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Simple Summary: Nasopharyngeal carcinoma (NPC) is a frequent head and neck cancer, especially
in Asian countries. Our studies investigated the value of minable data derived from standard of care
PET/CT imaging in patients with NPC. The here presented evaluation found that certain specific
imaging features in this patient population can be potentially used to predict overall survival and
progression free survival at different time points in those patients.

Abstract: Purpose: We aim determine the value of PET and CT radiomic parameters on survival with
serial follow-up PET/CT in patients with nasopharyngeal carcinoma (NPC) for which curative intent
therapy is undertaken. Methods: Patients with NPC and available pre-treatment as well as follow
up PET/CT were included from 2005 to 2006 and were followed to 2021. Baseline demographic,
radiological and outcome data were collected. Univariable Cox proportional hazard models were used
to evaluate features from baseline and follow-up time points, and landmark analyses were performed
for each time point. Results: Sixty patients were enrolled, and two-hundred and seventy-eight
(278) PET/CT were at baseline and during follow-up. Thirty-eight percent (38%) were female, and
sixty-two patients were male. All patients underwent curative radiation or chemoradiation therapy.
The median follow-up was 11.72 years (1.26–14.86). Five-year and ten-year overall survivals (OSs)
were 80.0% and 66.2%, and progression-free survival (PFS) was 90.0% and 74.4%. Time-dependent
modelling suggested that, among others, PET gray-level zone length matrix (GLZLM) gray-level
non-uniformity (GLNU) (HR 2.74 95% CI 1.06, 7.05) was significantly associated with OS. Landmark
analyses suggested that CT parameters were most predictive at 15 month, whereas PET parameters
were most predictive at time points 3, 6, 9 and 15 month. Conclusions: This study with long-term
follow up data on NPC suggests that mainly PET-derived radiomic features are predictive for OS but
not PFS in a time-dependent evaluation. Furthermore, CT radiomic measures may predict OS and
PFS best at initial and long-term follow-up time points and PET measures may be more predictive in
the interval. These modalities are commonly used in NPC surveillance, and prospective validation
should be considered.
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1. Introduction

Molecular imaging with positron emission tomography (PET)/computed tomography
(CT) using radiopharmaceutical 18F-fluoro-deoxy-glucose (FDG) has a prominent role
in the detection and staging of nasopharyngeal carcinoma (NPC) [1–7]. A widely used
parameter for lesion characterization is the standardized uptake value (SUV) measured in
FDG PET/CT scans. The mean assessment of tumor activity provided by this measurement
has been shown to predict tumor aggressiveness and response to treatment in a variety
of cancers [8,9]. The underlying spatial distribution of tracer activity within a tumor is,
however, not well described by this parameter. Indeed, NPC can be heterogeneous owing
to locoregional differences in cell density and blood supply, as well as cell growth and
cell death. This ‘intra-tumor heterogeneity’ can be measured by extraction of radiomics
features by analyzing the variation in the spatial arrangements, thereby representing an
unequal distribution of tracer activity within a tumor [10–12]. It has been described that
tumor heterogeneity correlates with tumor aggressiveness and disease outcome in a variety
of tumor types [13–16]. Hence, a radiomic biomarker can be generated from molecular
(as well as anatomical) images and possibly provide improved prognostic information
regarding tumor behavior and/or disease outcome.

Radiomics refers to the high-throughput extraction of quantitative imaging features
from medical images, including measures of tumor surface irregularity and texture hetero-
geneity, with the intent of creating mineable databases to build descriptive and predictive
models relating image features to phenotypes or gene–protein signatures [17]. With increas-
ing advances in the last years, the translational potential of this process in oncology has
been demonstrated [18], including areas such as evaluation of prognosis [19–22] chance
of survival [23–25], recurrence [26], distant metastasis [27,28], post-radiotherapy pneu-
monitis [29], staging [30] and screening [31]. The essence of radiomics is the extraction of
high-dimension feature data to quantitatively describe attributes of volumes of interest.
These can be classified in many ways, including the division between semantic features,
which are those commonly used by radiologists to describe regions of interest; its shape and
size; and agnostic features, which are those obtained through quantitative descriptors. The
latter may be further divided into first-, second- and higher-order statistical outputs [32].

While local tumor control with chemoradiotherapy is excellent, distant failure occurs
in up to 20% of these patients; however, it often occurs with considerable latency [33]. The
inclusion of radiomic data in the assessment of NPC has not been yet validated. There
are only very few studies that investigated the combined prognostic value of PET-based
radiomics combined with CT-based radiomics [13,14]. This is, however, an important
aspect because both imaging modalities are acquired at the same time within combined
PET/CT. Initial studies have shown promising results in terms of nomogram building, risk
stratification and some have identified possible prognostic radiomics parameters [34,35].
However, there are even fewer studies available looking at the long-term prognostic value
of combined PET and CT radiomics [36].

The goal of this study, therefore, was to develop an FDG PET/CT radiomic biomarker
based on a retrospective analysis of serially acquired FDG PET/CT scans in patients with
known diagnosis of NPC in patients with long-term follow up data. The intra-tumor
image-based heterogeneity has been shown to correlate with clinical outcomes such as
treatment response and survival in a variety of tumor types, including several ENT-cancer
types [13,14]. This suggests that a radiomic biomarker that quantifies the spatial distribution
of tracer activity within a tumor on FDG PET/CT can be developed and cross-referenced
with follow-up to better predict outcomes and influence evidence-based clinical decision
making in patients with NPC.

We hypothesize that prognostic information derived by pre-therapy and serial follow
up hybrid FDG PET/CT image-based data via radiomics can improve long-term outcome
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prediction and prognostic stratification in patients with NPC. Such stratification may allow
clinicians to better tailor their treatment protocols to each patient’s risk profile.

2. Materials and Methods
2.1. Study Cohort

This study was conducted retrospectively. Approval by the institutional research ethics
board was obtained as indicated below. REB waived the requirement for informed consent.

All newly diagnosed for nasopharyngeal carcinoma patients treated with curative
intent at our institution from 2005 to 2006 were reviewed. Patients with available serial FDG
PET/CT (PET/CT) for staging of NPC were included. Serial PET-imaging was performed
at baseline and every three months up until 15 month (timepoints 1–5).

Patients were identified from an in-house prospective Head and Neck Bioclinical
Anthology of Outcomes System where baseline demographic, TNM staging, treatment and
outcome data were collected at point-of-care using Formatted Anthology Synoptic Tick
sheet process [37]. Vital status data were further supplemented by linkage to provincial
cancer registry.

2.2. Image Acquisition

FDG PET/CT imaging was obtained according to our standard of care institutional
imaging protocol at the time [38]. Patients were asked to avoid exercise for 24 h and fast
for 6 h before the examination. Patients received an IV injection of 5 MBq/kg (range of
250–550 MBq) of FDG. Oral contrast was applied for bowel opacification in all patients.
No intravenous contrast was applied in this patient population. Dedicated PET image
acquisition for head and neck was performed using 2 6-minute beds with both arms down.
PET images were reconstructed iteratively with scatter correction (6 iterations and 16 sub-
sets) with Fourier rebinning (FORE), using a 5 mm full width at half maximum (FWHM)
gaussian filter and a 128 matrix. All PET/CT procedures were acquired on the same system
(Biograph). The CT was acquired with an effective 100 mAs and 130 kV (CareDose), slice
width/collimator of 5.0 mm/2.5 mm, a rotation time of 1 s and a feed/rotation of 5 mm,
with a recontruction increment 3 mm and a slice thickness of 3 mm.

2.3. Radiomics and Statistical Analysis

We quantified intra-tumor heterogeneity retrospectively by performing radiomics
feature analysis from previously acquired FDG PET/CT images using LIFE X version 6.1
software (lifexsoft.org) [39] via the quantitation of various radiomics features based on the
spatial arrangement and variation of pixel intensities within a defined volume of interest.
The standard setup of the LIFE X software was used without additional manipulation or
interpolation. Absolute resampling with defined boundaries was used (e.g., for PET, the
min value was 0 and the max was 20). The number of grey levels was 64. Thus, the binning
method was fixed among the scans. Concerning the size of bins, the following formula
is used by the program: Number of Grey Levels = ((Max boundary−Min Boundary)/Bin
Size) + 1. The fixed calculated values for the bin size were 0.3125 for PET and 10 for CT.

PET volumes of interest (VOI) were defined based on (a) background threshold,
(b) threshold at 40% and (c) threshold at 70% of the SUVmax [40]. All radiomics features
were evaluated for all threshold groups. Since there is no thresholding method available
for the CT-component, the contours for the CT-derived VOI were performed manually in
slice-by-slice fashion to cover the entire tumor. No automated propagation method was
used for CT contouring. The minimal VOI included at least 64 voxels and was confirmed
(by the “CheckTex” feature in the software) to make sure it created a single contiguous VOI
that enabled consistent textural feature calculation. No PET-positive findings outside of the
actual tumors were included into the VOI. The PET-volume delineation was performed by
a dual certified radiologist/nuclear medicine physician with >15 years clinical experience.
The CT-component was delineated by a board-certified radiologist with >7 years of clinical
imaging experience.
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Radiomics features analysis included the following: conventional metrics features
reporting the mean, median, maximum, minimum values of the voxel intensities on the
image, size and shape histogram-based features such as volume, compacity and sphericity
including their asymmetry (skewness), flatness (kurtosis), uniformity and randomness; and
textural features (such as GLCM (Gray-Level Co-occurrence Matrix), GLRLM (Grey-Level
Run Length Matrix), NGLDM (Neighborhood Grey-Level Different Matrix) and GLZLM
(Grey-Level Zone Length Matrix)).

The data cutoff date for outcome analysis was April 29 2021. Summary statistics
were used to describe patient, disease and treatment characteristics. The clinical endpoints
of interest were progression free survival (PFS) and overall survival (OS). The actuarial
rates of OS and PFS were estimated using the Kaplan–Meier method. Univariable Cox
proportional hazards models were used to assess prognostic factors, including clinical
variables and PET/CT radiomic features, for death and relapse. p-values ≤ 0.05 and ≤0.01
were considered statistically significant for clinical and radiomic features, respectively, to
account for the larger number of features evaluated for the latter. First, to account for a
larger number of radiomic features assessed compared to the clinical variables, we set the
statistical significance level for radiomic feature selection at a more stringent p ≤ 0.01. Secondly,
among those radiomic features with a p-value < 0.01, we filtered out highly correlated
features by assessing their pairwise correlation coefficients, using the algorithm described
below. Due to the limited number of deaths and progression events, multivariable analyses
were not attempted. All analyses were carried out in R (version 4.0.2).

The pre-processing of the radiomic features included standardization and removing
features with more than 40% missing values. Two models were developed and compared:
a ‘baseline model’ and a ‘time-dependent model’. In the baseline model, univariable Cox
proportional hazards models were fitted to evaluate association of each baseline radiomic
feature with OS and PFS. In contrast, a time-dependent Cox proportional hazards model
took into account radiomic features from all time points as time-varying covariates such
that the feature values were updated at each time point. Moreover, multiple comparisons
were considered in our study; in both statistical approaches (time-dependent Cox model
and landmark analysis), we used a more stringent threshold for statistical significance.
In the former approach, we also filtered out highly correlated features to arrive at the
reduced final set. The Bonferroni correction to control for familywise error rate was not
used, because it would be too conservative given that the features are highly correlated.

Among the significant features (p-value ≤ 0.01) based on the univariable models, we
used the following algorithm to determine those that are not highly correlated. The feature
with the smallest p-value was taken into the “selected set” and the remaining features
were considered as candidate features (Step 1). We then calculated Pearson’s correlation
coefficient ρ between the selected feature and each candidate feature, and those with a ρ < 0.7
were considered as new candidate features (Step 2). We chose one feature with the smallest
p-value in the candidate features of Step 2 into the “selected set” (Step 3). Steps 2 and 3
were repeated until there were no more candidate features. Finally, we presented the final
“selected set”.

Lastly, a landmark analysis was conducted. We considered each time point when the
PET/CT scans took place as a landmark, or new baseline, and univariable Cox proportional
models were used to evaluate radiomic features for each landmark, with the ‘risk set’ (i.e.,
patients who had not experienced the outcome) updated at each time point. A p-value ≤ 0.01 was
considered statistically significant. Leave-one-out cross-validated C-index was calculated.

3. Results
3.1. Baseline Characteristics of Patients and Tumors

A total of 60 patients with nasopharyngeal carcinoma (23 female, 37 male) with
serial imaging were included. Overall, 278 PET/CT were acquired in these patients and
52 patients had five serial PET/CTs. All patients underwent a baseline PET/CT for staging.
Eighteen patients died during the follow-up time, and eleven of those patients died from
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direct sequalae of their index cancer. The median age for all patients was 51.2 (range
18.3–74.8 years). The majority were non-smokers (71%, 41 patients). Tumor volumes ranged
from 4.3 cm3 to 140 cm3 (average: 37.3 cm3). All patients were evaluated clinically to have
a curative therapeutic intent. Baseline characteristics and treatment information are shown
in Table 1. The majority of patients had stage III disease (33%, 20 patients).

Table 1. Clinicopathologic characteristics.

Characteristic n = 60 (%)

Age, median (range), years 51.2 (18.3–74.8)
Male

Female
37 (62%)
23 (38%)

Smoking Status
Current 4 (8%)
Former 13 (22%)

Non-smoker 41 (71%)
Unknown 2 (4%)
Pathology

WHO I 1 (2%)
WHO IIA 10 (16%)
WHO IIB 49 (82%)

Stage
I 2 (4%)
II 11 (21%)
III 19 (37%)
IVa 12 (23%)
IVb 7 (13%)
IVc 1 (2%)
T

T1 24 (40%)
T2 12 (20%)
T3 7 (12%)
T4 17 (28%)
N

N0 4 (7%)
N1 22 (20%)
N2 26 (43%)
N3 1 (2%)

N3A 5 (8%)
N3B 2 (3%)
M

M0 57 (95%)
M1 3 (5%)

Status
Alive 42 (70%)
Dead 18 (30%)

Treatment
Radiotherapy alone 6 (10%)
Chemoradiotherapy 54 (90%)

Local Failure 4 (7%)
Regional Failure 5 (8%)
Distant Failure 8 (13%)

3.2. Treatment Outcomes

Of 60 patients, 4 experienced local failures, 5 experienced regional failures, and 8
experienced distant failures over the study period. Eighteen patients were deceased at the
end of 2020. Median follow-up was 11.72 years (range 1.26–14.86). The estimated 5-year
and 10-year PFSs were 80.0% (95% CI: 70.5–90.8%) and 66.2% (95% CI 55.1–79.4%), and OS
was 90.0% (95% CI: 82.7–97.9%) and 74.4% (95% CI 64.0–86.5%), as shown in Figure 1.
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Figure 1. Kaplan-Meier plots for progression free survival (PFS) and overall survival (OS).

3.3. Time-Dependent vs. Baseline Cox Model

On univariable analysis, baseline radiomic analysis was not significantly associated
with OS for any parameter. Time-dependent modeling showed that CT_NGLDM_Busyness
(HR 2.54, 95% CI 1.29–5), PET_CONVENTIONAL_SUVbwmax (HR 2.66, 95% CI 1.56–4.55)
and PET_GLZLM_GLNU (HR 2.26, 95% CI 1.46–3.49) for a 40% threshold as well as CT
SHAPE_Volume.vx (HR 1.94. 95% CI 1.34–2.8) and PET_DISCRETIZED_SUVbwmax (HR
2.74, 95% CI 1.58–4.74) for a 70% threshold were significantly associated with OS (Table 2).

Similarly, baseline radiomic analysis was not significantly associated with PFS for any
parameter. Again, time-dependent modeling showed that PET_DISCRETIZED_SUVbw
peakSphere0.5mL (HR 2.06, 95% CI 1.28–3.31) and PET_GLZLM_GLNU (HR 1.67 95% CI
1.23–2.26) for a 40% threshold as well as PET_CONVENTIONAL_SUVbwQ1 (HR 1.84,
95% CI 1.23–2.76) and PET_CONVENTIONAL_TLG.mL (HR 5.67, 95% CI 1.75–18.39)
were significantly associated with PFS. The full list of significant features are shown in
Supplemental Table S1.
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Table 2. Comparison of time-dependent model with selected features vs the baseline model.

Overall Survival Time-Dependent Model Baseline Model

Modality Radiomic Features HR (95%CI) p-Value HR (95%CI) p-Value

CT + PET 40%
CT_NGLDM_Busyness 2.54 (1.29, 5.00) 0.0069 0.98 (0.73, 1.33) 0.90

PET_CONVENTIONAL_ SUVbwmax 2.66 (1.56, 4.55) 0.0004 1.08 (0.74, 1.57) 0.69

PET_GLZLM_GLNU 2.26 (1.46, 3.49) 0.0002 1.14 (0.95, 1.37) 0.16

CT + PET 70%
CT_SHAPE_ Volume.vx. 1.94 (1.34, 2.80) 0.0004 1.08 (0.85, 1.38) 0.51

PET_DISCRETIZED_SUVbwmax 2.74 (1.58, 4.74) 0.0003 1.07 (0.70, 1.64) 0.74

Progression-Free Survival Time-Dependent model Baseline Model

Modality Radiomic Features HR (95%CI) p-Value HR (95%CI) p-Value

CT + PET 40%
PET_DISCRETIZED_

SUVbwpeakSphere0.5mL 2.06 (1.28, 3.31) 0.0029 1.08 (0.74, 1.58) 0.68

PET_GLZLM_GLNU 1.67 (1.23, 2.26) 0.0011 1.09 (0.90, 1.31) 0.38

CT + PET 70%
PET_CONVENTIONAL_SUVbwQ1 1.84 (1.23, 2.76) 0.0031 1.05 (0.76, 1.43) 0.78

PET_CONVENTIONAL_TLG.mL 5.67 (1.75,
18.39) 0.0039 1.14 (0.68, 1.91) 0.62

3.4. Landmark Analyses

On landmark modeling, CT radiomic parameters were significantly associated with
OS for time point 5, PETs at 40% threshold parameters were significantly associated with
OS for time points 2, 3 and 5 and PETs at 70% threshold parameters were significantly
associated with OS for time point 3.

CT radiomic parameters were significantly associated with PFS for time point 5, PET
at 40% threshold parameters were significantly associated with PFS for time point 2 and
PET at 70% threshold parameters were significantly associated with PFS for time points 2
and 4. These are elaborated in Tables 3 and 4 as well as in Figures 2 and 3.

Table 3. Landmark analysis for overall survival.

Modality Time Point Significant Features HR (95% CI) p-Value C-Index

CT 5 GLCM_Correlation 0.33 (0.17, 0.62) 0.001 0.792

PET 40%

2 CONVENTIONAL_SUVbwKurtosis 1.85 (1.23, 2.78) 0.003 0.616

2 CONVENTIONAL_SUVbwExcessKurtosis 1.85 (1.23, 2.78) 0.003 0.616

2 DISCRETIZED_SUVbwKurtosis 1.94 (1.27, 2.97) 0.002 0.653

2 DISCRETIZED_SUVbwExcessKurtosis 1.94 (1.27, 2.97) 0.002 0.653

3 CONVENTIONAL_SUVbwstd 2.01 (1.2, 3.38) 0.008 0.551

3 DISCRETIZED_SUVbwstd 2.01 (1.2, 3.38) 0.008 0.538

3 GLZLM_ZLNU 2.3 (1.46, 3.64) 0.001 0.707

5 DISCRETIZED_SUVbwSkewness 0.32 (0.14, 0.75) 0.009 0.736

PET 70%
3 CONVENTIONAL_SUVbwmin 2.01 (1.19, 3.41) 0.010 0.546

3 CONVENTIONAL_SUVbwQ3 1.98 (1.17, 3.34) 0.010 0.519

3 DISCRETIZED_SUVbwstd 1.98 (1.2, 3.27) 0.008 0.536
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Table 4. Landmark analysis for progression-free survival.

Modality Time Point Significant Features HR (95% CI) p-Value C-Index

CT 5 GLCM_Correlation 0.46 (0.26, 0.83) 0.010 0.690

PET 40%

2 CONVENTIONAL_SUVbwKurtosis 2.38 (1.54, 3.67) 0.001 0.671

2 CONVENTIONAL_SUVbwExcessKurtosis 2.38 (1.54, 3.67) 0.001 0.671

2 DISCRETIZED_SUVbwKurtosis 2.44 (1.57, 3.77) 0.001 0.689

2 DISCRETIZED_SUVbwExcessKurtosis 2.44 (1.57, 3.77) 0.001 0.689

2 GLCM_Energy AngularSecondMoment. 1.66 (1.15, 2.41) 0.007 0.648

2 GLRLM_LRLGE 1.67 (1.17, 2.39) 0.005 0.629
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4. Discussion

Our study evaluated radiomics features from serial, combined PET and CT and evalu-
ated the prognostic value of specific radiomic parameters for OS and PFS. Furthermore, we
evaluated a baseline evaluation model vs. a time-dependent model. Finally, we showed,
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in a landmark evaluation, the value of individual radiomics parameters at different time
points in correlation with long-term follow up.

A major strength of radiomics is that it can be applied to standard-of-care radiological
exams, providing a potentially massive amount of information for the construction of
databases and clinical-decision support systems. However, as with other quantitative image
analyses, variations in the acquisition and reconstruction parameters can introduce changes
that are not due to underlying biological effects [32]. For this reason, multiple efforts to
standardize these parameters have been attempted [41,42], including the National Cancer
Institute’s Quantitative Imaging Network (QIN) [43] and the Radiological Society of North
America’s/National Institute for Biomedical Imaging and Bioengineering’s Quantitative
Imaging Biomarkers Alliance (QIBA) [44].

The other challenges of the radiomics are in the definition of the volumes of interest
to be analyzed [45,46], which may include the primary tumor, satellite lesions, nodal
and distant metastases; and in their segmentation, which is especially challenging, given
the sometimes indistinct borders of many tumors (and their subregions), the difficulty
to define the ground truth for these analyses and the varying degrees of automation
versus human input to be used in the process [32]. It is well recognized that interoperator
variability of manually contoured tumors is high [47,48], but this input is currently most
often necessary in cancer cases, due to their inter- and intrasubject morphological and
functional heterogeneity [32].

The resulting features should be associated with other clinical, genomic and histopatho-
logical data, including the desired end points to be evaluated and potential causal or
confounding factors, in order to produce mathematical models of outcomes. This can be
achieved through supervised data analysis, which include statistical and machine learn-
ing methods, such as neural networks, linear regression and Cox proportional hazards
regression [17].

4.1. Nasopharyngeal Carcinoma

The standard workup of patients with NPC often includes contrast-enhanced com-
puted tomography (CT) and/or magnetic resonance imaging (MRI) [49]. Additionally,
18F-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) imaging has
been used for several years in this disease for staging as well [1–7]. Most radiomics
studies on these tumors have focused on CT and MRI images, including the develop-
ment of radiomics signatures that outperforms TNM staging when evaluating overall
survival [19,50–52], with external validation in a separate study [21]; they are predictors of
the tumor’s HPV status [53,54]. However, studies evaluating PET radiomics have demon-
strated a potential to predict the risk of local failure [55–58] and distant metastasis [57,58],
progression-free [59,60] and overall survival [57–60].

Nasopharyngeal epithelial carcinoma has some particular characteristics when com-
pared to other head and neck tumors, including its association with the Epstein–Barr virus,
with mostly Southeast Asian prevalence [61] and high radiosensitivity [62] and most often
not needing surgical resection. Its workup also often includes CT, MRI and FDG-PET/CT
and certain features from the latter modality, including SUVmax, metabolic tumor volume
(MTV) and total lesion glycolysis (TLG), were associated with event-free survival and
overall survival in recent meta-analyses [8,9].

The radiomics studies evaluating this tumor entity are significantly more limited, espe-
cially when considering the mature follow-up data that we used for endpoint correlation.

Many studies are using pretreatment MRI features, which have been used to predict
progression-free survival in stage III-IVb patients [63–65] and in a smaller sample including
low grade tumors [66]. A few earlier studies tried to measure FDG uptake heterogeneity by
using different quantitative measures, including SUVmax/SUVmean [67], SUV standard
deviation/SUVmean [68] and the derivative of the volume-threshold function [69]; how-
ever, a more recent study [13] using the radiomics approach found skewness (a first-order
feature) to be a predictor of relapse-free survival and uniformity (a texture feature) to be
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a predictor of overall survival, which improved the prognostic stratification of other risk
factors found by using multivariate analysis, namely age and serum EBV DNA load. A
large multicenter study recently showed that treatment decision and prognosis for specific
stages could reliably based on a radiomic based nomogram [70]. However, this study
again used MRI for imaging. One study using PET/CT evaluated the value of radiomics
for prediction of distant metastases and local recurrence [14]. The difference to our study
was, however, that only higher stage tumors were evaluated and only PET-features and
uncombined PET and CT parameters were evaluated. A recent PET/MR study evaluated
the combined value of PET and MR parameters for staging (however, not for prognosis)
and also found that radiomic parameters from both modalities (PET and MR) are useful for
the evaluation of NPC [71].

4.2. Overall and Progression-Free Survival

On landmark analysis, histologic kurtosis was a significant predictive factor for worse
OS. Furthermore, histologic kurtosis on PET is the most predictive for stage IV disease and
may be valuable for prognostication in patients with advanced-stage NPC. On CT, the HR
for LZHGE was the radiomic parameter, which was significant. By contrast, this was most
predictive for stage I/II/III disease and may be valuable for prognostication in patients
with early stages of NPC.

Time-dependent modeling over the robust 15-year follow-up of this cohort further
suggested that only PET gray-level zone length matrix (GLZLM) gray-level non-uniformity
(GLNU) is highly significantly associated with OS. The use of GLZLM and GLNU has been
shown to be a reliable differentiator between nasopharyngeal as well as hepatic carcinoma
and lymphoma, whereas this is the first study to suggest an association with OS itself. The
fact that these PET parameters appear to be best applied to late-stage disease may explain
why this radiomic measure relates better to OS than PFS.

To the best of our knowledge, this is the only radiomics study in patients with NPC
showing the value of landmark analyses. On this evaluation, CT radiomic parameters
were significantly associated with both OS and PFS for time points 1 and 5 whereas PET
at 40% and PET at 70% threshold parameters were significantly associated with OS and
PFS principally across time points 2, 3 and 4. Many of these associations were very highly
associated, and this novel finding is of uncertain significance. It could be speculated
that CT radiomics parameters, such as kurtosis, neighborhood grey-level different matrix
(NGLDM), grey level co-occurrence matrix (GLCM) and gray level run length matrix
(GLRLM), could be of optimal prognostic use at first diagnosis and late follow-up. By
contrast, PET radiomics parameters, such as GLRLM and NGLDM but also SUV measures,
could be of optimal prognostic use at interval follow-up points between these two termini.
This could relate to the molecular/metabolic activity related both to progression and
response to treatment.

Our study has several limitations. The study was conducted retrospectively and in
a relatively small cohort of overall only 60 heterogeneous patients. We did not split our
cohort into training and validation data sets since the cohort would have been too small
for any meaningful radiomics evaluation. Moreover, this is an evaluation from a single
institute; thus, the findings may be restricted to our applications rather than a more general
clinical setting.

Further studies are needed to validate our findings. Since PET/CT acquisition oc-
curred a long time ago, current PET/CT imaging is mostly performed with more modern
reconstructions. Another partial limitation to our study is that the patient cohort is mostly
reflective of an endemic patient population and, therefore, may be generalizable to WHO
type I patients.

Moreover, there are always several technical considerations that can be discussed in
radiomics research. For example, since some of the radiomics features can be voxel size
and gray-level discretization-dependent (at least in CT), voxel-size resampling has been
found as an appropriate pre-processing step to obtain more reproducible CT features [72].
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Moreover, this is a certain variation in PET textural features relative normal stochastic
image variations, and it has been described in the literature, which can be additionally
feature-dependent [73].

However, we only used one PET/CT scanner without any variations in acquisition
or reconstruction between the evaluated scans. Moreover, we believe that any required
pre-processing potentially hampers implementation in clinical routines, unless it is automat-
ically set up in a wide variety of different types of scanners. We chose manual delineation
methods for contouring in our study. While there is evidence in the literature that the
radiomics evaluation can be influenced by the delineation method (manual vs. automated),
we did not have such a program available for CT. For the PET-evaluation, a semiautomated
delineation method was used. We chose to use overall survival as an outcome of interest
because it is the most reliable and available survival measure. In addition, statistical power
would be lower using cancer-specific deaths compared to deaths from any cause due to the
reduced number of outcome events.

In any case, we present unique data with different statistical evaluations and a very
mature follow-up period. Finally, it is worthwhile to point out that while there are certainly
several publications on NPC radiomics available in the literature, this is one of the very
few evaluating PET- and CT-combined radiomics. Furthermore, even fewer manuscripts
correlate radiomics with such a mature follow up.

5. Conclusions

This study with very mature follow-up data on NPC suggests that mainly PET-derived
radiomics features are predictive for OS but not PFS in a time-dependent evaluation.
Furthermore, CT radiomic measures may predict OS and PFS best at initial and long-term
follow-up time points, and PET measures may be more predictive in the interval. These
modalities are already commonly used in NPC surveillance and prospective validation
should be considered.
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