
royalsocietypublishing.org/journal/rsif
Research
Cite this article: Yin L et al. 2021 A data

driven agent-based model that recommends

non-pharmaceutical interventions to suppress

Coronavirus disease 2019 resurgence in

megacities. J. R. Soc. Interface 18: 20210112.
https://doi.org/10.1098/rsif.2021.0112
Received: 4 February 2021

Accepted: 2 August 2021
Subject Category:
Life Sciences–Earth Science interface

Subject Areas:
computational biology, biogeography

Keywords:
COVID-19, agent-based model, contact tracing,

facemask, testing, mobile phone data
Authors for correspondence:
Ling Yin

e-mail: yinling@siat.ac.cn

Liang Mao

e-mail: liangmao@ufl.edu

Shujiang Mei

e-mail: sjmei66@163.com
© 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
†Ling Yin and Hao Zhang contributed equally.

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.5557215.
A data driven agent-based model that
recommends non-pharmaceutical
interventions to suppress Coronavirus
disease 2019 resurgence in megacities

Ling Yin1,†, Hao Zhang1,2,†, Yuan Li3, Kang Liu1,2, Tianmu Chen4, Wei Luo5,
Shengjie Lai6, Ye Li1, Xiujuan Tang3, Li Ning1, Shengzhong Feng7,
Yanjie Wei1, Zhiyuan Zhao8, Ying Wen3, Liang Mao9 and Shujiang Mei3

1Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong,
People’s Republic of China
2University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
3Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, People’s Republic of China
4State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen
University, Xiamen 361102, Fujian, People’s Republic of China
5Geography Department, National University of Singapore, AS2-03-01, 1 Arts Link, Singapore 117570, Republic
of Singapore
6WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton SO17
1BJ, UK
7National Supercomputing Center in Shenzhen, Shenzhen 518055, Guangdong, People’s Republic of China
8The Academy of Digital China (Fujian), Fuzhou University, Fuzhou 350108, Fujian, People’s Republic of China
9Department of Geography, University of Florida, Gainesville, FL 32611, USA

LY, 0000-0002-0262-0655; WL, 0000-0002-8465-5607; SL, 0000-0001-9781-8148;
LM, 0000-0002-7363-0308; SM, 0000-0001-5976-9058

Before herd immunity against Coronavirus disease 2019 (COVID-19)
is achieved by mass vaccination, science-based guidelines for non-
pharmaceutical interventions are urgently needed to reopen megacities. This
study integrated massive mobile phone tracking records, census data and
building characteristics into a spatially explicit agent-based model
to simulate COVID-19 spread among 11.2 million individuals living in Shenz-
hen City, China. After validation by local epidemiological observations, the
model was used to assess the probability of COVID-19 resurgence if sporadic
cases occurred in a fully reopened city. Combined scenarios of three critical
non-pharmaceutical interventions (contact tracing, mask wearing and
prompt testing) were assessed at various levels of public compliance. Our
results show a greater than 50% chance of disease resurgence if the city
reopened without contact tracing. However, tracing household contacts, in
combination with mandatory mask use and prompt testing, could suppress
the probabilityof resurgence under 5%within fourweeks. If household contact
tracing could be expanded to work/class group members, the COVID resur-
gence could be avoided if 80% of the population wear facemasks and 40%
comply with prompt testing. Our assessment, including modelling for differ-
ent scenarios, helps public health practitioners tailor interventions within
Shenzhen City and other world megacities under a variety of suppression
timelines, risk tolerance, healthcare capacity and public compliance.
1. Introduction
Coronavirus disease 2019 (COVID-19) outbreaks have increased in several
countries after initial strict restrictions on businesses, schools and public life
were lifted [1–4]. Many governments are now faced with a dilemma between
socio-economic recovery and disease resurgence [5,6]. Before herd immunity
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is achieved by long-term mass vaccination, evidence-based
guidelines to minimize the risk of resurgence are urgently
needed for post-epidemic management [7–11].

COVID-19 incidence in countries with high mask usage
and effective contact tracing (e.g. China and Singapore) is
much lower than that in countries with insufficient compli-
ance with regard to facemasks and/or with insufficiently
comprehensive contact tracing (e.g. the United States and
Spain) [12,13]. Prior experience as well as empirical studies
have demonstrated the importance of contact tracing
and facemask wearing in reducing the transmission of
COVID-19 [1,14–18]. Moreover, prompt testing after symp-
tom onset can not only shorten transmission periods
but also improve the effectiveness of contact tracing [19].
However, few studies have examined the likelihood of
resurgence under various combined interventions of contact
tracing, facemask wearing and prompt testing interventions.

Megacities with high concentrations of people (more than
ten million), businesses and schools are most affected by
COVID-19 in terms of infection rate, mortality rate and econ-
omic loss [20]. The transmission of COVID-19 in a megacity is
highly complex and nonlinear due to daily movements of
millions of individuals with diverse demographics, various
types of their activities (e.g. at home, work, study and leisure)
within a heterogeneous environment, and dynamic contacts
formed during these activities [21,22]. Modelling such
realism requires various datasets at fine spatio-temporal
resolutions, such as mobile phone tracking records, census
block data and building locations [23–25]. To the best of
our knowledge, most COVID-19 simulation models built for
megacities have not yet achieved this level of realism [1,26],
and few models have been validated based on local obser-
vations of COVID-19 evolution [27]. This lack of validation
may reduce the transferability of suggested interventions to
operational guidelines within public health practice.

Furthermore, most COVID-19 models are limited to com-
paring relative differences between various interventions
[1,28–31], and little attention has been paid to assessing the
probability of COVID-19 resurgence in complex urban systems
[27]. Small probability events, such as super spreading, could
occur in these complex transmission systems because of
nonlinear effects. To manage the risk of disease resurgence,
outbreak probabilities under different conditions are as
important as the size of the epidemic [18,28,32,33].

This study developed a data-driven, individual-activity-
based model to simulate COVID-19 transmission for the
entire population of Shenzhen City, China. This spatially expli-
cit agent-based model integrated multiple real datasets,
including the mobile phone trajectory records of 5.8 million
users, inter-city flows from Baidu migration data, a travel
survey of approximately 98 000 households, a database of
0.6 million buildings, social contact surveys and the census
data. The model simulated the spatial spread of COVID-19
among approximately 11 million individuals moving between
nearly five million activity places (home, workplace, school
and public places). After calibration and validation by the
first wave epidemic data, the model was used to assess the
probability of disease resurgence during the post-epidemic
period if sporadic cases occurred in a fully reopened city
under various combined interventions of contact tracing
(household, workplace, school or public), mask wearing and
prompt testing. The findings from our study could help public
health practitioners tailor practical guidelines for megacities,
considering different suppression timelines, minimum and
maximum levels of risk allowed, healthcare capacity, general
infrastructure and public compliance with control measures.
2. Methods
2.1. A spatially explicit agent-based system
We first used a data-fusion algorithm to synthesize 11.2 million
residents (i.e. agents) with demographic characteristics. This
was accomplished by cross-referencing census data and house-
hold travel survey [24]. We then assigned hourly movements of
these residents among 0.6 million locations (e.g. residential
buildings, schools, offices and restaurants) (electronic sup-
plementary material, figure S1): for mobile phone users, we
used mobile phone trajectory records (figure 1a); for non-
mobile phone users, we based their movements on the house-
hold travel survey. As a result, each individual was anchored
onto different types of buildings as places for living, working,
studying and performing other activities, forming a daily travel
trajectory. Individuals allocated to the same buildings were
grouped into 4.5 million households (figure 1b,c) and 230 000
workplaces (including schools). The model allowed the syn-
thesized individuals to have contact with one another when
staying at the same location within one hour, resulting in a
spatially explicit and temporally dynamic network of contacts
that could spread COVID-19. To further model the populations
travelling into and out of the city [34], we used Baidu migration
data as a reference (electronic supplementary material, figure S2)
and randomly selected a number of individuals to leave the
system at one day and then return back at another day [35].
More details of population synthesis and network construction
can be found in the electronic supplementary material.

We simulated close contacts aswell as casual contacts to represent
diverse human contact patterns. The close contacts represented
regular encounters with a small group of acquaintances in house-
holds, workplaces, and schools and daycares, while the casual
contacts represented random encounters with strangers at various
public places, such as shops and restaurants [36,37]. Between these
two contact patterns, individuals’ mixing patterns and contact
intensities were varied (see the electronic supplementary material
for more details). The daily contact network was calibrated to
follow the degree distribution observed in Shanghai (figure 1d,e),
a Chinese megacity of equivalent scale [38].

2.1.1. Epidemic simulation
We implemented a stochastic, discrete-time susceptible–latent–
infectious–removed (SLIR) model, in which the transmission of
COVID-19 was triggered by contacts between individuals in
households, workplaces, schools and other buildings. Once a sus-
ceptible individual had a contactwith an infectious individual, the
probability of infection p via this contact was calculated as follows:

p ¼ pTrans� Ic � r, ð2:1Þ
where pTrans denotes the transmission probability per
contact and was estimated as 0.165 by calibrating the modelled
basic reproductive number R0 to the observed value of 2.4
[1,32,39–41]. Ic is the intensity of daily contact at different contact
settings derived from a contact survey of Shanghai (electronic
supplementarymaterial, table S1) [38]; r differentiates the infectiv-
ity of infectious individuals with and without symptoms, i.e. the
infectivity of asymptomatic individuals was set as 0.12 of their
counterparts [42]. Our simulations assumed that all infected
individuals would not be re-infected. As shown in figure 2
and electronic supplementarymaterial, table S2, once a susceptible
individual (S) was infected, we assumed a 25% probability (Pa) of
turning into latent status [33,43,44]. The latent period (La) was set
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to 4.6 days (ε’) for asymptomatic individuals to become infectious
(Ia) [45–47]. These individuals remained infectious for 9.5 days (μ)
until being removed from themodel after recovery or being centra-
lized quarantined [48]. Symptomatic individualswere assigned an
incubation period (ε) with a mean of 5.2 days to manifest symp-
toms (Is), including latent status (Ls) [47]. Their infectivity
started from 2 days (γ) before symptom onset (Ps) [46]. After the
onset of symptoms, individuals remained infective until they
were removed by interventions such as hospitalization or
centralized quarantine.

Note that someof the SLIRmodel parameterswere fixedvalues
while some others were derived from probability distributions. In
addition to the parameters reported in the existing studies, the
major rationale of our choice between fixed values and distri-
butions was based on the assessment of our local Center for
Disease Control (CDC) collaborators, who had first-hand
COVID-19 clinical data. If they were confident on the parameter
estimates, we used fixed values; otherwise, we used distributions.
2.2. Simulation of interventions
During the first wave of COVID-19 in Shenzhen (from 1 January
to 1 March 2020), five types of intervention strategies were
applied by the city government, namely comprehensive isolation
and quarantine measures, prompt testing, mask wearing, social
distancing and city lockdown. A detailed description of how
these five intervention strategies were incorporated into our
simulation model can be found in the electronic supplementary
material, table S3. After the first wave, four of them remained
effective to prevent a resurgence and are briefly described
below since they are the focus of our study.
2.2.1. Prompt testing
People with COVID-19-like symptoms were urged to see doctors
at the earliest possible time, where they received nucleic acid
tests for COVID-19 diagnosis. Once a positive test result was con-
firmed, the infected individual was immediately isolated for
medical treatment and removed from the model.

2.2.2. Contact tracing
Close contacts of a confirmed case were quarantined at specific
hotels for 14 days, and they were not allowed any in-person con-
tact during the quarantine. After 14 days, those uninfected
individuals were released, while those who were newly diag-
nosed initiated another round of contact tracing. In our model,
the quarantine was implemented immediately after contact tra-
cing. We did not consider the time delay in contact tracing due
to the local situation in Shenzhen [15,49]. Once the infected indi-
viduals were diagnosed, the local government immediately
traced their close contacts in households and workplaces, and
in most cases, this procedure would be completed within 24 h.

2.2.3. Mask wearing
Wearing masks for outdoor activities was strongly rec-
ommended, but not mandated, by the city government. For the
use of facemasks, the probability of infection per contact was
adjusted using the following equation:

p ¼ pTrans� Ic � r� ð1� uÞ, ð2:2Þ
where θ is the effectiveness of wearing masks.

2.2.4. Self-quarantine at home
Individuals with COVID-19-like symptoms voluntarily quaran-
tined at home and no longer engaged in outdoor activities,
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even before their infection was confirmed. During a quarantine
period, the self-quarantined person only had contact with house-
hold members, and the transmission to other household
members was reduced by δ, referred to as the effectiveness of
household self-quarantine. The probability of transmission per
contact was adjusted as follows:

p ¼ pTrans� Ic � r� ð1� dÞ: ð2:3Þ
2.3. Baseline scenario
The baseline scenario represents the actual course of the first
epidemic in Shenzhen City and provides a basis for our post-
epidemic simulation. We introduced a few imported cases on
the date of their arrival in Shenzhen, according to data from
the local CDC and Prevention report. For each imported case,
we synthesized a new household based on reported age,
gender, household structure and residence. We then randomly
selected an existing synthesized household with the same
characteristics and assigned all travel trajectories from this house-
hold to the imported case as well as to the other household
members. In addition, we simulated the five interventions
mentioned above to mimic the actual control efforts of the local
government during this time period, as detailed in the electro-
nic supplementary material, table S3, and elaborated in the
electronic supplementary material.

We simulated the baseline scenario for 1000 realizations.
A video of one model realization can be found in the electronic
supplementary material. We generated the averaged epidemic
curve and calibrated model parameters in the electronic sup-
plementary material, table S3, by fitting the resulting curve to
actual cumulative symptomatic cases reported by the local
health agency. The effectiveness of the household self-quarantine
variable δ was fitted to a value of 0.7, while the effectiveness of
maskwearing θ ranged from 0.5 to 0.9 (seemore details in the elec-
tronic supplementary material). To validate the model outcomes,
we examined the spatial and age distributions of symptomatic
cases as well as the household secondary attack rate.
2.4. Intervention scenarios for the post-epidemic period
To evaluate the risk of future outbreaks, we extended the base-
line model to simulate a post-epidemic period after 18 May
2020, when people’s fear of the disease gradually faded and
schools started to reopen. To initiate the next outbreak from
sporadic cases, we randomly selected 30 individuals as infective
seeds. These individuals worked at five different buildings in
crowded areas and had an above-average daily contact
number. We randomly set 25% of the seeds to be asymptomatic.

We focused on three types of interventions that are most con-
cerning to local policymakers: contact tracing, mask wearing and
prompt testing after symptom onset. We considered five levels of
contact tracing: Level 0 as no tracing; Level I only traced house-
hold members; Level II traced all close contacts in the same
household and workgroup/class; Level III traced all close con-
tacts and 50% casual contacts in public places; lastly, Level IV
as 100% contact tracing, including all close contacts and casual
contacts. For the use of masks and prompt testing, we varied
compliance levels from 0 to 100% with a 20% increment.
Within figure 2b and electronic supplementary material, table
S2, we assumed that symptomatic cases (if compliant with the
government policy of prompt testing) took a nucleic acid test
within 2 days after symptom onset [1,50]; otherwise, they
would quarantine themselves at home (due to the prevalent
symptoms of fever) until testing [15,16]. We assumed that symp-
tomatic cases would eventually be tested due to the increasing
convenience of testing and that there was no delay between test-
ing and disease confirmation. To account for different types of
facemasks, we considered low (50%) and high (70%) protective
effectiveness [14,17]. In total, we evaluated 360 (=5 × 6 × 6 × 2)
combinations of interventions. We simulated each combination
for 100 days for 1000 realizations and estimated the effective
reproductive number Rt for each realization. We defined disease
resurgence as Rt > 1 at the end of t weeks since the first sympto-
matic case occurred. The probability of disease resurgence was
calculated from 1000 realizations. We set 5% as a socially accep-
table threshold for successful suppression. For each combination
above, if the resurgence probability could be reduced by less than
5% within four weeks (t = 4), we considered this to be a fast sup-
pression. If eight weeks (t = 8) were needed, we termed this a
slow suppression.
3. Results
This model was programmed in Python 3.6.4 and implemen-
ted in a high-performance computing cluster environment.
The high-performance computing cluster we used had 836
CPU cores and a single node with 192G of memory.

3.1. Validation of the baseline model
The baseline scenario model yielded an average of 416 symp-
tomatic cases in the epidemic, which was close to the 418
cases confirmed by the local CDC. We estimated a low root
mean squared error (RMSE = 1.35) between the simulated
and observed daily cases, indicating that the simulated epi-
demic curve matched well with the observed data in terms
of both magnitude and timeline (figure 3a). Over each age
group, the predicted symptomatic cases showed a high
degree of agreement with the confirmed cases. Most locally
acquired infections occurred within households in our simu-
lation, which was similar to data within actual observations
[15]. On average, the simulated household secondary attack
rate was 11.02%, which is in line with other observational
studies [15,16]. Our model also achieved a high spatial accu-
racy at the administrative district level (figure 3b), as the
predicted symptomatic case numbers were highly consistent
with reported case numbers (R2 = 0.95).

3.2. Effectiveness of interventions against disease
resurgence

The baseline model was extended to estimate the probability
of COVID resurgence occurring when compliance to control
interventions gradually recedes. Figure 4 and electronic sup-
plementary material, figure S8, show how combinations of
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interventions suppress disease resurgence given low and
high mask effectiveness. Both scenarios suggest that the risk
of disease resurgence is most sensitive to levels of contact tra-
cing, followed by individuals’ compliance with mask
wearing, and is least sensitive to compliance with prompt
testing. None of these interventions can suppress outbreak
resurgence on their own within four weeks, and thus a
combined manner is needed.

In a scenario when a low-effectiveness mask was used by
the public (figure 4a), we found that Level I contact tracing
(i.e. contact tracing of household members) must be applied
with mandatory (100%) mask use and prompt testing to
achieve fast suppression (i.e. a resurgence probability of
under 5% within four weeks). If contact tracing can be
expanded to work/class group members (Level II contact tra-
cing), public compliance with mask use and prompt testing
can be relaxed to 80% and 40%, respectively. More compre-
hensive contact tracing that includes casual contacts (Level
III and IV contact tracing) could lower the public compliance
level for the other two interventions to zero. However,
figure 4c indicates that Level II contact tracing appears to
be a threshold for disease control, in that more labour-
intensive contact tracing efforts (such as Level III and IV)
do not significantly change the probability of disease
resurgence.

An improvement in mask effectiveness to 0.7 and the
extension of the suppression period to eight weeks (electronic
supplementary material, figure S8b) further relaxed the
requirements for public compliance with mask use and
prompt testing, offering more possible combinations of the
three interventions to prevent disease resurgence. However,
compliance with mask wearing cannot be guaranteed and
the effectiveness of mask wearing varies with mask type
and contact setting [14,17]. Therefore, this study will focus
on results for lower mask effectiveness (0.5) in the discussion,
thus presenting modelling considerations given a minimum
level of control effort.
4. Discussion
Our validated model provides a reliable virtual platform
for predicting the odds of COVID-19 resurgence after
megacity reopening as well as tuning non-pharmaceutical
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interventions to minimize the risk of disease resurgence.
Here, we demonstrated how prompt testing, contact tracing
strategies at scale and compliance with facemask use have
the potential to provide a viable course of action to mitigate
the epidemic after efforts of non-pharmaceutical interven-
tions gradually diminish. Our simulations suggest a
‘CT-II + 80 + 40’ strategy (i.e. contact tracing Level II + 80%
compliance with mask use + 40% prompt testing) as the mini-
mum level of control effort for Shenzhen and possibly other
megacities in China that require rapid suppression of spora-
dic COVID-19 outbreaks (figure 4a). Due to the high
percentage of mild symptomatic COVID-19 cases, particu-
larly in the working population, it is challenging to
maintain high-level population compliance to prompt testing
after symptom onset, as the fear of COVID-19 has simul-
taneously been receding in China [15,51,52]. In practice, the
local health agency is expected to spare no effort to trace
close contacts within households, workplaces and schools
for any confirmed case, and to ensure their quarantine for a
designated time period. The government should make efforts
to normalize mask use in public life and mandate face cover-
ing in enclosed spaces, such as public transit, workplaces and
restaurants, until vaccines are widely manufactured and dis-
tributed. Meanwhile, to ensure a minimum compliance rate
of 40% to prompt testing after onset, extensive temperature
checks should be implemented in public places to identify
people with fever and limit their out-of-home activities.
Paid sick leave can be granted to sick people who are willing
to take a nucleic acid test as compensation for their loss of
productivity [52].

Our model also sheds light on combating COVID-19 in
other world megacities. Different cities can customize appro-
priate levels of contact tracing and compliance rates when
assessing their own healthcare capacity. For large cities in
European and Asian countries, stringent contact tracing
(e.g. Level II and above, with the aid of mobile apps) and
high rates of mask use (e.g. 80%) are likely to be maintained
[37]. The ‘CT-II + 80 + 40’ strategy could be a feasible option
to suppress disease resurgence. For many cities in the
United States, where the use of masks remains controversial
and public compliance is relatively low, the ‘CT-II + 60 + 0’
or ‘CT-II + 40 + 20’ strategy could be a practical solution to
minimize the risk of resurgence within eight weeks (figure 4b)
[53]. Some large cities in developing countries may have
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limited manpower and health resources to maintain a high
level of contact tracing and a high compliance rate of
prompt testing, whereas a mandatory order of mask use
and household self-quarantine is more feasible. These cities
could set up control strategies as a combination of ‘CT-I +
100 + 0’ or ‘CT-I + 80 + 20’ (figure 4b), which can confine
the chance of disease resurgence between 5% and 20%
within eight weeks.

The three single interventions we simulated for post-
epidemic management have been investigated separately by
existing studies. First, contact tracing has been widely rec-
ommended by many studies [18,19,37]. Particularly, the
study in the UK showed that contact tracing of acquaintances
alone could have an effect on transmission reduction similar
to that of detailed contact tracing [18], which is consistent
with our finding that labour-intensive contact tracing efforts
for casual contacts do not significantly change the probability
of disease resurgence. Second, we recommend 80% of the
population to wear masks, which is consistent with the
study in New York that also prompted a near universal adop-
tion (80%) of moderately effective (θ = 50%) masks [54].
Third, in terms of prompt testing, a recent study has demon-
strated that minimizing testing delay had a significant impact
on reducing onward transmissions [37]. Compared with the
above research, this study explored optimal combinations of
the three single interventions to suppress sporadic cases in
a fully reopened megacity.

This study has several limitations. First, our mobile phone
trajectory records cover only one typical weekday. We did not
differentiate between weekday and weekend activities in the
model simulation, particularly after reopening. Since people
tend to have closer contact on weekdays than on weekends,
we believe our model simulated a worse scenario of reopen-
ing than the reality and thus the suggested policies should
remain reasonable and effective. Second, our understanding
of COVID-19 is still improving, and many disease parameters
in this model are still inconclusive, such as virus infectivity
among various age groups, the proportion of asymptomatic
cases and their infectivity as compared to symptomatic
cases. Our model parameterization was mainly based on
local and national CDC reports. Therefore, the adoption of
these disease parameters should be at the discretion of
other researchers.
5. Conclusion
The contribution of this study to the literature is twofold. First,
our model offers a data-driven, fine-grained, agent-based and
spatio-temporally resolved presentation of COVID-19 spread
in a Chinese megacity. This model accounts for spatio-temporal
heterogeneity and the uncertainty of COVID-19 transmission in
a complex urban environment, including possible super-sprea-
der transmissions (figure 4d). The model was further validated
by the intra-urban spatial distribution of cases, the age distri-
bution of cases and household secondary attack rate. We are
not aware of any previous megacity simulation that achieved
a similar level of realism and reliability. Second, we not only
estimated the scale of the COVID-19 outbreak, but also focused
on assessing the probability of future outbreaks in Shenzhen
City. We explored the complex associations between the prob-
ability of disease resurgence and the combination of different
contact tracing levels (household, workplace, school and
public places), mask wearing rates and prompt testing rates,
thus offering policy options for post-epidemic management
for megacities of different countries.

As COVID-19 resurges in many countries, megacities face
the same issue as Shenzhen in balancing disease risk and
economic reopening. For long-term disease control and pre-
vention, intense forms of travel restriction (such as city
lockdowns and stay-at-home orders) are not feasible strat-
egies to fight against COVID-19 due to their associated
socio-economic disruption. Our model advocates contact tra-
cing of close contacts in household, workplace and school
settings, along with high compliance with mask wearing as
a priority for the city’s post-epidemic management. These
results offer public health practitioners within megacities
worldwide valuable insights for preventing disease resur-
gence before herd immunity is achieved by mass vaccination.
Data accessibility. Mobile phone data were provided by the Shenzhen
Transportation Operation Command Center (Contact: Binliang Li,
240854198@qq.com). Travel survey data, building survey data and
census data were offered by the Planning and Natural Resources
Bureau of Shenzhen Municipality (Contact: Renrong Jiang, jiangren-
rong@126.com). The epidemic surveillance data were provided by the
Shenzhen Center for Disease Control and Prevention (Contact: Shu-
jiang Mei, sjmei66@163.com). Researchers who meet the criteria for
access to confidential data can send requests to the above local gov-
ernment departments. The daily confirmed cases of COVID-19 are
publicly accessible from the Shenzhen Municipal Health Commission
(http://wjw.sz.gov.cn/yqxx/). Baidu migration data can be openly
obtained from http://qianxi.baidu.com/.
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