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Computer simulations are increasingly used to monitor and predict behavior at large crowd events, such
as mass gatherings, festivals and evacuations. We critically examine the crowd modeling literature and
call for future simulations of crowd behavior to be based more closely on findings from current social
psychological research. A systematic review was conducted on the crowd modeling literature (N � 140
articles) to identify the assumptions about crowd behavior that modelers use in their simulations. Articles
were coded according to the way in which crowd structure was modeled. It was found that 2 broad types
are used: mass approaches and small group approaches. However, neither the mass nor the small group
approaches can accurately simulate the large collective behavior that has been found in extensive
empirical research on crowd events. We argue that to model crowd behavior realistically, simulations
must use methods which allow crowd members to identify with each other, as suggested by self-
categorization theory.
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Computer simulations are increasingly used to monitor and
predict behavior at large crowd events, such as mass gatherings,
festivals, and evacuations. Recent approaches to crowd modeling
have proved effective in explaining patterns in aggregates of
people together in the same place, such as pedestrians in a busy
street (e.g., Helbing, Molnar, Farkas, & Bolay, 2001; Moussaïd,
Helbing, & Theraulaz, 2011) and small group behavior within
crowd flow (e.g., Köster, Seitz, Treml, Hartmann, & Klein, 2011;
Moussaïd, Perozo, Garnier, Helbing, & Theraulaz, 2010; Singh et
al., 2009). However, as yet, computer modelers have not created
models which can adequately simulate certain key psychological
features of large crowd behavior.

In a commentary on collective behavior, Turner (1987) argued
that instead of treating crowds as individuals without any connec-
tions to one another, we need to explain the mental unity of real

life crowds where the crowd behaves as one. As Reicher (1984)
states, “the fascination of crowd psychology lies in the fact that it
seeks to account for behavior that shows clear social coher-
ence—in the sense of a large amount of people acting in the same
manner—despite the lack of either pre-planning or any structured
design” (p. 1). There are numerous real world examples of such
collective behavior, for example football supporters performing a
Mexican wave, protestors chanting together, or people coordinat-
ing their egress movements in emergencies. In each case, there is
not only a physical crowd—an aggregate of individuals in the
same location—but also a psychological crowd, that is, a shared
psychological unity in those individuals and hence coordinated
behavior (Reicher & Drury, 2011). Indeed, in some crowd events
there may be more than one large psychological group which
exists within a physical crowd. For example, in the case of a
football match, the fans of each team make up two psychological
crowds that behave differently from each other within one large
physical crowd of people in the same stadium.

For a number of years, researchers modeling crowd behavior
have recognized that to enhance the realism of simulations, and to
better approximate collective behavior, greater granularity or psy-
chological detail is required (for examples see Galea, 2006;
Gerodimos, 2006). Thus some modelers have explicitly looked to
the social sciences for both evidence and concepts for understand-
ing collective behavior (e.g., Franca, Marietto, & Steinberger,
2009; Fridman & Kaminka, 2007; Helbing, Farkas, & Vicsek,
2002; Johnson & Feinberg, 1997). In different ways, these and
other modelers have argued that more accurate simulations will
require the inclusion of groups within a crowd (e.g., Aguirre,
El-Tawil, Best, Gill, & Fedorov, 2011; Bruno, Tosin, Tricerri, &
Venuti, 2011; Singh et al., 2009). However, this raises the question
of what is meant by the concept of ‘group.’ In both psychology and
computer science there are different understandings of what is
meant by a ‘group.’ Some of these understandings may be better
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than others in helping to produce a more realistic simulation of
behavior in a psychological crowd.

This article will critically examine existing crowd computer
simulations by first outlining how understandings of group and
collective behavior have developed within social psychology, be-
fore presenting a systematic review of the implicit and explicit
assumptions in modelers’ treatment of ‘groups’ and ‘crowds’. On
the basis of this review we will argue that crowd modelers will
benefit from incorporating aspects of self-categorization theory
(Turner, 1982; Turner, Hogg, Oakes, Reicher, & Wetherell, 1987)
in to their models in order to create realistic simulations of col-
lective behavior in line with findings from empirical psychological
research.

Toward an Understanding of Collective Behavior

In early understandings of collective behavior, crowds were
treated as either a mass of people under one ‘group mind,’ or a
mass of numerous unconnected individuals within the crowd. In
‘group mind’ accounts, crowds were understood as homogeneous
entities where upon entering a crowd individuals lost both their
individual ability to reason and their personality. Here every crowd
member became indistinguishable from the others as they tended
toward indiscriminate violence (Le Bon, 1960). Individualist ac-
counts, such as Allport (1924), argued that the idea of the collec-
tive is a nominal fallacy; groups and crowds are merely aggregates
of individuals. Any collectivity was seen to occur only through
social facilitation, whereby the presence of others stimulated be-
havior that was already present in each individual. Later research
demonstrated that neither group mind nor individualism could
explain the social form of collective behavior; the mechanisms
posited by Le Bon, Allport and others to explain collectively were
inherently primitive, irrational, and mindless. For both positions,
collective behavior tends to indiscriminate violence. However,
extensive empirical research has shown that most crowds are not
violent, and that even in riots and violent crowds, behavior is
rational, discriminate, and often shows a pattern which is in line
with shared conceptions of legitimacy (e.g., Fogelson, 1971;
Reicher, 1984, 1996; Reicher & Stott, 2011; Thompson, 1971).

In the current literature, collective behavior is often character-
ized as ‘contagion’ where the mere sight or sound of others’
behavior apparently influences individuals in a crowd to behave in
the same way (e.g., Gallup et al., 2012; Mann, Faria, Sumpter, &
Krause, 2013). However, social psychologists examining crowd
behavior have argued that the concept of ‘contagion’ cannot ex-
plain group boundaries to social influence. Thus Milgram and
Toch (1969) pointed out that a different model of collective
behavior was required to explain why the rousing effects of a
demagogue affected the behavior of protesters but not the riot
police who were physically copresent in the same crowd. Psycho-
logical group boundaries in ‘contagion’ have also been demon-
strated experimentally (Van der Schalk et al., 2011).

Later interactionist approaches focused on group norms and
interactions, and treated groups as psychological entities. Asch
(1952) claimed that to understand the individual we must pay some
attention to the group they belong to on the principle that the parts
get their meaning from their relationship within the whole. Sherif
(1967) proposed that being in a group has psychological conse-
quences which are separate to those of the individual, and collec-

tivity emerged when individuals had shared meanings and beliefs.
The ideas of these and other Gestalt social psychologists were
crucial for influencing psychological research to view individuals
as members of a shared social field which was separate from them
as individuals. Some sociologists began to take up this idea of
interaction and applied it to crowds by focusing upon meaning-
seeking and social norms for individuals to gauge acceptable
behavior in a novel situation where how to behave is not imme-
diately obvious (Emergent Norm Theory: Turner & Killian, 1957,
1987).

Other sociologists such as Aveni (1977) criticized previous
research for treating crowds as “spatially proximate collections of
individuals . . . undergoing some common experience” (p. 96) and
also noted that previous research has paid little attention to the
structure of crowds. Aveni’s criticism of this approach was fol-
lowed by research looking at the affiliation between some mem-
bers of the crowd. Various studies showed that in an evacuation
people will attempt to remain with the small group that they have
preexistent affiliative bonds with, such as friends and family, even
if this results in their evacuation time increasing or causing a
hazard to themselves (Johnson, 1988; Mawson, 2005; Sime, 1983).
However, approaches to crowd behavior focusing on small groups
fall short of explaining large collective behavior. For example,
these accounts cannot explain why in emergency situations a
crowd of strangers can become united and help those who were
previously strangers (Drury, 2012), or even that two large psycho-
logical crowds can exist who act together (intragroup) yet oppose
one another (intergroup) (Reicher, 1996). Although there are many
theories of crowd behavior, such as the individualist and contagion
approaches mentioned above, one of the most widely accepted and
utilized accounts of collective behavior in social psychology,
which is grounded in extensive empirical research and can explain
the collective behavior of psychological crowds, is self-
categorization theory (Turner, 1982; Turner et al., 1987).

The Psychological Crowd: A Self-Categorization
Approach

Self-categorization theory suggests that shared social identity—
people’s cognitive representation of their relationship to others - is
what makes collective behavior possible (Turner, 1985). Self-
categorization theory can therefore explain how physical aggre-
gates of individuals can come together psychologically within a
crowd and how a single physical crowd may consist of one, two (or
more) psychological crowds who each act as a large group without
prior interpersonal relationships or interpersonal interaction. Self-
categorization theory suggests that collective behavior occurs
through the process of depersonalisation. Here, individuals self-
stereotype themselves in line with the definition of a social cate-
gory and see themselves as being interchangeable with others in
their social category. In doing this, individuals shift from their
personal identity to their identity as a member of a particular social
group (Turner et al., 1987).

A plethora of crowd phenomena has been explained by self-
categorization theory, such as urban riots (Reicher, 1984), mass
emergency evacuations (Drury et al., 2009), religious mass gath-
erings (Alnabulsi & Drury, 2014), music festivals (Neville &
Reicher, 2011), collective action (Drury, Reicher, & Stott, 2003),
and ‘personal space’ in crowded locations (Novelli, Drury, &
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Reicher, 2010). An example of this behavior can be seen during
the London bombings of July 7th 2005, where individual commut-
ers became united through a shared identity in relation to the threat
of the bombs. On the basis of their shared identity, the commuters
helped each other and reported feelings of ‘unity,’ and felt ‘part of
a group’ (Drury, Cocking, & Reicher, 2009, p. 81). The ability of
self-categorization theory to explain behavior in numerous situa-
tions indicates that modelers would benefit from applying this
theory to their models in order to adequately simulate a broader
variety of crowd behavior.

Over the past decade, there has been an increased recognition
among modelers that the concept of social identity is necessary for
more realistic crowd simulations (for examples, see Aguirre et al.,
2011; Köster et al., 2011; Langston, Masling, & Asmar, 2006;
Smith et al., 2009). Here we examine whether any computer
models of crowds have responded to this perceived need and
adequately implemented a model of crowd behavior in line with
empirical research in crowd psychology. The following section
will address the main modeling techniques which have been used
to simulate crowds before we present the analysis of the concep-
tions of crowd behavior found in the modeling literature.

Psychological Requirements for Modeling the Crowd

Social psychological research on crowd psychology suggests a
set of theoretical criteria that computer simulations of crowds
should adhere to. In particular, a simulation must be able to model
individuals who have the required perceptual and cognitive abili-
ties to recognize identities—both their own and others’. Modeling
techniques such as flow-based models which treat all members of
the crowd as identical (e.g., Fang, Lo, & Lu, 2003) are inappro-
priate as they cannot model the variable cognitive processes in
individuals. Two commonly used approaches for simulating crowd
behavior are social force models and cellular automata. Both
model types are typically based upon set rules and equations which
have the same rules for every individual. In these models, the
behavior of individuals is determined by attractors and repellors
such as attraction to an area in the virtual environment and repul-
sion from other individuals to avoid collision (e.g., Burstedde,
Klauck, Schadschneider, & Zittartz, 2001; Zhao, Yang, & Li,
2008; Zhang, Zhao, & Liu, 2009).

However, other models such as agent-based models (ABMs) do
have the potential to simulate these individual capacities as each
agent can have different characteristics which affect their behavior.
ABMs can represent varying levels of perceptual and cognitive
processes. Importantly, they are also dynamic, as the behavior of
the agents (people) within the crowd, their individual characteris-
tics, and the ‘information’ that the agents receive, together drive
their actions and can be updated at each time step of the simulation
(e.g., Fang, Yuan, Wang, & Lo, 2008; Ji & Gao, 2007; Köster et
al., 2011). ABMs thus lend themselves to modeling complex
crowd behavior and, in particular, situations in which individuals’
characteristics alter as their social identities change during the
simulation. They can also represent more complex abilities, spe-
cifically the ability of individuals to perceive their own group
membership and the group membership of other agents in the
simulation. For instance, membership has been used to alter agent
behavior through governing an agent’s spatial location based on
the perception of their own group membership and the group

membership of others, such as in leader and follower models (e.g.,
Qiu & Hu, 2010; Yuan & Tan, 2007). As such, ABMS have the
ability to simulate psychological components of group identity and
self-categorization in crowds. In this review, we will explore how
the principles of identity and categorization have been imple-
mented in existing ABMs and similar models of crowd behavior.

Method

Reviewing the Literature

A systematic review of the crowd modeling literature was
conducted, in which publications were coded according to the
psychological basis used to model crowd behavior. Literature was
sourced from the ScienceDirect database and Google Scholar
search engine (see Figure 1). In order to locate the relevant
literature, the search string of “crowd” was used. Articles and
conference proceedings about crowd models were selected from
the generated results. Publications recommended by ScienceDirect
due to their similarity to the articles identified were also incorpo-
rated in to the collection, and the references cited in relevant
literature were also used to source additional literature.

Crowd Modeling Typology

Each article was analyzed according to how the behavior of the
crowd was treated. Where the theoretical basis for the crowd
behavior being implemented was not explicitly stated by the au-
thors, it was inferred from how the crowd behavior was modeled
and what psychological literature was referenced, if any. Through-
out data collection, it became evident that in the literature the
crowd was conceptualized and implemented in one of five possible
subtypes. These subtypes fit in to two major types. In the first type,
the crowd is treated as a mass. In the second type, the crowd is
treated as consisting of a number of small groups.

The prima facie validity of the subtypes was established by
presenting descriptions of each category (with examples) to an
audience of crowd modelers. To ascertain that the reliability of the
subtypes by the first coder were correct, an interrater reliability
analysis was conducted on the scheme used to divide cases into
types and subtypes. Fourteen articles were randomly selected, and
for each article an excerpt was chosen which represented the
approach taken toward crowd behavior (minimum length of ex-
cerpt � 107 words, maximum length of excerpt � 341). These
excerpts were presented to an independent judge, along with
definitions of each subtype, and she assigned each article to a
subtype. There was very good agreement between the allocation of
the raters, Cohen’s Kappa K � .898 (p � .001) 95% CI (0.676,
1.000).

Results

The most prominent models were the mass approaches to crowd
behavior, which could be divided in to two subtypes; the ‘homo-
geneous mass’ approach (52 articles) and the ‘mass of individuals’
approach (31 articles). Within the small groups type, small groups
are included in the crowd simulations but the understanding of
‘groups’ and methods to implement group behavior varied. Thus
there were three subtypes of small group simulations; ‘non-
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perceptual groups’ (33 articles), ‘perceptual groups’ (14 articles),
‘cognitive groups’ (10 articles). The number of articles in each
subtype is shown in Figure 2, and the allocation of all models in to
subtypes is shown in Table 1.

Mass Crowd Simulations

Simulations which fall in to this category treat crowds as con-
sisting of numerous ‘individuals’ in a large mass. Despite research
demonstrating that there are often small psychological groups
within physical crowds and extensive research showing that col-
lective behavior requires individuals to see themselves as part of a
large psychological crowd or group, groups are not implemented in
these types of models.

‘Homogeneous Mass’ Subtype

The most commonly used approach within the crowd modeling
literature is the homogeneous mass subtype. In examples of this

subtype, the crowd is treated as an aggregate mass where every
person is allocated identical properties. Within this subtype the
crowd is regarded as a very large physical mass of individuals who
coincidentally share the same goal—for example evacuating their
environment. Literature in this subtype is therefore also character-
ized by modeling very basic agent behavior, often simply avoiding
collisions with one another. This approach is predominantly used
in order to model the effect of crowd size and crowd density on
egress in emergency evacuations and ordinary environments. For
example, Fang, Lo, and Lu (2003) modeled a crowd flow pattern
in an emergency situation to examine the effect of crowd density
on the speed of evacuation. Similarly, to examine the effect of
crowd size on the speed of egress, Lee and Hughes (2006) manip-
ulated the size of the crowd and the complexity of the environment
to determine the effect on pedestrian walking speed. Although the
assumptions underlying this approach are adequate to model the
movement of one psychological crowd in a specific situation, these
assumptions cannot accurately capture the behavior of crowds in
more complex scenarios, such as when there are two or more
crowds acting in different ways or even in contraflow. When other
crowds are introduced in to the model, modelers need to simulate
different crowd movement and dynamic group identities. Thus, the
assumptions of this subtype cannot be applied to other scenarios
where there is more than one psychological crowd.

‘Mass of Individuals’ Subtype

The mass of individuals approach differs from the homogeneous
mass approach in that agents are given unique properties which

Search string of ‘crowd’ 

Results from Science Direct: 
33,280 

Abstracts read:  
1,000 

Results from Google Scholar: 
1,360,000 

Abstracts read:  
600 

Inclusion criteria:  

1. Simulations of crowd events taken from footage in real life 
scenarios 

2. The effect of crowds in planning for events using computer 
simulations 

3. Examination of techniques for modelling crowd behaviour 

Articles about crowd modelling which matched our 
inclusion criteria: 

140 

Figure 1. Flow diagram of search criteria and exclusion process for relevant articles. Where the same articles
were generated by both Science Direct and Google Scholar, the abstracts were read and incorporated into the
corpus only once.
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Table 1
List of the Literature Reviewed and the Allocated Subtypes

Authors Year Typology

Aguirre, El-Tawil, Best, Gill, & Federov 2011 Perceptual groups
Andrade, Blunsden, & Fisher 2006 Homogeneous mass
Banarjee, Grosan, & Abraham 2005 Homogeneous mass
Bandini, Gorrini, & Vizzari 2014 Perceptual groups
Bicho, Rodrigues, Musse, Jung, Paravisi, & Magalhaes 2012 Non-perceptual groups
Bierlaire, Antonini, & Weber 2003 Mass of individuals
Bodgi, Erlicher, & Argoul 2007 Homogeneous mass
Bruno, Tosin, Tricerri, & Venuti 2011 Homogeneous mass
Burstedde, Klauck, Schadschneider, & Zittarz 2001 Homogeneous mass
Carroll, Owen, & Hussein 2013 Homogeneous mass
Chen & Huang 2011 Non-perceptual groups
Chen & Lin 2009 Non-perceptual groups
Chen, Wang, Wu, Chen, Khan, Kolodziej, Tian, Huang, & Liu 2013 Perceptual groups
Cho & Kang 2014 Non-perceptual groups
Chong, Liu, Huang, & Badler 2014 Non-perceptual groups
Chow 2007 Homogeneous mass
Chrysostomou, Sirakoulis, & Gasteratos 2014 Non-perceptual groups
Davidich & Köster 2013 Mass of Individuals
Degond & Hua 2013 Homogeneous mass
Dogbe 2012 Non-perceptual groups
Dou, Chen, Chen, Chen, Deng, Zhang, Xi, & Wang 2014 Mass of Individuals
Fang, Lo, & Lu 2003 Homogeneous mass
Fang, Yuan, Wang, & Lo 2008 Homogeneous mass
Fienberg & Johnson 1995 Non-perceptual groups
Franca, Marietto, & Steinberger 2009 Cognitive groups
Fridman & Kaminka 2007 Non-perceptual groups
Galea, Owen, & Lawrence 1996 Mass of individuals
Gawroński & Kulakowski 2011 Perceptual groups
Georgoudas, Kyriakos, Sirakoulis, & Andreadis 2010 Homogeneous mass
Goldenstein, Karavelas, Metaxas, Guibas, Aaron, & Goaswami 2001 Non-perceptual groups
Gutierrez, Frischer, Cerezo, Gomez, & Seron 2007 Mass of individuals
Haciomeroglu, Barut, Ozcan, & Sever 2013 Non-perceptual groups
Heïgeas, Luciani, Thollot, & Castagne 2003 Homogeneous mass
Helbing, Johansson, & Al-Abideen 2007 Mass of Individuals
Helbing, Farkas, & Vicsek 2000 Homogeneous mass
Helbing, Farkas, Molnar, & Vicsek 2002 Homogeneous mass
Helbing, Molnar, Farkar, & Bolay 2001 Non-perceptual groups
Heliövaara, Korhonen, Hostikka, & Ehtamo 2012 Homogeneous mass
Henein & White 2007 Homogeneous mass
Hu, Zheng, Wang, & Li 2013 Mass of individuals
Hughes 2000 Homogeneous mass
Hussain, Yatim, Hussain, & Yan 2011 Non-perceptual groups
Idrees, Warner, & Shah 2014 Non-perceptual groups
Ji & Gao 2007 Perceptual groups
Ji, Zhou, & Ran 2013 Homogeneous mass
Jiang, Xu, Mao, Li, Xia, & Wang 2010 Non-perceptual groups
Jiang, Zhang, Wong, & Liu 2010 Homogeneous mass
Ji-hua, Cheng-zhi, Zhi-Feng, & Bo 2013 Homogeneous mass
Johansson, Batty, Hayashi, Bar, Marcozzi, & Memish 2012 Mass of individuals
Johnson & Feinberg 1977 Perceptual groups
Johnson & Feinberg 1997 Perceptual groups
Johnson, Hart, & Hui 1999 Mass of individuals
Kamkarian & Hexmoor 2013 Mass of individuals
Karni & Schmeidler 1986 Homogeneous mass
Khaleghi, Xu, Wang, Li, Lobos, Liu, & Son 2013 Homogeneous mass
Kirchner & Schadschneider 2002 Non-perceptual groups
Kirchner, Klüpfel, Nishinari, Schadschneider, & Schreckenberg 2003 Homogeneous mass
Köster, Seitz, Treml, Hartmann, & Klein 2011 Perceptual groups
Kountouriotis, Thomopoulos, & Papelis 2014 Perceptual groups
Krausz & Bauckhage 2012 Homogeneous mass
Lachapelle & Wolfram 2011 Non-perceptual groups
Langston, Masling, & Asmar 2006 Mass of individuals
Lee & Hughes 2006 Homogeneous mass

(table continues)
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Table 1 (continued)

Authors Year Typology

Lee & Hughes 2007 Homogeneous mass
Lei, Li, Gao, Hao, & Deng 2012 Mass of individuals
Li & Qin 2012 Homogeneous mass
Lister & Day 2012 Homogeneous mass
Lo, Fang, Lin, & Zhi 2004 Mass of individuals
Löhner 2010 Non-perceptual groups
Lozano, Morillo, Orduña, Cavero, & Vigueras 2009 Non-perceptual groups
Ma, Lo, Song, Wang, Zhang, & Liao 2013 Homogeneous mass
Ma & Song 2013 Perceptual groups
Manfredi, Vezzani, Calderara, & Cucchiara 2014 Non-perceptual groups
Marana, Velastin, Costa, & Lotufo 1998 Mass of individuals
Maury, Roudneff-Chupin, & Santambrogio 2010 Homogeneous mass
Mazzon, Tahir, & Cavallaro 2012 Mass of individuals
Mehran, Oyama, & Shah 2009 Non-perceptual groups
Mekni 2013 Cognitive groups
Moore, Flajšlik, Rosin, & Marshall 2008 Perceptual groups
Moussaïd, Helbing, & Theraulaz 2011 Mass of individuals
Moussaïd, Perozo, Garnier, Helbing, & Theraulaz 2010 Non-perceptual groups
Mukovskiy, Slotine, & Giese 2013 Homogeneous mass
Musse & Thalmann 1997 Cognitive groups
Musse & Thalmann 2001 Cognitive groups
Musse, Babski, Çapın, & Thalmann 1998 Cognitive groups
Narain, Golas, Curtis, & Lin 2009 Homogeneous mass
Nilsson & Johansson 2009 Non-perceptual groups
Oğuz, Akaydın, Yılmaz, & Güdükbay 2010 Non-perceptual groups
Pan, Han, Dauber, & Law 2007 Cognitive groups
Parunak, Brooks, Brueckner, & Gupta 2012 Cognitive groups
Pelechano, Allbeck, & Badler 2007 Mass of Individuals
Pires 2005 Homogeneous mass
Qui & Hu 2010 Perceptual groups
Ramesh, Shanmughan, & Prabha 2014 Mass of individuals
Ran, Sun, & Gao 2014 Non-perceptual groups
Ryan, Denman, Fookes, & Sridharan 2014 Homogeneous mass
Sagun, Bouchlaghem, & Anumba 2011 Homogeneous mass
Sarmady, Haron, & Talib 2011 Homogeneous mass
Shao, Dong, & Tong 2013 Non-perceptual groups
Shendarkar, Vasudevan, Lee, & Son 2008 Perceptual groups
Shi, Ren, & Chen 2009 Mass of individuals
Shi, Zhong, Nong, He, Shi, & Feng 2012 Mass of individuals
Silverberg, Bierbaum, Sethna & Cohen 2013 Homogeneous mass
Singh, Arter, Dodd, Langston, Lester, & Drury 2009 Non-perceptual groups
Smith, James, Jones, Langston, Lester, & Drury 2009 Cognitive groups
Song, Gong, Cui, Fang, & Cao 2013 Mass of Individuals
Spieser & Davison 2009 Homogeneous mass
Tajima & Nagatani 2001 Homogeneous mass
Thiel-Clemen, Köster, & Sarstedt 2011 Non-perceptual groups
Thompson & Marchant 1995 Non-perceptual groups
Tong & Cheng 2013 Mass of individuals
Varas, Cornejo, Mainemer, Toledo, Rogan, Munoz, & Valdivia 2007 Homogeneous mass
Vasudevan & Son 2011 Cognitive groups
Vigueras, Lozano, Orduña, & Grimaldo 2010 Homogeneous mass
Wagner & Agrawal 2014 Homogeneous mass
Wang, Li, Khaleghi, Xu, Lobos, Vo, Lien, Liu, & Son 2013 Homogeneous mass
Wang, Zhang, Cai, Zhang, & Ma 2013 Mass of individuals
Wang, Zheng, & Cheng 2012 Mass of individuals
Weifeng & Hai 2011 Mass of individuals
Wu & Radke 2014 Mass of individuals
Xiaoping, Wei, & Chao 2010 Homogeneous mass
Xiong, Cheng, Wu, Chen, Ou, & Xu 2012 Non-perceptual groups
Xiong, Lees, Cai, Zhou, & Low 2010 Homogeneous mass
Yamamoto, Kokubo, & Nishiniari 2007 Homogeneous mass
Yan, Tong, Hui, & Zonghhi 2012 Mass of Individuals
Yaseen, Al-Habaibeh, Su, & Otham 2013 Non-perceptual groups
Yu & Johansson 2007 Homogeneous mass
Yuan & Tan 2007 Cognitive groups
Yücel, Zanlungo, Ikeda, Miyashita, & Hagita 2013 Perceptual groups
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make them act as individuals within the crowd. Usually, individual
differences are implemented in order to examine the factors that
can affect evacuation egress. For example, Shi et al. (2012) assign
individuals different attributes such as response time, walking
speed, and endurance in order to create a more realistic simulation
of pedestrian evacuation in a heterogeneous crowd in a metro
station in China. Other example attributes include different pedes-
trian velocities or health status (e.g., Dou et al., 2014). As in the
previous subtype, the crowd members act independently but with
the same goal of evacuating as quickly as possible. Some models
include elaborate environments which affect the egress of individ-
uals in more realistic simulations; for example Shi, Ren, and Chen
(2009) manipulate the egress time of individual agents by causing
the agents to be affected by the level of smoke in the room and
how injured the individuals are. However, although these models
can become very intricate, the premise of the model is still that of
individual behavioral differences within a ‘mass’, rather than act-
ing as a collective.

Small Group Types

This subtype is characterized by small groups within the crowd.
The small groups are usually implemented to determine the effect
of groups on egress time, following Aveni’s (1977) research that
suggested that crowds may be comprised of small groups and
individuals. The type of groups that are implemented varied and
can be divided in to three subtypes on an ordinal scale of psycho-
logical realism. However, all of these models represent sociality
merely in terms of relations within small groups where collective
behavior is reduced to being similar to interpersonal behavior
rather than the crowd being a group itself.

‘Non-Perceptual Groups’ Subtype

Models of this subtype simulate physical groups but not psy-
chological groups. That is, groups are implemented as homoge-
neous physical aggregates of people with no intragroup connection
or individual knowledge of group membership. Instead, these are
essentially small preexisting groups, which physically stick to-
gether in the crowd regardless of the situation. Thus, they move as
one homogeneous aggregate, as though they are one large and slow
individual. Simulations which fell in to this subtype model small
groups in order to investigate the effect of groups on egress,
particularly at bottlenecks and exits (e.g., Idrees, Warner, & Shah,
2014).

The implementation of small groups in this type of simulation is
in some ways similar to the ‘mass of individuals’ approach. Instead
of being an individual who acts independently within the mass, the
group is an aggregate cluster of individuals which act as one within
the crowd. Although no psychological connection between the
groups is modeled, affiliative theories are often referenced (e.g.,
Aveni, 1977) to justify the inclusion of a group which stays
together in a crowd situation (e.g., Feinberg & Johnson, 1995). For
example, Dogbe (2012) modeled group behavior using attraction
and repulsion interactions, where social groups (assumed to be
friends and family in this model) are attracted to move together
throughout the simulation, but are repulsed by other neighboring
groups. By implementing group behavior in this way, Dogbe is
simulating a crowd where the groups are essentially small numbers
of people clumped together within the crowd, with no meaningful
interaction other than to change formation in order to stay together
as they move throughout the crowd. Although it is an advance in
terms of psychological theory used that these models simulate
groups which are visible through their movement, the focus on
small groups neglects the fact that groups can coincide and that an
entire crowd can move together as a unit.

‘Perceptual Groups’ Subtype

In contrast to the non-perceptual groups subtype, in perceptual
groups individuals are able to perceive their own group member-
ship, the identity of others within the crowd, and act according to
their role. Often models which fall in to this subtype include
‘leaders’ and ‘followers’ where followers are treated as being
together as a group because of their connection to leaders as the
simulation unfolds (e.g., Moore, Flajšlik, Rosin, & Marshall,
2008). Although in simulations of this subtype, individuals are
able to perceive their own group membership and the group
identity of other individuals, their movement is derived from the
idea that people will come together as a group because they are
looking for signs and information about how to act in a novel
situation. This approach to group behavior draws close parallels
with emergent norm theory (Turner & Killian, 1957, 1987), as the
agents are in a novel situation and look for leaders and social
norms to discern how to act. However, a common problem with
these models is that the agent’s priority is to move to the nearest
leader, which causes clusters of individuals to form groups without
the individuals ever having a psychological bond with any other
person (e.g., Qui & Hu, 2010). This could be criticized as these
groups are based upon being in the same spatial location rather

Table 1 (continued)

Authors Year Typology

Zanlungo 2007 Mass of individuals
Zanlungo, Ikeda, & Kanda 2012 Homogeneous mass
Zawidzki, Chraibi, & Nishinari 2013 Mass of Individuals
Zhang, Liu, Liu, & Zhao 2007 Homogeneous mass
Zhang, Liu, Wu, & Zhao 2007 Homogeneous mass
Zhang, Weng, Yuan, & Chen 2013 Mass of individuals
Zhao, Wang, Huang, Cui, Qui, & Wang 2014 Mass of individuals
Zhao, Yang, & Li 2008 Homogeneous mass
Zheng & Cheng 2011 Non-perceptual groups
Zheng, Sun, & Zhong 2010 Homogeneous mass
Zheng, Zhao, Cheng, Chen, Liu, & Wang 2014 Non-perceptual groups
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than being together because they share a group identity, and agents
have no perception of others aside from avoiding collision and
knowing who is a ‘leader’ or a ‘follower.’

‘Cognitive Groups’ Subtype

In this subtype, individuals are able to perceive their own group
membership and the group membership of others, just as in the
‘perceptual’ models. However, there is an extra component; indi-
viduals can share similar properties which are treated as ‘cogni-
tion’ by the authors. Here, agents who share the same properties
are treated as being in a group. Additionally, the properties of each
agent can change throughout the simulation, which causes the
groups to change. As new information about the environment is
given to the agents, the agents adapt their properties and seek out
who they perceive to match their properties. Within this subtype,
articles again tend to reference emergent norm theory (Turner &
Killian, 1957, 1987) to justify why they implement interaction
between crowd members. For example, Franca, Marietto, and
Steinberger (2009) assign each agent certain properties. When new
information is introduced to the agents, the agents begin to com-
municate to establish new norms. They seek out others who share
their properties or are affected in the same way by information, and
consequently move into groups with agents who share the same
properties as them.

The principles behind simulations of the ‘cognitive’ subtype are
the closest to psychological realism and lend themselves to more
diverse implementations of both group and individual behavior.
This approach is closest to self-categorization theory because it
allows for the implementation of both individual properties and the
ability to become a group member. It has also been used to
simulate people acknowledging their group membership but being
able to decide whether to act with their group or to act as an
individual. Yuan and Tan (2007) created a scenario where a crowd
of people have to evacuate a room, but agents can decide whether
to leave with their group members or not. Moreover, this subtype
focuses on the fact that groups exist based on shared properties,
which is theoretically in line with the proposal of self-
categorization theory that groups exist due to a sense of common-
ality between their members.

Trend Analysis

As Figure 3 shows, although the initial models of crowd behav-
ior began with a mix of articles from all subtypes, since 2007 the
‘homogenous mass’, ‘mass of individuals’ and ‘non-perceptual’
subtypes have been more prominent. Although there was an initial
spike of articles in the ‘cognitive groups’ subtype in 2001, then

another in 2009, this subtype has largely been overtaken by the
‘mass’ approaches. One factor which could have contributed to the
rise in crowd modeling articles over the years is increased access
to crowd modeling software. The upsurge of crowd simulations—
particularly in the ‘homogeneous mass’, ‘mass of individuals’ and
‘non-perceptual groups’ subtypes - over the last decade could be
due to the availability of modeling software such as SIMULEX
(e.g., see Thompson & Marchant, 1995) and FIREScape (e.g., see
Feinberg & Johnson, 1995), which provide tools to simulate
crowds without focusing on group behavior (for a detailed analysis
of emergency evacuation simulation models, see Santos & Agu-
irre, 2004).

Discussion

Misrepresenting the Crowd

This review has discerned that a plethora of models of crowd
behavior have successfully simulated crowds of individuals. No-
tably, the majority of models have not aimed to incorporate psy-
chological theories in to their rationale for crowd behavior. How-
ever, to accurately monitor and predict the collective behavior
exhibited in psychological crowds specifically, it is imperative that
models being used for crowd safety management have an accurate
understanding of collective behavior taken from empirical re-
search. In line with what is known in crowd psychology, a realistic
model of collective behavior must include the capacity to simulate
the difference between physical crowds and psychological crowds.
Specifically, it must be able to model both the members of a crowd
categorising themselves as individuals distinct from other individ-
uals, and the situation where the same individuals categorise
themselves as members of the crowd and hence share an identity.
Simulations of psychological crowds must therefore address the
way in which people can identify with one another and how
collective behavior emerges from this process.

This review has found that some crowd modelers have begun to
approach psychological realism by incorporating groupness (e.g.,
Aguirre et al., 2011; Moore, Flajšlik, Rosin, & Marshall, 2008) in
their models of crowd behavior, particularly those we denoted as
the ‘cognitive groups’ subtype. However, these developments have
not occurred at the same rate. Over the previous decade, there has
been an increase in models which have implemented the ‘homo-
geneous mass’, ‘mass of individuals’ and ‘non-perceptual group’
approaches. The advantages and limitations of each subtype will
be discussed, and we propose the theoretical advances that must be
made in order for crowd models to simulate collective behavior
more accurately across a variety of collective behavior scenarios.

Constructing the Relationship Between the Individual
and the Group

Examples of the mass type of model support Sime’s (1985)
assertion that in computer simulations people are treated as ball-
bearings; they are unthinking and act at a very base level of simply
moving without interacting with one another. The homogeneous
mass approach is also similar to the Le Bonian (1895) notion of
crowds as an unthinking mass who act at a primitive psychological
level, where there is no sense of individuality and thus is reminis-
cent of the broader mass society narrative, where the crowd is
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treated as an ‘undifferentiated whole’ (Giner, 1976, p. 47); the
mass lacks capacity for moral sense, or a sense of direction.
Models in this subtype are not behaviorally realistic because there
are no individuals, and therefore there is no room for individual
cognition from which meaningful group behavior can emerge. As
mentioned previously, although models in this approach can sim-
ulate one crowd where members move together in a limited num-
ber of scenarios such as evacuation through one route, this account
cannot explain collective behavior in all situations, such as where
there are two or more psychological crowds, or two crowds in
contraflow.

In Galea, Owen, and Lawrence’s (1996) model, the importance
of each member of the crowd having individual attributes which
change how people act throughout the simulation is emphasized.
Although this was an important development for approaching
psychological realism, it was at the cost of modeling collective
behavior. Granularity is obtained at the cost of collectivity. In the
mass of individuals approach, there is no collective behavior
because the crowd members act as individuals without any sense
of the commonality which is required for collective group behav-
ior. To create a realistic model of collective behavior, modelers
need to understand how the individual can become part of a
psychological crowd. Thus, modelers need to implement the ca-
pacity of crowd members to act either as an individual or as a
member of the crowd depending upon whether the person cat-
egorises themselves as an individual within a physical crowd, or as
a member of the psychological crowd.

The Crowd as Small Groups

Unlike the ‘mass’ type, models within the ‘small groups’
type have various levels of connections between the members
of the crowd. The models in this subtype are a significant
development in crowd modeling as they recognize and imple-
ment the importance of groupness and how this can affect the
behavior of the crowd members. However, the ‘small groups’
type falls short of realistically modeling large crowd behavior
as it only includes small groups within a crowd. Increasing
granularity (small-group level variation within a physical
crowd) loses the sense of ‘groupness’ at the crowd level be-
cause the focus is upon numerous small groups within the
crowd. The approach therefore does not explain collective be-
havior where the crowd is one group. By doing this, the models
are unable to simulate the behavior of large psychological
crowds where the entire crowd shares one group identity. How-
ever, each subtype within the ‘small groups’ type has its own
specific advantages and drawbacks.

In the ‘non-perceptual groups’ subtype of simulation, groups
are treated as physical entities rather than being together due to
a psychological bond between the members of the group. The
original models in this subtype (e.g., Goldenstein et al., 2001;
Thompson & Marchant, 1995) were very important for the
development of simulations of crowd behavior because they
introduced groups in to the crowd. However, groups are only
incorporated in order to make simulations more realistic by
claiming that the groups are families or friends. Group mem-
bership has no effect on the behavior of the group apart from
staying together throughout the simulation. Although there are

now groups, there is no sense of collective behavior based on a
shared group identity.

Within the ‘perceptual groups’ subtype, modelers represent
crowd members as being able to know their own group identity
and the group identity of others. Although the ability of the
crowd members to perceive group membership and act in ac-
cordance with it is in line with self-categorization theory
(Turner et al., 1987), here groups are treated simply as people
that are in the same spatial location. Although group member-
ship is dependent upon group members actively categorising
themselves as members of that specific group, group member-
ship is limited and only goes as far as crowd members having
roles as either a ‘leader’ or a ‘follower’ as opposed to group
membership arising from a sense of common identity. Empiri-
cal research on group behavior suggests that psychological
group membership is more versatile than this; when people are
in a novel crowd situation they can come together through
sharing a group identity and act together in a coordinated way,
such as by self-organizing and helping one another (Drury,
2012; Drury et al., 2009). In addition, group membership does
not need to be limited to those people within the same spatial
location. The shared group identity can spread to include the
entire crowd, where people have a shared social identity with
others in the crowd and act in a coordinated way with them even
if they are not near to each other, for example football fans in
a stadium.

Incorporating Cognition for Collective Behavior

The subtype of model which comes closest to explicating the
underlying components of cognitive group membership and
which is consistent with psychological research is the ‘cogni-
tive groups’ subtype. Examples of this subtype not only incor-
porated the perception of group membership, but also went
further than the ‘perceptual groups’ subtype by incorporating
what is claimed as ‘cognition.’ In this subtype ‘cognition’ is
instantiated as the ability of people to perceive their own beliefs
and the beliefs of others, and group membership is dependent
upon shared beliefs and desired actions. Moreover, in some
simulations (e.g., Yuan & Tan, 2007), the agents are able to
choose whether to act with a group or to act as an individual.

The incorporation of ‘cognition’ brings this subtype closest
to implementing principles of self-categorization theory in a
crowd simulation. Although not explicitly stated in any of the
literature that has been reviewed, it could be argued that models
in this subtype actually model something of the cognitive shift
from being psychologically an individual to becoming a mem-
ber of a particular social group and taking on that salient
identity, which is crucial for collective behavior to emerge.
However, despite these advantages, this approach does not
completely model a psychological crowd as the models are yet
to make the leap from small ‘cognitive’ groups to large crowds
where the members share the same group identity. For example -
although not specifically a model of crowd behavior - van Rooy
(2012) uses an ABM to examine SCT by grouping individuals
depending upon their shared opinions. Within this model the
individuals could communicate their opinions with others and
change group affiliation to be with others who shared the same
opinions. By defining groups as those who share common opinions
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van Rooy’s definition of groups approaches psychological realism
by basing group membership on a sense of commonality. While
groups are still treated as consisting of small numbers, future work
could ascertain whether these principles could be extended to an
entire crowd.

Toward a Cognitive Model of Collective Behavior

There are a number of factors that must be addressed in order
for modelers to create an accurate simulation of collective
behavior. One component that is fundamental to collective
behavior is the perception of groupness: the ability of an
individual to know their own group identity and perceive the
group identities of others. An issue here is how to quantify the
level of identification that a member feels with their group.
Identification with a group is not simply a binary ‘identify’ or
‘do not identify’ scenario; modelers should create agents with
the potential for variable levels of group identification which
are dependent upon the context that the individual is in. Simi-
larly, the effect of group identity upon behavior is not neces-
sarily linear. Although an increased level of identification may
cause individuals to behave in line with the norms of the group,
other variables may act as moderators, such as beliefs about
legitimacy of actions and levels of self-efficacy. One example
of a model which has effectively employed aspects of self-
categorization theory to simulate collective crowd behavior is
von Sivers, Templeton, Köster, Drury, and Philippides (2014).
The study described in this article is a first step toward exam-
ining the effect of self-categorization theory upon collective
crowd behavior during an emergency, and could be used as a
marker for future work simulating collective behavior.

This has been the first comprehensive and up-to-date review
of how computer models have conceptualized groups and
crowd behavior. Despite the importance that models used for
crowd management and safety are able to realistically simulate crowd
behavior, until now there has not been a review of how modelers
approach collective behavior, or indeed whether they approach it at
all. An earlier review by Sime (1985) found that the idea of ‘mass
panic’ was influential in how modelers implemented crowd be-
havior in safety planning and the design of public spaces. How-
ever, modeling approaches have evolved since Sime’s review.
There has been an upsurge in the number of crowd simulations
since then, with some articles even referencing Sime in their
justification for their new approaches to modeling crowd behavior
(e.g., Feinberg & Johnson, 1995; Kamkarian & Hexmoor, 2013).
In addition, a recent review of building evacuation simulations by
Aguirre et al. (2011) found that modelers using ABMs placed an
emphasis on individuality and mass panic and suggested that
evacuation simulations need to include other social scientific fac-
tors such as norms, leadership, and group identification and mem-
bership.

Though both of these reviews were very important for ad-
dressing improvements the needed to be made in the crowd
modeling literature, our review has gone further than this. We
have comprehensively reviewed a broad scope of crowd mod-
eling scenarios from 1977 to 2014, including simulations of
crowd events taken from real life events, simulations of crowds
in planning for events, literature looking at techniques for
modeling crowd behavior using simulations, and articles which

addressed the techniques used to model crowd behavior. More-
over, we have examined the theoretical underpinnings of each
of these 140 articles to determine what assumptions modelers
are making about crowd behavior. This is the first systematic
comparison of the crowd modeling literature with current mod-
els of crowd behavior in social psychology.

By examining what crowd modelers are creating and com-
paring it to empirical research of collective behavior, we can
see what future models need to change. Although models have
been successful in simulating crowds without a group identity,
as yet simulations have not aimed to model large psychological
behavior. Modelers are yet to model the transformation of
people from identifying as an individual to identifying as a
member of the crowd. Without this they cannot model mean-
ingful collective behavior where the behavior of a large crowd
can be understood in terms of group membership, which is
needed to explain scenarios where there is more than one crowd
present (such as the football fans mentioned previously). To
create a realistic model of crowd behavior, crowd modelers
must look to the extensive empirical research on group and
crowd behavior in social psychology.

We propose that to make more realistic simulations of col-
lective behavior, which can be applied to a broad range of
scenarios, modelers must implement aspects from self-
categorization theory. Specifically, these simulations should be
based on the aspects of self-categorization theory which can
explain how members of a large crowd share the same group
identity, the transformation from the individual identities to the
identities as group members, and the subsequent actions which
follow from being part of that group. While this would create
more realistic models of collective behavior for modelers, this
interdisciplinary work could also benefit social psychologists.
By creating models which incorporate self-categorization the-
ory and accurately simulate the behavior that we have found in
empirical search, it could help to develop theories of collective
behavior in social psychology. Only by incorporating these
aspects that are based on extensive empirical social psycholog-
ical research will crowd modelers be able to realistically sim-
ulate, monitor, and predict collective behavior in crowds across
a wide range of crowd events.
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