitral annular calcification (Bortnick et al.,
2016). In another study of 6,814 CKD patients followed-up to
2.3 years, Bortnick et al. (2019) found that for every 18.5 pg/mL
increase in FGF-23, the annual mitral valve calcification score
measured by CT increased by 2.83 Au. The incidence of the aortic
valve and mitral valve calcification increased by 25 and 62% for
every 1 mg/dL increase in blood phosphate in a cohort of 439
patients with moderate CKD (Adeney et al., 2009). For every
0.5 mg/dL increase in blood phosphate, the risk of aortic valve
ring calcification increases by 1.2 times (Linefsky et al., 2011).
The level of blood phosphate was positively correlated with the
morbidity of aortic valve calcification, and the average blood
phosphate level of 3 mg/dL or more could significantly increase
the risk of aortic valve calcification in another cohort of 938
subjects with clinical manifestations of chronic CVD and CKD
(Hisamatsu et al., 2018).

NF-κB/Akt/ERK signaling pathway may play an important
role in the high phosphate induced valve calcification. The
aortic valve calcification in the HPD group was significantly
higher than that in the non-phosphate control groups in the
uremic rat model; Akt and ERK in the calcified valve were
significantly increased; and the osteogenic transcription gene
Runx-2 was overexpressed (Shuvy et al., 2019). Pit1 promotes
the transfer of serum phosphate into valve interstitial cells, which
is the premise of high phosphate induced valve calcification.
Husseini et al. (2013) found that the expression of Pit 1 in
the calcified aortic valve of human was significantly higher
than that of the control group. When exposed human aortic
valve interstitial cells to high phosphate medium, Runx2 will
transfer from cytoplasm to nucleus, and hydrogen sulfide can
reduce calcification by inhibiting Runx2 accumulation in the
nucleus (Sikura et al., 2020). The osteogenic related protein
Runx2 was overexpressed in the osteogenic human aortic
valve stromal cells, and curcumin could suppress Runx2 gene

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 March 2021 | Volume 9 | Article 644363

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-644363 March 1, 2021 Time: 15:33 # 5

Zhou et al. Hyperphosphatemia Accelerates CVD

expression by inhibiting the NF-κ B/Akt/ERK signaling pathway
(Shuvy et al., 2019; Zhou et al., 2020). The expression of Runx2
was dependent on Akt and ERK phosphorylation in human aortic
valve stromal cells stimulated by high phosphate (Li et al., 2017).
Thus, to our current knowledge, cardiac valve calcification may
share common pathogenesis with vascular calcification resulting
from hyperphosphatemia in CKD patients.

Atherosclerosis
Increasing retrospective studies have found that phosphate can
promote the occurrence of atherosclerosis in coronary and
peripheral arteries. A cohort study involving 7,553 subjects with
near normal renal function (EGFR > 60 ml/min/1.73 m2) found
a positive correlation between high phosphate and coronary
artery atherosclerosis (Shin et al., 2012). In another study, 6,329
subjects without clinical manifestations of CKD and coronary
artery disease were divided into four groups (≤3.0, 3.1 – 3.3,
3.4 – 3.7, ≥3.8 mg/dL) according to blood phosphate level,
and multivariate regression analysis showed that the increase of
blood phosphates level indicated the increased risk of coronary
atherosclerosis (Park et al., 2020). Multiple linear regression
analysis also showed that FGF-23 could increase the risk of
carotid atherosclerotic plaque, which reflects systemic peripheral
atherosclerosis (Rodríguez-Ortiz et al., 2020). Tuzun et al. (2018)
included 54 pregnant women with gestational diabetes mellitus
(GDM) and 33 healthy pregnant women, and using color to
predict the degree of atherosclerosis, it was found that FGF-23
in GDM group was significantly higher than that in the control
group, and the increase of FGF-23 was positively correlated with
doppler ultrasound evaluated carotid intima-media thickness.
In addition, FGF-23 could increase the recognition rate of the
Framingham risk score for carotid atherosclerosis (Hu et al.,
2017). There are gender differences in high phosphate induced
atherosclerosis. Analysis of 1,687 CKD stage 3–5 non-dialysis
patients from the NEFRONA study showed that phosphate levels
within the normal range associated with an increased risk of
subclinical atheromatosis in men, whereas this risk only increased
with serum levels over the normal range in women (Martín et al.,
2015). This study suggested that recommended serum phosphate
levels could be different for male than for female CKD patients.

At present, the pro-atherogenic mechanism of phosphate
excess has not been clarified, and it is considered that endothelial
dysfunction caused by high phosphate may be the main
reason for promoting lipid infiltration and atherogenesis (Hsu
et al., 2010; Scialla and Wolf, 2014; Tripepi et al., 2015;
Richter et al., 2016). Endothelial cell injury is the first step
of atherogenesis, and endothelial nitric oxide synthase (eNOS)
plays an important role in promoting endothelial dysfunction.
When human peripheral vascular endothelial cells continuously
exposed to high phosphate environment, the production of
eNOS was significantly reduced (Ellam and Chico, 2012).
High phosphate promotes reactive oxygen (ROS) production,
leading to the reduction of tetrahydrobiopterin, a cofactor of
eNOS coupling, and the decreasing of eNOS uncoupling nitric
oxide (NO) synthesis (Roumeliotis et al., 2020). FGF-23 and
Klotho also play an important role in endothelial dysfunction
induced by high phosphate. When injecting FGF-23 into

normal mice, the endothelium-dependent cardiac and peripheral
microvascular relaxation induced by acetylcholine decreased, and
the microvascular relaxation ability was restored after injection
of FGF-23 antibody (Verkaik et al., 2018). FGF-23/FGFR1/klotho
pathway was involved in the regulation of NO synthesis. FGF-
23 combined with FGFR1 stimulated the secretion of soluble
Klotho, activated Akt phosphorylation, promoted NO synthesis,
up-regulated the expression of antioxidant enzymes SOD2 and
CAT, and alleviated the inhibition of ROS on NO synthesis
(Richter et al., 2016). CKD patients are in klotho deficiency (Hu
and Moe, 2012; Mencke et al., 2015), and their NO synthesis
is reduced. High phosphate also promotes endothelial cell
apoptosis by activating DAXX/ERK pathway and MAPK pathway
(Roumeliotis et al., 2020). FGF-23 is associated with dyslipidemia
and may also promote atherosclerosis. Cohort studies have found
that FGF-23 is negatively correlated with high-density lipoprotein
and lipoprotein a, and positively correlated with triglycerides
(Ellam and Chico, 2012). Calcitriol could inhibit the uptake
of oxidized low-density lipoprotein by macrophages in diabetic
patients and suppress the formation of foam cells (Oh et al.,
2009). The reduction of calcitriol synthesis in hyperphosphatemia
can promote the formation of foam cells. However, Shiota et al.
(2011) reported significantly reduced atherosclerotic plaques
under high phosphate stimulation, and the researchers attributed
the underlying mechanism to the reduction of monocyte
activity and the apoptosis of macrophages. This study is
independent of endothelial dysfunction, and the results are
still controversial.

Left Ventricular Hypertrophy (LVH) and
Myocardial Fibrosis
Studies have found that high phosphate can cause LVH,
myocardial fibrosis, and increase the risk of cardiovascular
death through the paracrine effect of FGF-23 (Courbebaisse and
Lanske, 2018; Leifheit-Nestler and Haffner, 2018; Wang and
Shapiro, 2019). The prevalence of LVH is about 40% in early-stage
CKD patients and 75–80% in end-stage kidney disease patients
(Vogt et al., 2019). It was found that serum phosphate > 5 mg/dL
was significantly correlated with the increase of left ventricular
mass index (Gallieni and Pedone, 2013). Serum level of FGF-23
was positively correlated with left ventricular mass (Kestenbaum
et al., 2014). In CHS study including 2,255 subjects over 65 years
old, after adjusting for demographic, cardiac and renal related
risk factors, FGF-23 can be used as an independent risk factor
for LVH, and the left ventricular weight increases by 6.71 g for
every doubling of FGF-23 (Jovanovich et al., 2013). After adding
the FGF-23 inhibitor bone matrix acidic protein DMP1 into the
CKD mice, the left ventricular wall thickness in the DMP1 group
was significantly reduced compared with that in the CKD group
(Dussold et al., 2019).

Fibroblast growth factor-23 induced LVH mainly through the
klotho independent bindings of FGF-23 with FGFR4, activating
the phospholipase S γ (PLS γ)/calcineurin-dependent nuclear
factor of activated T cells (NFAT) signaling pathway (Faul
et al., 2011; Grabner et al., 2015). Myocardial biopsy analysis
on 24 patients who died of CKD indicated that 67% of them

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 March 2021 | Volume 9 | Article 644363

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-644363 March 1, 2021 Time: 15:33 # 6

Zhou et al. Hyperphosphatemia Accelerates CVD

had LVH, which was characterized by significantly expressed
FGFR4, NFAT, and klotho deficiency compared with the control
group (Leifheit-Nestler et al., 2016). FGF-23 and Ang II share
a common mechanism in the Ca2+ dependent cardiomyocyte
hypertrophy. In neonatal rat ventricular myocytes, FGF-23
stimulates the expression of Ang II, and Ang II induces
intracellular Ca2+ regulated Ca2+/calmodulin dependent protein
kinase II (CAMKII)- histone deacetylase 4 (HDAC4) activation
via inositol 1,4,5-triphosphate (IP3), promoting myocardial
hypertrophy (Mhatre et al., 2018). Using myocardial magnetic
resonance (CMR) to detect extracellular volume (ECV) to
measure the degree of cardiac fibrosis, it was found that
FGF-23 was significantly positively correlated with ECV (Roy
et al., 2020). A total of 39 of 51 patients with rheumatic
heart disease had persistent atrial fibrillation, the expressions
of FGF-23 and FGFR4 were increased in patients with atrial
fibrillation, which were positively correlated with atrial fibrosis.
It was speculated that FGF-23/FGFR4 pathway may play an
important role in promoting atrial fibrillation by atrial fibrosis
(Dong et al., 2018). FGF-23 combined with FGFR4 produced
ROS, activated downstream STAT3 and Smad3 proteins, and
stimulated expression of matrix metalloprotein-2 (MMP-2) in
myocardial tissue of patients with atrial fibrillation, leading
to myocardial fibrosis (Dong et al., 2019). Renin-angiotensin
aldosterone system (RAAS) related genes were significantly
expressed in a uremic rat model and positively correlated
with left ventricular fibrosis. In neonatal rat ventricular
myocytes, FGF-23 can induce the expression of RAAS gene
and transforming growth factor – β (TGF-β), and the
expression of TGF-β can be reduced by RAAS inhibitor,
which indicates that FGF-23 may promote myocardial fibrosis
by activating local RAAS (Böckmann et al., 2019). Current
studies provide evidence that hyperphosphatemia contributes
to the development of LVH. Future work has to be clarified
whether phosphate can induce cardiac hypertrophy directly
or only indirectly. Possible indirect mechanisms such as the
phosphate mediated elevation of FGF23 or development of
hypertension may contribute to the development of LVH
in CKD patients.

Interventions for Phosphate Excess
According to current knowledge, hyperphosphatemia contributes
to the development of various CVD. Multidimensional
phosphate-lowering therapeutic strategies targeting serum
phosphate by restricting diet uptake or intestinal absorption and
promoting renal excretion are pursued.

Dietary Phosphate Restriction
Inorganic phosphate is commonly used as a flavor enhancer
or preservative in the processed food, and organic phosphate
naturally exists in foods rich in animal protein. Restriction
of dietary phosphate intake is the elemental strategy to lower
serum phosphate level. A low protein diet reduces serum FGF-23
and phosphate levels in non-dialysis and dialysis CKD patients
(Shinaberger et al., 2008; Iorio et al., 2012), and the restricted
consumption of inorganic phosphate additives attenuates
serum phosphate levels in ESRD patients (Sullivan et al., 2009;

de Fornasari and Sens, 2017). Moreover, plant-based diet usually
reduced FGF23 levels but not serum phosphate levels compared
with a meat-based diet (Moe et al., 2009, 2011; Scialla et al.,
2012). The KDOQI guidelines recommend adjusting dietary
phosphate intake to maintain serum phosphate levels in the
normal range in adults with CKD 3-5D, and in adults with CKD
1-5D or post-transplantation (Ikizler et al., 2020). However, the
reduction of total protein intake was associated with increased
mortality, and a general restriction of protein uptake is not
a suitable therapeutic strategy to reduce serum phosphate
(Shinaberger et al., 2008).

The uptake of phosphate depends not only on the amount of
phosphate but also on the source. The bioavailability increases
from organic plant phosphate to organic animal phosphate and
additives of the food industry (Noori et al., 2010). A prospective,
observational study of 224 maintenance hemodialysis (MHD)
patients reported that higher dietary phosphorus intake and
higher dietary phosphorus to protein ratios are each associated
with increased death risk in MHD patients, even after
adjustments for serum phosphorus, phosphate binders and their
types, and dietary protein, energy, and potassium intakes (Noori
et al., 2010; Ikizler et al., 2020). The lasted KDOQI guidelines
suggested that it is reasonable to consider the bioavailability of
phosphate sources (e.g., animal, vegetable, additives), the ratio
of phosphate (mg) to protein (g) in food should be 10–12 mg/g
to maintain the balance of protein and phosphate in CKD
patients when prescribing phosphate restrictive diet (Tsai et al.,
2019; Ikizler et al., 2020). Reduced consumption of processed
food with flavor enhancer or preservative might show beneficial
clinical outcomes. Future studies need to explore if restricted
phosphate uptake improves the general and cardiovascular
outcome in CKD patients.

Phosphate Binder
Phosphate binders inhibit gastrointestinal absorption of
phosphate by the formation of chelating phosphate. Non-
calcium phosphate binder reduces serum phosphate level but
does not increase serum calcium, which potentially benefits
cardiovascular. The representative drugs include sevelamer
carbonate, lanthanum carbonate and iron citrate (Kalantar-
Zadeh et al., 2010., Ruospo et al., 2018). Sevelamer carbonate
is an anion exchange resin, which binds to phosphate in the
proximal small intestine, and is similar to iron citrate in reducing
serum phosphate levels and the intact FGF-23 peptide chain (St.
Peter et al., 2017; Block et al., 2019a). Lanthanum carbonate
dissociates in gastric acid and combines with phosphate by
ionic bond to form hydrophobic compounds, which reduce
serum phosphate levels and the carboxyl terminal FGF-23.
Long-term intake of lanthanum has toxic side effects on liver,
bone and nervous system (Liabeuf et al., 2017). A meta-analysis
of 4,622 patients in 11 RCT studies showed that non-calcium
phosphate binders reduced all-cause mortality by 22% and
significantly reduced coronary artery calcification (Gonzalez-
Parra et al., 2011). A small sample study showed that pulse
wave velocity (PWV), an indicator of cardiovascular events, was
significantly reduced in patients with low vascular calcification
score and normal blood phosphate after 8 weeks of sevelamer
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hydrochloride treatment (Jamal et al., 2013). Sevelamer also
has the effect of lowering blood lipid and stabilizing plaque,
and significantly reduces the atherosclerotic plaque of thoracic
aorta in uremic animal model with atherosclerosis (de Krijger
et al., 2019). Compared with nicotinamide drugs, sevelamer
reduces the low molecular endotoxin in uremic patients and
reduces the chronic inflammatory reaction (Phan et al., 2005).
The data from a meta-analysis included 77 studies involving
12,562 patients with CKD, showing that sevelamer significantly
reduced all-cause mortality by 61% and lanthanum carbonate
by 21% when compared with calcium-containing phosphate
binder (Lenglet et al., 2019). Iron citrate decomposes ferric ion
(Fe3+) and combines with phosphate. Recent studies indicate
beneficial effects of ferric citrate treatment for CKD patients
(Palmer et al., 2016; Block et al., 2019a,b). Besides reducing
blood phosphate and inhibiting FGF-23 secretion, iron citrate
increases serum iron reserve and improves anemia (Francis et al.,
2019). As shown by Francis et al., ferric citrate also improves
the renal and cardiac function in the Col4a3 knockout mouse
model of progressive CKD. Treatment with ferric citrate reduced
blood urea nitrogen levels and albuminuria, showed less renal
interstitial fibrosis and tubular atrophy, and attenuated cardiac
dysfunctions than Col4a3 knockout control mice. Finally, ferric
citrate slowed the progression of CKD and improved the survival
of CKD mice (Francis et al., 2019). If the findings of this animal
study can be confirmed by clinical trials, ferric citrate and other
non-calcium-phosphate binder represent promising drugs to
improve cardiac and kidney function in CKD patients.

In contrast, calcium-containing phosphate binders did not
lower or even increased serum FGF23 levels and promoted
the progression of vascular calcification (Oliveira et al., 2010;
Block et al., 2012; Jamal et al., 2013). Hence, calcium-containing
phosphate binders like calcium acetate are rather inappropriate
to treat CKD patients. Clinical trials analyzing the actual
cardiac outcome of a phosphate binder therapy in CKD patients
are still lacking.

Other Approaches
Phosphate binders inhibited the absorption of phosphate, but
also up-regulated the active phosphate transporter Npt-2b in
the intestine (Isakova et al., 2015). Nicotinamide, the metabolite
of vitamin B3, could reduce phosphate by inhibiting the
intestinal phosphate transporter Npt-2b, which is a second-
line drug for phosphate lowering treatment (Ren et al., 2020).
It has been reported that nicotinamide can reduce phosphate
by 12–34% in end-stage CKD dialysis patients (Vogt et al.,
2019). In CKD patients on dialysis, nicotinamide might have
beneficial clinical outcomes owing to the reduction of serum
FGF23 and phosphate levels. However, the combination of
phosphate binder and nicotinamide did not significantly reduce
the levels of serum phosphate and FGF-23 in a randomized,
placebo-controlled studies including 205 3b/4 CKD patients
during a long-term follow-up of 12 months (Ix et al., 2019).
Future studies have to consider new approaches for the
long-term control of FGF23 and phosphate levels in non-
dialysis CKD patients.

High serum phosphate and low serum magnesium levels
correlated with an accelerated CKD progression during a
median follow-up of 44 months in CKD patients (Sakaguchi
et al., 2015). The cardiovascular mortality risk reduced with
increasing magnesium levels in hemodialysis patients with
hyperphosphatemia (Sakaguchi et al., 2014). Magnesium
can inhibit the deposition of hydroxyapatite and osteogenic
differentiation to prevent phosphate induced vascular
calcification (Massy and Drüeke, 2015; Braake et al., 2019;
Nakagawa et al., 2020). Therefore, magnesium supplementation
might be a promising strategy to reduce hyperphosphatemia-
associated cardiovascular risk in CKD patients. A small
RCT study recruited 125 CKD stage 3–4 patients with risk
factors for coronary artery calcification and followed-up for
2 years, the results showed that magnesium oxide group
significantly improved vascular calcification in patients with
basal coronary calcification score > 400 (Sakaguchi et al.,
2019a,b). However, treatment with magnesium oxide did not
influence serum phosphate levels and FGF-23 levels were
not measured in this study. An animal study indicated the
relevance of low magnesium diet with lower serum FGF-23
levels (Sakaguchi et al., 2019a), but FGF-23 levels were reduced
after administration of calcium acetate/magnesium carbonate
for 25 weeks in CALMAG study (Covic et al., 2013). There is
no study report the direct connection between magnesium and
CVD outcomes. Future studies should investigate if magnesium
supplementation can reduce the cardiovascular mortality
in CKD patients.

Promoting phosphate excretion might be another approach to
control serum phosphate levels. NaPi-2b knockout uremic mice
exhibit lower serum phosphate levels than wild uremic littermates
(Schiavi et al., 2012). NaPi-2a inhibitor increased the excretion
of phosphate in a dose-dependent manner and reduced serum
phosphate levels in both healthy and uremic mice (Thomas
et al., 2019). Future clinical studies will have to investigate the
outcome of NaPi-2a and 2b inhibition in CKD patients. It is
also conceivable that a combined treatment, which inhibits both
intestinal absorption and renal reabsorption, could have the most
beneficial effect for CKD patients.

CONCLUSION

Hyperphosphatemia participates in the occurrence and
development of a variety of cardiovascular diseases, as an
important risk factor for the excessively increased cardiovascular
mortality, especially in CKD population. FGF-23 plays a
key role in controlling serum phosphate levels to attenuate
phosphate-induced CVD. In the future, the therapeutic
strategies of hyperphosphatemia need to take FGF-23 as
an important target besides direct dephosphorization. The
clinical compliance of dietary phosphate restriction is poor,
and nutrition education should be strengthened. In different
degrees of hyperphosphatemia, there is no clear definition to the
target range of dephosphorization with long-term cardiovascular
benefits. Promising therapeutic strategies beside dietary
phosphate restriction, phosphate binders or other approaches
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targeting both phosphate and FGF-23 need to be further
explored by large randomized clinical trials with hard endpoints
to establish a causal relationship between phosphate excess
and CVD, and to determine if lowering serum phosphate
constitutes an effective intervention for prevention and treatment
of CVD.
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