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Purpose: To study the putative association of Membrane frizzled
related protein (MFRP) and Visual system homeobox protein (VSX2)
gene variants with axial length (AL) in myopia.

Method: A total of 189 samples with (N = 98) and without (N = 91)
myopia were genotyped for the MRFP and VSX2 variations in ABI Prism
3100 AVANT genetic analyzer. Genotype/haplotype analysis was
performed using PLINK, Haploview and THESIAS softwares.

Results: Fifteen variations were observed in the MFRP gene of which,
rs36015759 (c.492C N T, T164T) in exon 5 was distributed at a high
frequency in the controls and significantly associated with a low risk
for myopia (P = 4.10 ∗ e−07 OR b1.0). An increased frequency for
the coding haplotype block [CGTCGG] harboring rs36015759 was
observed in controls (31%) than cases (8%) that also correlated with
a decreased mean AL (−1.35085; P = 0.000444) by THESIAS analysis.
The ‘T’ allele of rs36015759 was predicted to abolish the binding site
for splicing enhancer (SRp40) by FASTSNP analysis.

Conclusion: Myopia is a complex disorder influenced by genetic and
environmental factors. Our work shows evidence of association of a
specific MFRP haplotype which was more prevalent in controls with
decreased AL. However, replication and functional studies are warranted
to confirm these findings.
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Introduction

Myopia or nearsightedness is one of the most common human eye disorders with significant global
public health concern. It is most prevalent in Taiwan, Japan, China, Korea (east Asia), and Singapore (south
east Asia) affecting ~60–80% of young adults (Hsu et al., 2008; Kim et al., 2013a; Lam et al., 2012; Pan et al.,
2013; Sawada et al., 2008; Yao et al., 2013). Long term myopia leads to irreversible eye problems which
includes chorioretinal degeneration, retinal detachment, lattice degeneration (Asaminew et al., 2013;
Koh et al., 2013), glaucoma (Detry-Morel, 2011) etc. and hence poses a serious socio-economic problem.
The disease also exhibits an increased progression rate in females when compared to males (Donovan
et al., 2012), and follows a complex inheritance pattern with a relative risk of 5 to 20 and 1.5 to 3 for high
and low myopia respectively (Farbrother et al., 2004; Guggenheim et al., 2000) in the siblings of a myopic
patient. In addition to genetic etiology, various environmental factors, that include near work, education levels
(urban compared to rural location) and time spent outdoors have been shown to influence the development of
myopic changes; however, the direct role of factors such as near work still remains controversial (Flitcroft,
2012; Jones et al., 2007; Rose et al., 2008).

Family based linkage studies have identified 23 loci till date (Wojciechowski, 2011) most of which have
been replicated. Genome wide association/meta analyses (Kiefer et al., 2013; Verhoeven et al., 2013) have
associated several loci that include genes involved in neurotransmission (GRIA4), ion transport (KCNQ5),
retinoic acid metabolism (RDH5), extracellular matrix remodeling (LAMA2 and BMP2), eye development
(SIX6 and PRSS56) and others. In addition to this single nucleotide polymorphisms (SNPs) in candidate genes
like TGFβ (Ahmed et al., 2013), insulin like growth factor I (Yoshida et al., 2013), COL1A1 (Zhang et al., 2011),
early growth response factor 1(Schippert et al., 2007), PAX6 (Miyake et al., 2012), matrix metalloproteinase
genes (Wojciechowski et al., 2013), hepatocyte growth factor (Chen et al., 2012), MFRP (Metlapally et al.,
2008), VSX2 (Aung et al., 2008) etc. have been studied for association with myopia in different populations.
Studies pertaining to genetics of myopia from Indian subcontinent have been minimal which includes few
candidate gene studies (TGFβ (Rasool et al., 2013), Fok1 (Annamaneni et al., 2011)), linkage studies (Ratnamala
et al., 2011), etc.

In this scenario the newer trend of mapping quantitative traits (QT) rather than the disease itself
proves to be a better approach for complex disorders such as myopia. The QT/endophenotypes of myopia
include axial length (AL) (Cheng et al., 2013), refractive error (Klein et al., 2011), corneal curvature
(CC) (Guggenheim et al., 2013), etc. and all these QTs have been studied for their heritability and their
contribution to emmetropisation (Chen et al., 2011; Dirani et al., 2006). Among these, AL has been shown
as an attractive endophenotype when compared to cornea and crystalline lens (Mutti et al., 2005).
AL alone accounts for more than 40% of variation in refractive errors (Cheng et al., 2013; Ip et al., 2007; Pan
et al., 2011) and exhibits high heritability factor than that for refraction (Kim et al., 2013b; Klein et al.,
2009). The genes implicated with other endophenotypes like CC though important, are also associated
with AL. Genetic studies have mapped various chromosomal loci for AL across different populations that
include chromosomes 2p24 (Biino et al., 2005), 5q, 12q21 (MYP3), 4q12 (MYP9) (Zhu et al., 2008) and
1q41 (Fan et al., 2012).

So the present study was undertaken as a QTL approach to check for the association of two ocular
development genes MFRP and VSX2 with AL in a disease scenario such as myopia where there is improper
scaling. Sundin et al. (2008) proposed thatMFRP had a role in regulation of ocular growth but not critical for
retinal function and studies by Aung et al. (2008) and Metlapally et al. (2008) have shown their candidature
as AL genes in POAG and myopic cases.

Materials and methods

Clinical examination

The study was approved by the institutional ethics board, adhered to the guidelines in the Declaration
of Helsinki and was conducted at the Vision Research Foundation, Sankara Nethralaya, India. Cases were
defined with a refractive error worse than−6.00D (N = 98) and controls with +0.50 to−0.50D (N = 91)
in the least myopic eye. Subjects with other ocular diseases that predispose/associated with myopia were
excluded from the study. Informed consent was obtained from the patients and controls for the research
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use of peripheral blood samples after comprehensive ocular examination which included the standard
retinoscopic technique to evaluate the refractive status and the corneal curvature values were obtained using
Bausch and Lomb keratometer. Measurement of ALwas performedwith an optical biometer (IOLMaster; Carl
Zeiss, Germany).

Laboratory methods

Venous blood was collected from all subjects after informed consent. Genomic DNA was extracted by
Nucleospin Blood XL kit (Macherey-Nagel, Germany) as per the manufacturer's instructions. The complete
exonic and intronic regions of MFRP and VSX2 genes were PCR amplified with primers as described earlier
(Ferda Percin et al., 2000; Wang et al., 2009) and genotyped by direct sequencing in ABI Prism 3100 AVANT
genetic analyzer (Applied Biosystems, California).

Data analysis

2.3.1. Genotype and haplotype analysis
The genotypes were checked for Hardy–Weinberg equilibrium and statistical significance by PLINK

(Purcell et al., 2007) and Fisher's exact test (VassarStats, 1998–2013). Pairwise linkage disequilibrium (LD)
was computed in Haploview program, version 4.1 (Barrett et al., 2005). The parameters for LD computation
include the correlation coefficient (r2), haplotype estimation using accelerated EM algorithm similar to the
partition/ligation method described in Qin et al., 2002. Logistic regression was performed for haplotype
association using the sliding window method in PLINK; wherein for a given window size within a gene under
consideration, the test was performed for all window sizes shifting one SNP at a time toward the 3′ end
of the gene. This technique has been proven to bemore powerful than single-marker analysis and especially for
identifying SNPs lying in low LD regions (Guo et al., 2009).

Interaction of the haplotype with quantitative trait like AL was analyzed using the THESIAS software
v3.1 (Tregouet and Garelle, 2007) that calculates the significance based on the maximum likelihood model
and linked to the SEM algorithm which can perform the simultaneous estimation of haplotype frequencies
and their associated effects on the phenotypes of interest.

Bioinformatic analysis

The pathogenic effect of the SNPs on the function of the protein was predicted using bioinformatic
tools like SIFT, PolyPhen (Adzhubei et al., 2010; Ng and Henikoff, 2003), etc. The prediction of function
of variations at transcriptional level, pre-mRNA splicing, protein structure, etc. were analyzed using the
Function Analysis and Selection Tool for Single Nucleotide Polymorphisms (FASTSNPs) (Yuan et al., 2006).
MUPro was used to test the protein stability changes due to single site mutations. Since the prediction was
based on the sequence itself rather than the tertiary structure (Cheng et al., 2006), the proteins with out
information on the tertiary structure (e.g.: MFRP) can also be analyzed by this software. Additionally the
Table 1
Demographic data of the study cohort.

Parameters Controls Cases

Number 91 98
Sex (male/female) 40/53 57/45
Age (mean ± SD, years) 26.5 ± 5 26.2 ± 6.2
Axial length (mean ± SD, mm) 22.95 ± 0.7 26.99 ± 1.86
Anterior chamber depth (mean ± SD, mm) 3.45 ± 0.21 3.56 ± 0.25
Average K reading (mean ± SD, D) 43.61 ± 1.47 44.54 ± 1.38
Axial length/corneal radius (mean ± D) 2.96 ± 0.06 3.56 ± 0.22
Corneal radius (mean ± SD, mm) 7.75 ± 0.26 7.58 ± 0.24

The demographic features and ocular dimensions of the 189 Indian myopic (98) and normal subjects (91) are shown. Only patients
with non syndromic myopia were included in the study. SD: standard deviation.



Table 2
Genotype and allele frequency distribution of VSX2 and MFRP variants detected and investigated in myopia patients.

Variation
(rs ID)

Type cDNA position Amino acid change Allelic distribution Genotype distribution

Cases
(N = 98)

Controls
(N = 91)

Cases
(N = 98)

Controls
(N = 91)

h m h m P value hh hm mm hh hm mm P value

VSX2
rs62006815 Synonymous c.831GNA L277L 194 2 182 0 0.49 96 2 0 91 0 0 0.49
Novela Non-synonymous c.866GNA G289D 194 2 182 0 0.49 96 2 0 91 0 0 0.49
rs75395981 Non-synonymous c.871GNA D291N 194 2 180 2 1 96 2 0 89 2 0 0.99
rs137872696 Non-synonymous c.1046CNT A349V 195 1 182 0 1 97 1 0 91 0 0 1

MFRP
rs883247 5′UTR c.−30GNA – 47 149 59 123 0.08 7 33 58 11 37 43 0.21
rs79836575 5′UTR c.−43GNA – 191 5 175 7 0.5 94 3 1 84 7 0 0.2
Novel, rs143351376a Intron1 c.55−15_17dup GTA – 189 7 175 7 1 94 1 3 84 7 0 0.2
Novel, rs199473708a Exon 4, non-synonymous c.290CNT P97L 194 2 182 0 0.49 96 2 0 91 0 0 0.49
rs3814762 Exon 4 non-synonymous Missense c.406GNA V136M 158 38 155 27 0.27 65 28 5 64 27 0 0.1
rs36015759 Exon5 synonymous c.492CNT T164T 173 23 122 60 4.5 ∗ e−07 76 21 1 37 48 6 4.10 ∗ e−07

rs2510143 Exon5 synonymous c.540TNC H180H 193 3 177 5 0.32 95 3 0 86 5 0 0.48
rs61736238 Exon6 non-synonymous Missense c.770GNA R257H 195 1 182 0 1 97 1 0 91 0 0 0.99
rs10892350 Intron7 c.898 + 86GNA – 88 108 91 91 0.35 22 44 32 26 39 26 0.6
rs2509388 Intron7 c.898 + 89CNG – 88 108 92 90 0.3 22 44 32 26 40 25 0.5
rs35885438 Exon8 synonymous c.954GNA L318L 166 30 167 15 0.03 71 24 3 77 13 1 0.11
Novel, rs185451482a Intron8 c.975 + 18TNC – 195 1 179 3 0.3 97 1 0 88 3 0 0.35
Novel, rs199473709a Intron9 c.1124 + 11CNG – 191 5 177 5 1 94 3 1 86 5 0 0.48
Novel, rs199473711a Intron 10 c.1255 + 33_34del TA – 195 1 182 0 1 97 1 0 91 0 0 1
rs11217241 Intron11 splice_site c.1387 + 3GNA – 100 96 92 90 1 27 46 25 23 46 22 0.89

Allele and genotype frequencies of the sequence variations within VSX2 and MFRP genes in the current study are shown. The distributions did not deviate from those predicted by the Hardy–
Weinberg equilibrium. Proportions of groups were compared by the Fisher's exact test. The criterion for statistical significance was p ≤ 0.05. DNA changes are documented based on cDNA
sequences with +1 corresponding to the A of the ATG translation initiation codon in reference to NM_182894.1 (VSX2) and NM_031433.2 (MFRP) sequences. (h — ancestral allele, m — mutant
allele).

a Identified in the current study.
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ΔRSCU (Relative Synonymous Codon Usage) was also calculated using CAIcal software (Puigbo et al.,
2008) to measure the effect of synonymous variation on the translation kinetics.

Results

Table 1 shows the demographic data of the study participants. The mean (SD) AL in myopes (26.99 ±
1.86 mm)was higher than the controls (22.95 ± 0.7 mm)with a P = 1.45 ∗ e−08. Direct sequencing revealed
4 nucleotide variations in VSX2 gene that were equally distributed between cases and controls (Table 2).
Five haplotype blocks were generated by Haploview and haplotype analysis did not reveal any significant
association with myopia.

Genotype, allele frequencies and haplotype analysis of MFRP gene variants in the study population

Fifteen variations (5 novel variations: c.55–15_17dupGTA, c.290C N T, c.975 + 18 T N C, c.1124 + 11C N G,
c.1255 + 33_34del) were observed in the MFRP gene (Table 2). We observed significant difference in the
genotype (P = 4.10 ∗ e−07) and allele frequencies (P = 4.5 ∗ e−07) of SNP rs36015759 (c.492C N T, T164T)
in the controls when compared to myopic cases with OR b1.0, CI: 95% (Table 2).

Haploview v4.1 analysis showed 3 haplotype blocks that included all the MFRP variants (Fig. 1)
that were corrected for multiple comparisons (15,000 permutations; Table 3). There wasn't any significant
difference in the distribution for blocks 1 and 2 between cases and controls. Two haplotypes (CCGCAAG
(cases: 55.7%, controls: 41.5%) and CTGCAAG (cases: 1.3%, controls: 13.2%) with wild type (C) and variant
(T) allele for rs36015759) in block 3 showed significant association (Pperm = 0.04 and 0.0001 respectively;
Table 3).
Fig. 1. Linkage disequilibrium (LD) pattern for the 15 MFRP variants identified in Indian population under the current study. The plot
was generated using Haploview 4.1 and pairwise r2 values are shown in diamonds that represent the pairwise LD between the 2 SNPs
at the top left and right of the corresponding diamond. Colour Scheme: White, shades of pink for D’b1; blue/bright red for D’=1.



Table 3
Association of MFRP haplotypes with myopia as analyzed by Haploview v4.1.

Block Haplotype Freq. Case, control frequencies Chi square Pasym PPerm

Block 1
GAC 0.497 0.492, 0.502 0.04 0.8407 1
AAC 0.474 0.478, 0.471 0.02 0.8885 1
AAG 0.018 0.012, 0.024 0.766 0.3814 1

Block 2
TGGAG 0.491 0.516, 0.465 0.979 0.3225 0.9
TGCGG 0.379 0.326, 0.436 4.868 0.0274 0.1
TACGG 0.092 0.118, 0.064 3.301 0.0692 0.5
TAGAG 0.024 0.030, 0.018 0.523 0.4697 1
CGGAG 0.011 0.005, 0.016 1.168 0.2799 0.9

Block 3
CCGCAAG 0.488 0.557, 0.415 7.625 0.0058 0.04
CCACAAG 0.144 0.180, 0.106 4.141 0.0419 0.3
CTGCAGG 0.128 0.099, 0.160 3.231 0.0723 0.5
CCGCAGG 0.106 0.108, 0.104 0.01 0.9202 1
CTGCAAG 0.07 0.013, 0.132 20.512 5.93 ∗ e−06 0.0001
TCGCCGA 0.018 0.015, 0.022 0.228 0.6333 1
CTACAAG 0.015 0.006, 0.024 2.01 0.1563 0.8

Order of the SNPs for the respective blocks are: rs11217241, rs99473711, rs199473709 (Block 1); rs185451482, rs35885438,
rs2509388, rs10892350 rs61736238 (Block 2); rs2510143, rs36015759, rs3814762, rs199473708, rs199473710, rs883247,
rs79836575 (Block 3). Pasym asymptotic P value, PPerm empirical P value for 15,000 permutations.
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In addition, we also examined haplotypes using the sliding window strategy in PLINK and generated
a total of 120 windows, of which 59 showed a significant P value (omnibus Pemp b 0.05). The omnibus test
resultwas significant for those SW consisting of rs36015759 (S6, Table 4) in the haplotype. The importance of
rs36015759 (S6)was evenmore obviouswhenwe probedmore into the details of themost significant group
of SW which was of size up to 6 SNPs per window. In window S1–S2–S3–S4–S5–S6, the most significant
haplotypewas observed with the first five SNPs in the wild type and the last SNP rs36015759 (S6)was either
Table 4
Summary of exhaustive haplotype analyses based on omnibus tests for sliding windows of all possible sizes across the 15 SNPs of the
MFRP gene for the subjects under this study.a

Sliding window SW with omnibus test Pemp b0.05 Most significant results

SNPs no No. of SWs No. of SWs First SW Last SW SW Pasym Pemp

2 14 2 S5–S6 S6–S7 S6–S7 1.95 ∗ e−06 6.67 ∗ e−05

3 13 5 S4–S6 S6–S8 S6–S8 2.23 ∗ e−06 6.67 ∗ e−05

4 12 4 S3–S6 S6–S9 S4–S7 5.37 ∗ e−05 6.67 ∗ e−05

5 11 5 S2–S6 S6–S10 S4–S8 5.37 ∗ e−05 6.67 ∗ e−05

6 10 6 S1–S6 S6–S11 S1–S6 8.59 ∗ e−06 6.67 ∗ e−05

7 9 6 S1–S7 S6–S12 S2–S8 7.04 ∗ e−05 6.67 ∗ e−05

8 8 6 S1–S8 S6–S13 S6–S13 4.73 ∗ e−05 6.67 ∗ e−05

9 7 5 S1–S9 S6–S14 S6–S14 0.00021 6.67 ∗ e−05

10 6 6 S1–S10 S6–S15 S4–S13 0.00018 6.67 ∗ e−05

11 5 5 S1–S11 S5–S15 S4–S14 0.00022 6.67 ∗ e−05

12 4 4 S1–S12 S4–S15 S3–S14 0.00041 0.000533
13 3 3 S1–S13 S3–S15 S2–S14 0.00042 0.001333
14 2 2 S1–S14 S2–S15 S1–S14 0.00061 6.67 ∗ e−05

15 1 1 S1–S15 S1–S15 S1–S15 0.00745 0.0056

For easiness in representing the SNPs in haplotype they are named as S1, S2…S15. The SW is indicated as Sa–Sb, where ‘a’ is the first
SNP and ‘b’ is the last SNP of the SW. For example, S2–S4 refer to the SW S2–S3–S4. Multiple comparisons were corrected by running
15,000 permutations. The minimum P value achievable with 15,000 permutations is 6.67 ∗ e−05. For each fixed-size SW, the most
significant results are shown in the 3 rightmost columns. Of the 120 sliding windows tested the S5–S6 ranks the first and S6–S8
ranks the second in providing evidence for association.

a Abbreviation Pasym asymptomatic P value; Pemp empirical P value; SW — Sliding window.
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the wild allele ‘C’ or the variant ‘T’ (Pemp = 6.67 ∗ e−.05 and Pasym = 0.00042 respectively). Interestingly the
‘T’ allele haplotype was more represented in controls (13%) whereas the haplotype with ‘C’ allele was seen
more in cases (56%) (Table 4a).

Haplotype blocks that included only the 6 coding SNPs of the order rs199473708, rs3814762,
rs36015759, rs2510143, rs61736238, rs35885438 (Table 5) were generated by THESIAS and analyzed
for interaction with AL after adjusting for age and sex as covariates. The frequency distribution for the block
CGT (rs36015759) CGG was high in controls (31%; P = 0.000001, OR: 0.18240 95%CI: 0.09244–035988) and
showed significant p value for decreased mean AL (P = 0.000444; difference in mean value = 0.10320;
Table 5).

Bioinformatic analysis

PolyPhen/SIFT/SNAP analysis of theMFRP variants did not show any significant changes. FastSNP analysis
revealed an alternative splicing regulatory region (either change in Transcription factor (TF) binding or
Exonic splicing enhancer (ESE) site) for c.290C N T, c.975 + 18 T N C, rs11217241, rs35885438, rs61736238
and rs36015759. SNPs c.290C N T, rs3814762, rs61736238 showed a decrease in protein stability by MUpro
analysis. Except for rs36015759 all other SNPs did not show any significant association with myopia.
The significant SNP rs36015759 showed a loss of ESE binding site for SRp40 protein (Fig. 2).

Discussion

The coordinated growth changes of various components of the eye are required for achieving
and maintaining emmetropia of which AL remains as one of the major determinants (Mutti et al., 2005).
Emmetropisation is a process in the postnatal stage of development that regulates the eye growth,
whereby the plane of the retina coincides with the focal point of the eye's optical system. An alteration in the
visual stimuli initiates a signaling cascade originating in the sensory retina, traversing the retinal pigment
epithelium and the vascular choroid, and ultimately regulating eye growth through scleral remodeling
(Flitcroft, 2013; Siegwart and Norton, 2011; Wallman and Winawer, 2004). Alterations in the sequence of
these biochemical events might disrupt this finely tuned mechanism and lead to refractive errors. Hence,
genes like,MFRP, VSX2 that plays important role in these complex signaling pathways could be studied for the
genetic association with diseases manifesting altered AL (Fig. 3).

The present study is a comprehensive analysis of MFRP and VSX2 genotypes/haplotypes with AL, a
biometric determinant inmyopic cases and emmetropic controls. It is the first of its kind in Indian population.
Fifteen variationswere observed in theMFRP gene, of which, rs36015759 (T164T) in exon 5 showed significant
difference in distribution among controls.

MFRP gene expression studies revealed that the protein is being produced in E11 stage which coincided
with the development of the presumptive retina followed by significant increase at birth suggesting a
critical role in the development of the anterior segment which eventually determines the eye size or AL
(Mandal et al., 2006). Another rationale for its candidature is the presence of the frizzled domain at the ‘C’
termini suggesting that it could act as a regulator of the WNT signaling pathway during eye development
Table 4a
Details of haplotype analysis for the 6 window showing the most significant results among the all possible sliding windows.

Haplotype Frequency in OR Pasym Pemp

rs883247, rs79836575, rs199473710,
rs199473708, rs3814762, rs36015759

Cases Controls

AG1CAT 0.006457 0.02612 0.0283 0.044 0.0172
GG1CGT 0.09962 0.1683 0.516 0.047 0.04453
AG1CGT 0.01285 0.138 0.0135 0.00042 6.67 ∗ e−05

AG1CAC 0.1818 0.1059 1.96 0.0364 0.033
GA2CGC 0.02585 0.03565 0.749 0.614 0.6369
GG1CGC 0.1093 0.1073 1.03 0.933 0.9363
AG1CGC 0.5642 0.4187 1.89 0.00413 0.004

Haplotypes are indicated in ACGT format. The 1 in the third position indicates the normal while the 2 indicates the GTA duplication.



Table 5
Frequency distribution of MFRP haplotypes and their interaction with AL as generated by THESIAS software v3.1.

MFRP haplotype
(P97L,V136M, T164T, H180H, R257H, L318L)

Frequency distribution Haplotype interaction with AL

Frequency in controls
(N = 91)

Frequency in cases
(N = 98)

P value OR (95% CI) P value Difference
in mean value

CGCCGG 0.437594 0.550016 Intercept
CGCCGA 0.068211 0.110641 0.427961 1.43337

(0.58850–3.49120)
P = 0.978239 0.01693

(−1.19965–1.23351)
CGCTGG 0.022222 0.020833 –

CGTCGG 0.315006 0.088661 0.000001 0.18240
(0.09244–0.35988)

P = 0.000444 −1.35085
(−2.10460–0.59711)

CGTCGA 0.006967 0.016307 –

CACCGG 0.130483 0.169417 0.692164 1.16495
(0.54707–2.48068)

P = 0.813546 0.10320
(−0.75438–0.96078)

CACCGA 0.008156 0.018885 – –

CACCAG 0 0.00520 – –

CATCGG 0.011361 0.009615 – –

TGCCGG 0 0.010417 – –

Haplotypes are indicated in ACGT format. The data are boldfaced if their corresponding haplotypes show significant P value (b0.05).
All data were adjusted for gender and age. AL — axial length.
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(Katoh, 2001). Mutational studies in MFRP have shown its association with hyperopia, nanopthalmos,
and micropthalmos (Sundin et al., 2005; Ayala-Ramirez et al., 2006). Mutation in MFRP has been correlated
with shift towards both hyperopia andmyopia. In a study by Sundin et al. (2008) heterozygotes for 1143insC
frameshift mutation in MFRP exhibited an increased AL. Recent studies have also shown that variations in
genes like PRSS56 (small eye gene (Kiefer et al., 2013), hepatocyte growth factor (Chen et al., 2012), insulin
like growth factor (Penha et al., 2011)) are strongly associated with both myopia and hyperopia conditions
(increased or decreased AL).

In the current studywe tested for the possible interaction of theMFRP variants with biometric indices like
AL byhaplotype analysis using THESIAS software. Haplotype CGTCGG, bearing the ‘T’ allele of rs36015759was
represented at a higher frequency in controls (31%) when compared to cases (8%) and also associated with
decreased mean AL (P = 0.000444, difference in mean value = −1.35085). Since the SNP was represented
in a low LD region, we adopted a sliding window (SW) strategy in PLINK analysis which allows an effective
evaluation of haplotypic effects for such SNPs (Jiang et al., 2011). 120 SWs were tested for the 15 MFRP
variants identified in the current study. SWs with SNPs of the order, rs883247–rs79836575–rs199473710–
rs199473708–rs3814762–rs36015759, ranked first followed by rs36015759–rs2510143–rs61736238 pro-
viding evidence for the significant association of rs36015759 (‘T’ allele), in non myopic controls. This region
has been suggested as a mutation hotspot and deletion of C allele at c.492 position, terminating the protein
prematurely after 25 residues, was observed in an Indian family (Kannabiran et al., 2012).

The synonymous SNP rs36015759 results in loss of binding site for SRp40 protein to the exonic splicing
enhancer region for the ‘T’ allele (FASTSNP analysis; Fig. 2). Such concept of improper splicing has been
studied earlier in neurofibromatos gene (NF1) and functionally proven to result in an incomplete protein by
skipping of the exon. Similarly a synonymous variation of T255T in ASB10 gene affected the exon splicing
enhancer site, altered the mRNA expression in lymphoblasts and was also associated with primary open
angle glaucoma (Fingert et al., 2012). The haplotype (CTGCGG) bearing the T allele of rs36015759 could
have a similar effect on the expression/function of the gene by loss of splice site enhancer region. Recent
review on significance of synonymous variations, suggests a putative effect of such SNPs via improper
splicing accuracy, translation fidelity, mRNA structure or protein folding (Sauna and Kimchi-Sarfaty, 2011)
and has given a formulae for measuring the effect of synonymous variations on the translation kinetics,
ΔRSCU (Relative synonymous codon usage). In our study ΔRSCU is 0.28 between wild type (TAC = 1.14)
and variant (TAT = 0.86) codon of rs36015759 calculated using CAIcal software (Puigbo et al., 2008).
A positive ΔRSCU implies increased translation kinetics, thus providing a putative functional relevance for
this SNP.



Fig. 2. The ESE binding sites for wild type (upper panel) and variant (c.492CNT; lower panel) of MFRP cDNA (NM_031433.2) are
shown as red, blue, green and yellow boxes. The binding site for SRp40 protein is lost for the variant (2nd green bar, lower panel).
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Conclusion

In conclusion the results of the current study contribute to the data on genetics of myopia in
Indian population. The haplotype (CTGCGG) bearing the T allele of rs36015759 in MFRP, shows significant
association with decreased AL even after multiple correction and no significant variations in VSX2 were

image of Fig.�2


Fig. 3. Schematic representation of MFRP protein domains with the positions of the exonic variations observed in the current study
represented by arrowheads.
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observed. However, the study bears the limitation of smaller sample size and warranties further exploration
with hyperopes as well.
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