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ABSTRACT

Our progress in understanding mammalian gene
function has lagged behind that of gene identification.
New methods for mammalian gene functional ana-
lysis are needed to accelerate the process. In yeast,
the powerful genetic shuffle system allows deletion of
any chromosomal gene by homologous recombina-
tion and episomal expression of a mutant allele in the
same cell. Here, we report a method for mammalian
cells, which employs a helper-dependent adenoviral
(HD-Ad) vector to synthesize small hairpin (sh) RNAs
to knock-down the expression of an endogenous
gene by targeting untranslated regions (UTRs).
The vector simultaneously expresses an exogenous
version of the same gene (wild-type or mutant allele)
lacking the UTRs for functional analysis. We demon-
strated the utility of the method by using PRPFS3,
which encodes the human RNA splicing factor
Hprp3p. Recently, missense mutations in PRPF3
were found to cause autosomal-dominant Retinitis
Pigmentosa, a form of genetic eye diseases affecting
the retina. We knocked-down endogenous PRPF3in
multiple cell lines and rescued the phenotype (cell
death) with exogenous PRPF3cDNA, thereby creating
a genetic complementation method. Because Ad vec-
tors can efficiently transduce a wide variety of cell
types, and many tissues in vivo, this method could
have a wide application for gene function studies.

INTRODUCTION

The human genome has been largely sequenced (1,2);
however, the identification of human genes will be far more

valuable if gene function can be revealed. In general, gene
function can be studied with two complementary approaches,
genetic and biochemical. For the genetic approach, the effects
of genes mutagenized spontaneously or experimentally can be
assessed at the molecular, cellular or organ level. For the bio-
chemical approach, gene products can be purified and char-
acterized in vitro using a variety of methods. In addition to
these classic approaches, other methods based on the same
genetic and biochemical principles have been established.
Molecular interactions of gene products can be carried out in
yeast using the one-hybrid and two-hybrid systems (3).
Methods for the analysis of gene expression, such as the micro-
array (4), have also been useful for obtaining information about
gene function. Recently, RNA interference (RNAi) has deve-
loped into an important tool for gene function analysis (5).

The yeast genetic shuffle system (6,7) is a powerful tool for
obtaining information about yeast genes through mutational
analysis. In this system, any gene on a yeast chromosome can
be deleted through homologous recombination and the corres-
ponding gene with a desired mutation can be expressed episo-
mally. Many mammalian genes do not have homologs in yeast,
so their functions cannot be inferred from yeast genetic stud-
ies. Furthermore, mammalian genes with yeast homologs often
encode extra domains and are functionally more complicated
than their yeast counterparts. Currently, there are no mamma-
lian methods as convenient as the yeast genetic shuffle system.
Mouse models for gene knock-out, knock-in or transgenic
expression are used extensively for mammalian gene function
analysis (8). More recently, large-scale random mutagenesis
of mice has been initiated (9). These approaches, although
powerful, are time-consuming and expensive.

A mammalian method similar to the yeast genetic shuffle
system would require effective down-regulation of an endo-
genous mammalian gene and expression of the corresponding
mutant gene in the same cell. Here, we report the esta-
blishment of such a method, building on advances in RNAi
technology (5) and adenoviral vectors (10). Initially, small
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double-stranded interference RNAs (siRNAs) were synthes-
ized chemically and delivered into cells by transfection (11).
Subsequently, DNA-based vectors were developed to express
small hairpin RNAs (shRNAs) (12,13). The feasibility of
using viral vectors to deliver DNA expressing shRNAs into
mammalian cells and animal models has further enhanced the
use of this technology in functional genomics, proteomics and
gene therapy (14,15).

We chose to use a helper-dependent adenoviral (HD-Ad)
vector (10) to deliver shRNAs and genes to cells. The lack of
all viral coding sequences in the HD-Ad eliminates the poten-
tial for viral gene products to interfere with gene expression
in the host cell (the cytopathic effect of cellular entry of the
virion is temporary) (16). The large DNA-cloning capacity of
the HD-Ad allows several expression cassettes to be incorpor-
ated. This is important if a large transgene and more than one
shRNA are to be expressed from the same vector. Transgene
expression from HD-Ads is relatively stable compared with
plasmids, which is critical if experiments are to continue for
more than a few days. Finally, adenoviral vectors can trans-
duce a wide variety of cultured cells (including non-dividing
cells) with high efficiency, as well as numerous organs of
experimental mammals (10). We used the PRPF3 gene
(originally called HPRP3) (17,18) to demonstrate the new
method. PRPF3 encodes Hprp3p, a key factor involved in
RNA splicing (17,18).

MATERIALS AND METHODS
Cell culture

ARPE19 (a gift from R. Hunt, University of South Carolina)
and Hela cells were cultured in DMEM-F12 and o-MEM,
respectively, supplemented with 10% fetal bovine serum
(FBS). Cells were transduced at 40—-60% confluency with
virus under serum-free conditions for 2 h, followed by the
addition of media to a final concentration of 10% FBS.

Design of shRNA

The target sequences in PRPF3 (GenBank accession no.
NM_004698) were selected as follows: 5'-untranslated region
(5-UTR): GGCATGGACAAGAAGAAGGA (shRNA-1);
5'-UTR: GGGGCTGAAGTTTGTGAGGTG (shRNA-2); open
reading frame (ORF): GGTGTAGTATTGAGTCCTGTA

(shRNA-3); 3-UTR: GTGTGATCTCAGAACTGTGCCA
(shRNA-4); 3-UTR: GGGAGAATATCTTGCTCCCCT
(shRNA-5).

Target sequences were BLAST searched (National Center
for Biotechnology Information) against all human sequences
in GenBank to verify uniqueness. Five Ts were added to the
end of the sequence for efficient RNA polymerase III termina-
tion. The oligonucleotides were synthesized, annealed to its
inverted repeat (separated by a 6 nt spacer) and cloned into the
pBS/U6 vector (Figure 2B). The final constructs were named
pBS/U6-shRNA-1, -2, -3, -4 or -5 in reference to their par-
ticular shRNA.

SEAP reporter system for gene silencing assay

A 21 bp double-stranded oligonucleotide containing the
PRPF3 targeted site was inserted into the pCMVSEAP
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reporter plasmid (19) between the cytomegalovirus promoter
and the translation initiation codon. The resulting plasmids,
pCMVSEAP-PRPF3-1, -2, -3, -4 or -5, expressed the same
level of SEAP activity as the parental plasmid. HeLa cells
were cotransfected with the corresponding pCMVSEAP-
PRPF3 and pBS/U6-shRNA pair, in a molecular ratio of
1:50, or P>CMVSEAP-PRPF3 alone, using PolyFect (Qiagen).
SEAP analysis was performed 2 days post-cotransfection as
described previously (20).

HD-Ad-F3i preparation

HD-Ad-F3i was made by inserting pBS/U6-shRNA-2 and
pBS/U6-shRNA-4 into the pC4HSUvector (21) (Figure 3A).
To express PRPF3 exogenously, we used the human ubiquitin
C gene promoter (GenBank accession no. D63791). HD-Ad-
F3iplus was constructed by introducing the HA-tagged
PRPF3 coding sequence, under control of the UbC promoter
and followed by the bovine growth hormone poly(A) signal,
into HD-Ad-F3i (Figure 4A). Viral vector was produced in
293cre4 cells co-infected with helper virus H14 (21). Virus
was amplified through eight serial passages and purified by
CsCl gradient centrifugation as described previously (22). The
control virus contains the lacZ gene under control of the K18
promoter (23).

Northern blot

Total cellular RNA (30 pg) was separated on a 1% agarose
gel containing 0.63 M formaldehyde, transferred to nylon
membrane (Roche), and UV cross-linked. For the detection
of PRPF3, RPLI8 and GAPDH mRNAs, **P-labeled cDNA
probes were prepared by random priming (Amersham Bio-
sciences). RNAs visualized by autoradiography were analyzed
using NIH Image software (v 1.62) and normalized to
the internal GAPDH control. For the detection of human
18S rRNA, the following oligonucleotide was used: 5'-GGT-
CCGTCTTGCGCCGGTCCAAGGAATTTCACCTCTAGC-
GGCGCAATACG-3' (complementary to RNA sequence
1081-1130, accession no. K03432).

Western blot

Proteins (150 pg) from total cell lysates were resolved by SDS—
PAGE and immunoblotted. Protein bands were visualized with
the enhanced chemiluminescence system (Amersham Pharma-
cia Biotech) and quantified using NIH Image software (v 1.62),
normalizing to the internal B-actin control. Rabbit antisera
against Hprp3p, Hprp4p and U5-116 kD were generated in
our laboratory. Mouse anti-HA and anti-f actin monoclonal
antibodies were purchased from BABCO (Berkeley, CA) and
Abcam (Cambridge, MA), respectively.

Immunostaining

ARPE-19 cells were seeded in six well plates with glass cov-
erslips and transduced with Hd-Ad-F3iplus (5000 particles/
cell) or control vector, HD-Ad-lacZ, at 40-60% confluency.
Immunostaining was performed at room temperature 48 h
post-transduction. The cells grown on coverslips were washed
three times with phosphate-buffered saline (PBS) and fixed for
20 min with 4% (w/v) paratormaldehyde in PBS. The plasma
membrane was permeablized by 0.2% (v/v) Triton X-100
in PBS for 10 min. The cells were incubated with blocking
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solution (0.5% BSA in PBS) for 1 h and then with mouse
anti-HA monoclonal antibody in blocking solution (0.5%
BSA in PBS) for 1 h. The cells were washed three times
with PBS and incubated with goat anti-mouse IgG (H + L)
fluorescein isothiocyanate (FITC) labeled antibody (GIBCO
BRL). Following three washes with PBS, the coverslips were
mounted in Vectashield Mounting Medium with DAPI. Fluo-
rescence micrographs were recorded using a CCD camera
(DFC 300F, Leica Microsystems, Richmond Hill, Ontario,
Canada). Micrographs are representatives of experiments
repeated at least three times.

MTT assay

Cell survival was evaluated by a colorimetric 3-4,5-(dimethyl-
thyazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay (24) with
minor modifications. Briefly, ARPE-19 and HeLa cells trans-
duced with HD-Ad-LacZ, HD-Ad-F3i or HD-Ad-F3iplus were
grown in 24 well dishes, in triplicate, for 2, 4, 6 or 8 days. At
day 2 post-transduction, cells were trypsinized, counted and
similar number of cells re-seeded for each treatment. The
procedure was repeated every other day for 8 days. An aliquot
of 0.5 ml MTT solution (1 mg/ml in DMEM-F12 or o-MEM,;
Sigma, St Louis, MO) was then added to each culture well and
the plates incubated for 30 min at 37°C. The untransformed
MTT was then removed and 0.5 ml 2-propanol added to each
well. Absorbance was measured at 570 nm. The data were
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expressed as a percent of the value obtained from cells trans-
duced with the control vector (HD-Ad-lacZ).

Statistical analysis

Student’s t-test or one-way ANOVA followed by Holm’s mul-
tiple comparison was used to compare data pairs or sets,
respectively. Data are presented as mean £ SEM. P < 0.05
was considered significant.

RESULTS
General strategy

In order to establish a complementation system, it is necessary
to knock-down the endogenous gene while simultaneously
expressing a copy of the exogenous gene with a desired altera-
tion. As shown in Figure 1, our strategy was to use a viral
vector to produce shRNAs that knock-down an endogenous
gene by targeting the UTR sequences of the mRNA and to
simultaneously express an exogenous version of the gene lack-
ing the UTRs. In order to enhance the silencing power of
shRNA, we targeted both 5'- and 3/-UTRs. We used the
PRPF3 gene as an example to demonstrate the method. We
modified the exogenous PRPF3 cDNA (lacking UTRs) by
introducing an HA-epitope tag to the N-terminus coding
region. We used the human ubiquitin (UbC) gene promoter
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endogenous mRNA degradation

v
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Figure 1. Schematic representation of the mammalian genetic complementation method. An adenoviral vector produces two shRNAs, which reduce the expression
of an endogenous gene by targeting both the 5" and 3’-UTRs of the mRNA. The vector also expresses an exogenous gene lacking the target sequences, complementing

the loss of endogenous gene expression.
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to drive exogenous PRPF3 because it is relatively strong and
ubiquitously active (25).

Testing shRNA efficacy

To identify UTR target sites for knocking down endogenous
PRPF3 expression, we examined five selected sequences
(Figure 2A). DNA sequences corresponding to each of the
shRNAs were cloned into the pBS/U6 vector (12), in which
shRNA production is driven by the mouse U6 promoter. Each
resulting shRNA is composed of two identical 21 nt sequences
in an inverted orientation, separated by a 6 bp loop, with five
Ts at the 3’ end for efficient RNA polymerase III termination
(Figure 2B).

Next, we designed plasmids to test each sShRNA by inserting
the target sequence in the 5’ region of the secreted alkaline
phosphatase gene (SEAP) (Figure 2C). HeLa cells were tran-
siently cotransfected with each pBS/U6-shRNA expression
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plasmid, or the control vector, together with the corresponding
SEAP reporter plasmid, and SEAP activity was assayed 2 days
later. SEAP activity was inhibited 60-80% by shRNAs-1-4,
while activity was inhibited less by shRNA-5 (Figure 2D).

Reducing endogenous PRPF3 expression

The reporter assay showed that three of the four shRNAs
targeting the UTR sequences of PRPF3 reduced protein
expression (Figure 2D). We selected the target sequences for
shRNA-2 and shRNA-4 to construct a vector (HD-Ad-F3i) for
stable shRNA expression (Figure 3A). To determine whether
HD-Ad-F3i effectively and specifically inhibited the expres-
sion of endogenous PRPF3, we transduced ARPE-19 cells
(a human retinal pigment epithelial cell line) (26) and assayed
the levels of PRPF3 mRNA and Hprp3p by northern and
western blot. We transduced cells with increasing number of
particles of the control vector (HD-Ad-lacZ), followed by
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Figure 2. Design and expression of sShRNAs targeting PRPF3. (A) Target sites of ShRNAs. (B) Schematic representation of an snRNA expression plasmid. T and pU6
represent termination signal and U6 gene promoter, respectively. (C) Reporter plasmid with an shRNA target site. (D) Inhibition of SEAP reporter expression by
shRNAs. Results represent the mean = SEM of six experiments. Statistical significance was assessed by paired Student’s #-test (*P < 0.05).
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Figure 3. Reducing PRPF3 expression by HD-Ad-F3i. (A) Schematic representation of the HD-Ad vector expressing shRNAs that target PRPF3. (B) Transduction
efficiency of ARPE-19 cells assessed by X-gal staining 2 days after receiving various amounts of HD-Ad-lacZ viral particles per cell (a, 0; b, 2500; ¢, 5000; d, 10 000).
(C) Northern blot of PRPF3 mRNA expression in ARPE-19 cells 2 days after transduction with the control vector (lane 1) or HD-Ad-F3i (lane 2). (D) Western blot of

Hprp3p. Antibody against B-actin was used as an internal control.

X-gal staining. Because 5000 particles/cell transduced >90%
of cells (Figure 3B), we selected this value for subsequent
transductions. Two days after transduction of ARPE19 cells,
the level of PRPF3 mRNA was detected by northern blot.
PRPF3 mRNA was dramatically reduced compared with cells
transduced with the control vector (Figure 3C). Consistent
with the mRNA data, we observed a large decrease in the
production of endogenous Hprp3p (Figure 3D). Similar results
were observed in D407, A549 and HeLa cell lines (see
Supplementary Figure 1 online).

Complementation by exogenous PRPF3 expression

We examined whether an exogenous copy of PRPF3 could be
expressed in cells in which endogenous PRPF3 is knocked
down. We designed another vector called HD-Ad-F3iplus,
which expresses shRNAs that target the endogenous PRPF3
mRNA and also expresses HA-tagged PRPF3 cDNA driven
by the human UbC promoter (Figure 4A). The HA-tagged
PRPF3 lacks the UTR sequences of the endogenous PRPF3
and is therefore expected to be resistant to the shRNAs.
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Figure 4. Complementation of endogenous PRPF 3 by exogenous PRPF3. (A) Schematic representation of HD-Ad-F3iplus, which expresses two shRNAs and a copy
of HA-tagged PRPF3. ORF, open reading frame; pUbC, human Ubiquitin C promoter; poly(A), bovine growth hormone poly(A) signal. (B) Western blot with
antibodies against Hprp3p (upper), HA (middle) and B-actin (lower). Exo, exogenous HA-Hprp3p; endo, endogenous Hprp3p. (C) Northern blot of PRPF3 mRNA
expression. Total RNA from ARPE-19 cells transduced with control vector (lane 1), HD-Ad-F3i (lane 2) or HD-Ad-F3iplus (lane 3). (D) Indirect immunostaining
micrographs show expression and subcellullar localization of the HA-Hprp3p protein in ARPE-19 cells 48 h post-transduction with Hd-Ad-F3iplus (a and b). As
controls, cells were transduced with HD-Ad-lacZ (c and d). Identical fields are shown for DAPI (left panels) and FITC (right panels) channels. The localization of the
HA-tagged protein is visualized as green immunofluorescence (b). Cells transduced with HD-Ad-lacZ did not display any immunostaining signal under the FITC
channel (d).

We transduced ARPE-19 cells with HD-Ad-F3iplus and ana- the HA-tagged exogenous Hprp3p was expressed in cells
lyzed the levels of protein and mRNA. As shown in Figure 4B, transduced with HD-Ad-F3iplus (Figure 4B). The difference
endogenous Hprp3p was greatly decreased 2 days post- in electrophoretic mobility of the endogenous and exogenous
transduction with either HD-Ad-F3i or HD-Ad-F3iplus, while Hprp3 proteins, owing to the presence of the HA-tag in the
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latter, permitted the detection of both proteins using anti-
bodies against Hprp3p. Consistent with the protein data,
PRPF3 mRNA was greatly reduced in cells transduced with
HD-Ad-F3i (Figure 4C, lane 2). The increase in PRPF3 tran-
scripts in cells transduced with HD-Ad-F3iplus was consistent
with the expression of exogenous PRPF3 (Figure 4C, lane 3).
This was also evident from the results of immunostaining of
ARPE-19 cells transduced with HD-Ad-F3iplus (Figure 4D),
which showed 100% cells expressing the HA-tagged Hprp3p.

Effect on other splicing factors

Because Hprp3p is a key component of the U4/U6 snRNP, it is
conceivable that its depletion may affect other splicing factor
proteins. We addressed this by examining the levels of Hprp4p
(a U4/U6 snRNP-associated splicing factor that interacts
with Hprp3p) (18,27,28) and the U5-116 kD protein (a splicing
factor associated with U5 snRNA) (29). Figure SA shows the
western blot from a representative experiment. Quantitative
values were then determined from multiple experiments
(Figure 5B and C). There was no noticeable change in the
expression of Hprp4p or U5-116 kD in the first 2 days, indic-
ating that the shRNAs did not targeted these genes. However,
the steady-state level of Hprp4p gradually decreased from day
4 post-transduction onward, suggesting that Hprp4p is sens-
itive to depletion of Hprp3p. The level of U5-116 kD protein
did not change significantly (Figure 5A). The detrimental
effect on Hprp4p due to silencing endogenous PRPF3 was
reversed by exogenous Hprp3p expression from HD-Ad-
F3iplus (Figure 5A and C).

Rescuing the survival phenotype of PRPF3 knock-down

Two different missense mutations in PRPF3 lead to the devel-
opment of autosomal dominant Retinitis Pigmentosa (adRP).
In humans, these mutations appear to only affect photoreceptor
cells (30). Although the yeast homolog PRP3 is essential (31),
it is possible that human PRPF3 is essential only for the
survival of photoreceptor cells; its function may be compen-
sated by other splicing factors in non-photoreceptor cells. To
examine whether PRPF3 is essential for the survival of non-
photoreceptor cells, we determined the viability of ARPE-19
cells following transduction with HD-Ad-F3i or HD-Ad-
F3iplus. As shown in Figure 6A, >90% of cells transduced
with HD-Ad-F3i died within 8 days. Cells transduced with
HD-Ad-F3iplus survived, indicating that the expression of
exogenous PRPF3 can rescue cell death caused by shRNAs
targeting endogenous PRPF3 (Figure 6A). Similar results were
obtained with HeLa cells (Figure 6B).

Because Hprp3p is a splicing factor, we examined whether
the cell death in shRNA-targeted cells was related to a defi-
ciency in pre-mRNA splicing. Pre-mRNAs are normally not
stable if RNA splicing is blocked, so a reduced steady-state
level of mRNA for an intron-containing gene can indicate
a splicing deficiency (32,33). We measured mRNA levels
of RPLI8 (encoding ribosomal protein L18) and 18S rRNA
in cells 4 days after transduction with HD-Ad-F3i or HD-Ad-
F3iplus. We observed a marked reduction of RPLI8 transcripts
in cells transduced with HD-Ad-F3i (Figure 6C, lane 2). The
RPL18 mRNA level was normal in cells transduced with
HD-Ad-F3iplus (Figure 6C, lane 3). The level of 18S rRNA,
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which is not processed by the typical RNA splicing machinery,
was unaffected.

DISCUSSION

In this paper we described the development of a mammalian
genetic complementation method, conceptually similar to the
yeast genetic shuffle system (6,7), for gene function studies.
The strategy described here is to knock-down an endogenous
gene and express the exogenous copy in the same cell in a
single step. Yeast genetics has made a tremendous contribu-
tion to our understanding of eukaryotic genes, but differences
in genome complexity make it impossible to fully infer the
function of mammalian genes from yeast studies. Many mam-
malian genes have extra domains for more diverse functions
than their yeast counterparts, and some have no yeast homo-
logs. For example, Hprp3p, the gene product of PRPF3 used
in this study, has an N-terminus PWI motif (34) that is
absent from its yeast homolog (Prp3p). Hprp3p interacts with
Hprp4p, which occurs in the yeast homologs (17,18,28), but it
also interacts with the splicing factor SPF30 (35), a U2 snRNP-
associated protein which has no yeast homolog.

Because our strategy was to target the UTRs of an endo-
genous gene, the specificity of the knock-down phenotype
could be demonstrated by complementation using the wild-
type cDNA. Targeting the UTRs also has the advantage that
any mutations in the coding region of the targeted gene can be
analyzed using the same shRNAs. We chose HD-Ad vectors
(36) for delivering gene expression cassettes to mammalian
cells because of their high transduction efficiency, high pro-
duction titer, large cloning capacity, episomal stability and
ability to transduce a wide variety of different cell types inde-
pendent of replicative state. In addition, they can efficiently
transduce many organs of experimental mammals (37,38). Our
method thus has several unique features for the analysis of
gene function in mammalian cells compared with other
methods. First, a gene can be analyzed regardless of whether
it is essential for cell viability. Second, there is no need to
generate knockout cell lines; data can therefore be obtained
much more quickly. A viral vector can be produced in 2 weeks
once the DNA vector is built (39). Third, the high transduction
efficiency (>90%) with sustained transgene expression of our
method will allow for the detection of mutant phenotypes more
easily by lowering the background arising from non-
transduced cells in the culture. Finally, the broad tropism of
adenovirus vectors means that this method could be applied to
many cell types of various mammals, so long as the target
cells are accessible not just those routinely used for genetic
manipulation (i.e. mice). However, our method remains to be
tested for genes that require only very low levels of expression
for their function.

We illustrated the feasibility of the method in multiple cell
lines using PRPF3 knock-down and rescue as an example.
Mutations in human PRPF3 have been associated with the
development of adRP (30), a group of inherited retinal dis-
orders characterized by photoreceptor cell degeneration.
Currently, it is not clear how mutations in PRPF3 cause
adRP. The autosomal dominant mode of inheritance could be
due to a gain of function of the mutant proteins, or haplo-
insufficiency of PRPF3 in photoreceptor cells. Mutations in
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Figure 5. Effect of PRPF3 silencing on the steady-state levels of spliceosomal components. (A) Western blot for Hprp3p, Hprp4p and the U5-116 kD protein.
Whole-cell extracts were prepared from ARPE-19 cells 2, 4, 6 or 8 days post-transduction with HD-Ad-F3i (lanes 2, 5, 8 and 11), HD-Ad-F3iplus (lanes 3, 6,9 and 12)
or HD-Ad-lacZ (lanes 1, 4, 7 and 10) and immunoblotted. Exo, exogenous HA-Hprp3p; endo, endogenous Hprp3p. (B and C) Hprp3p and Hprp4p levels in cells
transduced with HD-Ad-F3i or HD-Ad-F3iplus compared with those in cells transduced with HD-Ad-lacZ, normalized to -actin. Results represent the mean + SEM
of three experiments. Statistical significance was assessed by one-way ANOVA and Holm’s multiple comparison test (*P < 0.05).
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Figure 6. Complementing the phenotype of PRPF3 knock-down by the expression of exogenous PRPF3. Viability of ARPE-19 (A) and HeLa (B) cells was assessed
by MTT assay 2, 4, 6 or 8 days post-transduction. Values are relative to cells transduced with the control vector (HD-Ad-lacZ). Results represent the mean + SEM of
three experiments, each in triplicate. Statistical significance was assessed by one-way ANOVA and Holm’s multiple comparison test (*P < 0.05). (C) Steady-state
levels of RPLI8 mRNA and 18S rRNA. Northern blot was performed with total RNA isolated from ARPE-19 cells transduced as indicated.
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two other splicing genes, PRPF3I1 (40-42) and PRPCS
(43,44), which code for U4/U6 and US snRNP proteins,
respectively, also lead to adRP, suggesting that a common
splicing mechanism may underlie development of the disease.
One hypothesis regarding PRPF3 mutations and adRP is that
PRPF3 is essential only in photoreceptor cells. This hypo-
thesis implies that other factor(s) may compensate for reduced
PRPF3 function due to the mutation in non-photoreceptor
cells. We ruled out this possibility here by demonstrating
that PRPF3 is essential in non-photoreceptor cells (ARPE19
and HeLa). Another hypothesis, that photoreceptor cells have
low tolerance for a minor reduction in splicing activity, could
be examined in mice by subretinal delivery (45) of an HD-Ad
to knock-down the endogenous gene while expressing a
mutant allele.

In summary, our new method can be used to perform func-
tional analysis of any mammalian genes. In addition, it could
be used to create animal models of human diseases by deliv-
ering an HD-Ad vector to knock-down an endogenous gene
and simultaneously express a mutant version that causes a
disease. Finally, our approach may also be used to develop
gene therapy for diseases caused by one or more dominant
mutations.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at NAR Online.
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