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Purpose of review

The aim of this study was to evaluate the relationship between infection with SARS-CoV-2 and
autoimmunity.

Recent findings

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory
syndrome (SARS) associated coronavirus 2 (SARS-CoV-2). Although most of the infected individuals are
asymptomatic, a proportion of patients with COVID-19 develop severe disease with multiple organ injuries.
Evidence suggests that some medications used to treat autoimmune rheumatologic diseases might have
therapeutic effect in patients with severe COVID-19 infections, drawing attention to the relationship
between COVID-19 and autoimmune diseases. COVID-19 shares similarities with autoimmune diseases in
clinical manifestations, immune responses and pathogenic mechanisms. Robust immune reactions
participate in the pathogenesis of both disease conditions. Autoantibodies as a hallmark of autoimmune
diseases can also be detected in COVID-19 patients. Moreover, some patients have been reported to
develop autoimmune diseases, such as Guillain–Barré syndrome or systemic lupus erythematosus, after
COVID-19 infection. It is speculated that SARS-CoV-2 can disturb self-tolerance and trigger autoimmune
responses through cross-reactivity with host cells. The infection risk and prognosis of COVID-19 in patients
with autoimmune diseases remains controversial, but patient adherence to medication regimens to prevent
autoimmune disease flares is strongly recommended.

Summary

We present a review of the association between COVID-19 and autoimmune diseases, focusing on
similarities in immune responses, cross-reactivity of SARS-CoV-2, the development of autoimmune diseases
in COVID-19 patients and the risk of COVID-19 infection in patients with preexisting autoimmune
conditions.
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INTRODUCTION

Since December 2019, a novel infection named
coronavirus disease 2019 (COVID-19) broke out in
Wuhan, China, and has been sweeping across the
globe. COVID-19 was officially declared a pandemic
by WHO on 11 March 2020 [1]. The disease is caused
by a newly identified strain of severe acute respira-
tory syndrome (SARS) associated coronavirus, which
was named SARS-CoV-2 after SARS-CoV that caused
the epidemic of SARS in 2002 [2].

SARS-CoV-2 belongs to the coronavirus family,
which are enveloped viruseswitha sphericalmorphol-
ogy and a single-stranded RNA (ssRNA) genome [3].
The spike glycoproteins (S protein) cross through the
peplos of the virus and form a crown-like surface [4].
Through the receptor binding domain (RBD) located
intheS1 subunitof theSprotein, theviruscanligate to
the host cell receptor angiotensin-converting enzyme
2 (ACE2) and invade into the cell [5–7].
t © 2021 Wolters Kluwe
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In many cases, hosts infected by SARS-CoV-2
present with flu-like symptoms, such as fever,
fatigue and dry cough. Headache, myalgia, sore
throat, nausea and diarrhoea can also be seen in
patients with COVID-19 [8,9]. Shortness of breath
r Health, Inc. All rights reserved.
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KEY POINTS

� COVID-19 infection can be complicated by involvement
of multiple organ systems.

� Immune-mediated injury contributes to the
manifestations and complications of COVID-19.

� Organ damage in COVID-19 is at least in part caused
by perpetuated inflammatory responses, similar to
autoimmune diseases.

� SARS-CoV-2 might trigger autoimmune responses
through molecular mimicry.

� COVID-19 might be complicated by the development of
autoantibodies and possibly de-novo
autoimmune diseases.

Immunopathogenesis and treatment of autoimmune diseases
and hypoxemia occur in severe cases. In critical
cases, the disease progresses rapidly and patients
can develop septic shock and multiorgan dysfunc-
tion [10]. As such, COVID-19 can be a systemic
disease affecting multiple organ systems, including
the skin, kidneys, respiratory system, cardiovascular
system, digestive system, nervous system and
 Copyright © 2021 Wolters Kluwer H
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haematological system [11]. The dysregulated
immune response and increased pro-inflammatory
cytokines induced by SARS-CoV-2 contribute to the
disease pathogenesis and organ damage, which
brought attention to immune-regulatory therapy
in the treatment of COVID-19 [12]. Medications
used to treat autoimmune diseases are widely used
in critical cases of COVID-19 [13]. Further, some
autoantibodies can be detected in patients with
COVID-19 [14]. These observations suggest that
examining pathways known to contribute to the
pathogenesis of autoimmunity might provide clues
to better understand and treat COVID-19.
SIMILARITIES IN IMMUNE RESPONSES
BETWEEN SARS-COV-2 INFECTION AND
AUTOIMMUNE DISEASES

Autoimmune diseases are characterized by the exis-
tence of autoantibodies and perpetuated inflamma-
tory reactions due to the loss of immune tolerance
and dysregulated immune system, leading to target
organ damage and malfunction [15]. These
immune-mediated injuries also exist in COVID-19
(Fig. 1). Infection with SARS-CoV-2 induces immune
ealth, Inc. All rights reserved.
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reactions, which might have important implica-
tions in the development of vaccine strategies
against this virus [16]. T cell immunity plays a
central role in the control of SARS-CoV-2 infection.
Antigen-specific CD4þ and CD8þ T cells and neu-
tralizing antibody responses play protective roles
against SARS-CoV-2, while impaired adaptive
immune responses such as scarcity of naive T cells
may lead to poor disease outcomes [17].

In clinical laboratory tests, lymphopenia (lym-
phocyte count�1.0 x 109 /l) is associated with severe
illness in COVID-19 patients and might be a prog-
nostic factor for disease severity and mortality [18–
21]. Another notable haemocytological change is
neutrophilia and associated excessive neutrophil
extracellular traps, which paralleled lung injury in
severe COVID-19 patients [12]. Therefore, the
immune response is a double-edged sword in
COVID-19, with outcomes affected by the degree
of cytokine imbalance and activation of immune
cells. Excessive production and release of pro-inflam-
matory cytokines and chemokines can cause severe
organ damage in critical cases, which is observed in
autoimmune diseases as well. In COVID-19 patients,
pro-inflammatory cytokines and chemokines,
including interleukin (IL)-1, IL-2, IL-6, IL-8, IL-10,
IL-17, IL-18, CXCL10 and CCL2, increased signifi-
cantly and the expression levels of some of these
cytokines, such as IL-1, IL-6, IL-10 and IL-18, have
been demonstrated to be associated with disease
severity [22–25]. Similar to autoimmune diseases,
damage-associated molecular patterns (DAMPs) also
participate in the pathogenesis of COVID-19 and are
related to disease outcome. Chen et al. [26] revealed
that serum levels of S100A8/A9 and HMGB1
increased significantly in patients with severe
COVID-19 and that significant elevation of the two
DAMPs was associated with higher mortality.

Activation and infiltration of immune cells par-
ticipate in the pathogenesis of organ injury in
patients with COVID-19. Macrophage activation
syndrome (MAS) could be a continuum of cytokine
storm syndrome leading to life-threatening compli-
cations in COVID-19 [27]. In this condition, acti-
vated macrophages will produce excessive pro-
inflammatory cytokines, polarize into the inflam-
matory M1 phenotype and exhibit cytotoxic dys-
function [28]. Recently, Conti et al. [29] proposed
that SARS-CoV-2 activated mast cells could release
histamine to increase IL-1 levels to initiate cytokine
storm and aggravate lung injury. Woodruff et al. [30]
found extrafollicular B cell activation in critically ill
patients with COVID-19, similar to what has been
observed in autoimmunity. Further, extrafollicular
B cell activation correlated strongly with the pro-
duction of high concentrations of SARS-CoV-2
 Copyright © 2021 Wolters Kluwe
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specific neutralizing antibodies and poor disease
outcome [30]. Peripheral blood B-cell subpopula-
tions are altered during COVID-19. In COVID-19
patients, atypical memory B-cells (CD21lo/CD27�/
CD10�) expanded significantly, while classical
memory B-cells (CD21þ/CD27þ/CD10�) were signif-
icantly reduced [31]. Analysis of immune profiles of
severe COVID-19 patients revealed an increased
proportion of mature natural killer (NK) cells and
decreased proportion of T-cell numbers [32].

Similar to some autoimmune and immune-
mediated thromboinflammatory diseases, including
lupus, antiphospholipid syndrome and ANCA-asso-
ciated vasculitis, neutrophil activation and neutro-
phil extracellular trap production (NETosis) appear
to have a pathogenic role in COVID-19. Zuo et al.
[33

&

] reported increased markers of NETs in sera
from patients with COVID-19, and significantly
more in patients requiring mechanical ventilation.
In-vitro experiments demonstrated that sera from
COVID-19 patients triggered NETosis in normal
neutrophils, similar to sera from patients with anti-
phospholipid syndrome [33

&

,34].
In severe and critical cases, immunomodulatory

drugs and biological agents targeting pro-inflamma-
tory cytokines have been applied to contain the
robust immune response in COVID-19. Corticoste-
roids, JAK inhibitors, IL-1 blockade and IL-6 receptor
antagonists, which are familiar to rheumatologists,
have been used to treat COVID-19 patients [35–38].
Similarities in immunopathogenesis of COVID-19
and autoimmune diseases are summarized in
Table 1.
MOLECULAR MIMICRY AND SARS-COV-2

The production of autoantibodies is a key feature of
autoimmune diseases. However, the underlying
mechanisms are complicated and still not fully
understood. Molecular mimicry by infectious
pathogens is believed to be one of the mechanisms
[39]. Viral infection can disturb immunologic toler-
ance by exposure of antigen epitopes that elicit
cross-reactive antibodies. There are a large number
of reports indicating antigenic mimicry between
viral and human proteins. Perhaps one of the most
established examples of molecular mimicry in auto-
immunity is the immune response to Epstein–Barr
virus (EBV) in lupus patients [40]. An abnormal
immune repose to Epstein–Barr virus Nuclear Anti-
gen-1 (EBNA-1) can induce an autoimmune
response targeting the Sm and Ro autoantigen sys-
tems [41]. Cross-reactivity between anti-EBNA-1
antibodies and myelin basic protein in patients with
multiple sclerosis has also been demonstrated [42].
Moreover, EBNA-1 showed structural similarity with
r Health, Inc. All rights reserved.
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Table 1. Similarities in immunopathogenesis of COVID-19 and autoimmune diseases

Items COVID-19 immunological features similar to
autoimmune diseases

Refs.

Innate immune cells Overactivation of monocytes, macrophages, mast cells
and neutrophils. Increased proportion of mature
natural killer (NK) cells.

[12,27,29,32,33&]

Adaptive immune cells Decreased T-cell numbers, altered B-cell subsets,
dysregulation of T cells and B cells.

[17,30,31]

Cytokines and chemokines Increased levels of IL-1, IL-2, IL-6, IL-8, IL-10, IL-17, IL-
18, CXCL10, CCL2.

[22–24]

Autoantibodies ANA, APL, lupus anticoagulant, cold agglutinins, anti-
Ro/SSA antibodies, anti-Caspr2 antibody, anti
GD1b antibody, anti-MOG antibody

[14,51&,52&,53,54&,55–58]

Clinical conditions Immune-mediated haemolysis, decreased white blood
cell counts, cytokine storm syndrome, macrophage
activation syndrome, procoagulant condition

[25,28,57,74]

Other immunopathogenesis Increased levels of DAMPs, molecular mimicry [26,46]

Immunopathogenesis and treatment of autoimmune diseases
b synuclein, a brain protein implicated in multiple
sclerosis, and predicted to bind HLA class II DR2b
(HLA-DRB1�15 : 01) [43]. In-silico analysis revealed
that an envelope protein of human endogenous
retroviruses (HERV) shares similar sequence with
three myelin proteins that induced an autoimmune
response in multiple sclerosis and was predicted to
bind to HLA-DRB1�15 : 01. Basavalingappa et al. [44]
demonstrated that Coxsackievirus B3 (CVB3) infec-
tion can induce the generation of autoreactive T
cells for multiple antigens.

Some epitopes from SARS-CoV-2 were revealed to
exhibit cross-reactivity with autoantigens. Anand
et al. [45] reported that a unique S1/S2 cleavage site
in SARS-CoV-2 identically mimicked a FURIN-cleav-
able peptide on the human epithelial sodium chan-
nel a-subunit (ENaC-a), which plays a critical role in
the homeostasis of airway surface liquid. Mimicry
between SARS-CoV-2 and three proteins namely
DAB1, AIFM and SURF1 that are present in the
human brainstem pre-Bötzinger complex (preBötC)
may contribute to the respiratory failure in COVID-
19 [46]. In addition, SARS-CoV-2 infection can elicit
autoimmune responses through molecular mimicry.
Marino Gammazza et al. [47] compared viral proteins
with human molecular chaperones and postulated
that the chaperones, most of which were heat shock
proteins, could participate in molecular mimicry
phenomena after SARS-CoV-2 infection. Further-
more, Lucchese and Flöel [48] compared viral amino
acid sequence with human autoantigens associated
with immune-mediated polyneuropathies and
showed that peptides embedded in immunoreactive
epitopes of SARS-CoV-2 shared the same sequence
with human heat shock proteins 90 and 60 that are
associated with Guillain-Barré syndrome and other
autoimmune diseases. Venkatakrishnan et al. [49

&

]

 Copyright © 2021 Wolters Kluwer H
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reported 33 distinct 8-mer or 9-mer peptides with
potential cross-reactivity between SARS-CoV-2 and
the human reference proteome, among which 20
human peptides have not been observed in any pre-
vious coronavirus strains. Moreover, four of these
human 8-mer/9-mer peptides mimicked by SARS-
CoV-2 showed similarity with host pulmonary-arte-
rial peptides and were predicted to bind with HLA-
B�40 : 01, HLA-B�40 : 02, and HLA-B�35 : 01 [49

&

]. A
recent study analysed sharing between hexapeptides
that define minimal epitopic sequences of the virus
and the human proteome, and documented numer-
ous immunoreactive epitopes shared with human
proteins [50]. The results of this study imply the
possibility that SARS-CoV-2 might induce cross-reac-
tivity with host autoantigens and offer hints to pos-
sibly explain the various clinical manifestations and
pathologies involving different organs and systems
after SARS-CoV-2 infection.
AUTOANTIBODIES IN PATIENTS WITH
COVID-19

Autoantibodies known to occur in a number of auto-
immune diseases have been detected in patients with
COVID-19 (Table 2). Pascolini et al. [14] determined
the presence of antinuclear antibodies (ANA), anti-
cytoplasmic neutrophil antibodies (ANCA) and anti-
antiphospholipid (APL) antibodies in 33 consecutive
patients with COVID-19. The results showed that 45%
of the patients were positive for at least one autoanti-
body and patients with positive autoantibodies
tended to have a worse prognosis and a significantly
higher respiratory rate at admission. The positive rate
for ANA was 33%, the positive rate for anticardiolipin
antibodies (IgG and/or IgM) was 24% and three
patients tested positive for antib2-glycoprotein-I
ealth, Inc. All rights reserved.
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Table 2. Autoantibodies detected in patients with COVID-19

Autoantibodies Clinical significance Refs.

ANA Poor prognosis and a significant higher respiratory rate [14]

APL Poor prognosis and a significant higher respiratory rate
Possible association with a hyperinflammatory state and thrombosis and thromboembolism

[14,52&]

Lupus anticoagulant A higher rate of thrombosis [51&]

Cold agglutinins Haemolytic anaemia.
Complicating laboratory assessment and renal replacement therapy

[55,58]

Anti-Ro/SSA antibodies Possible association with severe pneumonia [56]

Anti-Caspr2 antibody Unclear [54&]

Anti-GD1b antibody Unclear [54&]

Anti-MOG antibody Unclear [53]

Red cell bound antibodies Associated with the severity of anaemia [57]

COVID-19 and autoimmune diseases Liu et al.
antibodies (IgG and/or IgM) (9%). However, ANCA
was negative in all patients [14]. Coagulopathy is a
threatening complication of SARS-CoV-2 infection.
Recently, a cohort study was performed in Montefiore
Medical Center to assess lupus anticoagulant positiv-
ity in COVID-19 patients. The researchers found that
patientswith COVID-19had an increased incidence of
lupus anticoagulant positivity compared with con-
trols who tested negative by COVID-19 reverse tran-
scriptase–PCR. In addition, COVID-19 patients with
positive lupus anticoagulant had an increased rate of
thrombosis [51

&

]. Amezcua-Guerra et al. [52
&

] also
demonstrated a higher frequency of APL antibodies
in patients with severe and critical COVID-19, and
that the presence of APL antibodies seems to be asso-
ciated with a hyperinflammatory state with extremely
high levels of ferritin, C reactive protein and IL-6, and
with pulmonary thromboembolism. The data dis-
cussed above provide a possible explanation for the
hypercoagulable state in severe and critical COVID-19
cases and indicate that SARS-CoV-2 can induce
autoimmune responses.

In COVID-19 patients presenting with neurolog-
ical symptoms, the existence of autoantibodies
against contactin-associated protein 2 (anti-Caspr2),
ganglioside GD1b (anti-GD1b) and myelin oligo-
dendrocyte glycoprotein (anti-MOG) has been
shown in case reports or retrospective studies
[53,54

&

]. However, the clinical significance of these
antibodies remains unclear. In addition, there are
case reports demonstrating the presence of cold
agglutinins and autoantibodies against RBC anti-
gens in critically ill patients with COVID-19 [55],
and the presence of anti-Ro/SSA antibodies in
patients with aggravated COVID-19 pneumonia
[56]. A research including 113 samples studied red
cell antibodies by direct and indirect antiglobulin
test (DAT or IAT). A positive DAT was found in 46%
of COVID-19 patients, which was significantly
 Copyright © 2021 Wolters Kluwe
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higher than that in non-COVID-19 controls. The
presence of red cell membrane bound immunoglo-
bulins contributes to haemolytic anaemia and is
related to the severity of anaemia in COVID-19 [57].
DEVELOPMENT OF AUTOIMMUNE
DISEASES AFTER SARS-COV-2 INFECTION

Because SARS-CoV-2 infection can break immune
tolerance and trigger autoimmune responses, it is
also likely to induce clinical autoimmunity. Indeed,
many reports have confirmed the development of
autoimmune diseases after SARS-CoV-2 infection.
Cold agglutinin syndrome (CAS) and autoimmune
haemolytic anaemia have been reported as a compli-
cation of COVID-19 [55,58,59]. Meanwhile, Guil-
lain–Barré syndrome (GBS) is also emerging as an
autoimmune disease that may occur in COVID-19
patients. In most cases of COVID-19 associated GBS
SARS-CoV-2 antibodies cannot be detected in the
cerebrospinal fluid (CSF); however, Gigli et al. [60]
recently reported a case of GBS with a positive test for
the SARS-CoV-2 antibodies in the CSF [61,62]. The
mechanisms of how SARS-CoV-2 triggers GBS are
debated. However, immune cross reaction between
epitopes and host antigens may be a possible expla-
nation [62]. Recently, a case of systemic lupus eryth-
ematosus has also been reported to be triggered by
SARS-CoV-2 [63

&

]. It is possible that additional auto-
immune diseases induced by SARS-CoV-2 will be
reported in the future.
RISK OF PATIENTS WITH AUTOIMMUNE
DISEASES DURING THE COVID-19
PANDEMIC

Autoimmune diseases are heterogeneous and linked
to a dysregulated immune system. Most of the
patients with autoimmune diseases have received
r Health, Inc. All rights reserved.
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or are receiving immunomodulatory medications or
biological agents. During the pandemic of COVID-
19, a proportion of the autoimmune disease patients
suspended their medication due to fear of the immu-
nosuppressive effect of medications or lack of avail-
abilities [64], and decreased medical visits because of
concerns of the contagious nature of SARS-CoV-2
[65]. However, disrupted continuity of medical care
and medication nonadherence are associated with
rheumatologic disease flares and worsened disease
activity [66]. Therefore, building a reliable telemed-
icine platform and education on medication adher-
ence should be strongly recommended.

Since the beginning of this pandemic, infection
risk in patients with autoimmune diseases has been
a subject of interest [67

&

,68,69]. The results of a
cross-sectional study conducted in northeast Italy
indicated that autoimmune disease patients had a
similar rate of infection of SARS-CoV-2 compared
with the general population [70]. Another Italian
study performed in Milan also confirmed that auto-
immune disease is not a risk factor of being positive
for COVID-19 [71]. To the contrary, the results of a
multicentre retrospective study conducted in Hubei,
China, indicated that patients with autoimmune
diseases might be more susceptible to SARS-CoV-2
infection compared with controls. Further, this
study examined family members of the patients that
resided at the same environment during the out-
break as controls [72]. Of interest, the study from
Milan indicated that patients with autoimmune
diseases do not have a worse prognosis compared
with non-autoimmune disease individuals [71].
However, a Spanish study revealed that hospitalized
patients with autoimmune diseases have a more
severe course of COVID-19 [73]. At this time, until
more data become available, it is crucial to empha-
size the importance of physical distancing, wearing
masks and frequent hand washing for everyone and
especially in our patients with autoimmune dis-
eases. Adherence to medications is also very impor-
tant to prevent flares of autoimmune diseases that
might result in organ damage.
CONCLUSION

COVID-19 is a novel pandemic that has had signifi-
cant global health consequences. Similar to systemic
autoimmune diseases, COVID-19 can present with
heterogeneous and systemic clinical manifestations.
To some extent, there are similarities in the immune
response in both disease conditions, and organ
damage in COVID-19 appears to be largely
immune-mediated, similar to autoimmune diseases.
The SARS-CoV-2 virus can disturb self-tolerance of
host antigens at least in part through molecular
 Copyright © 2021 Wolters Kluwer H
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mimicry. Indeed, the development of autoantibod-
ies and sometimes organ-specific (e.g. GBS) or sys-
temic (e.g. SLE-like disease) autoimmunity has been
observed in COVID-19. Overall, more data are
needed to further understand the relationship
between COVID-19 and autoimmunity and charac-
terize the risk and severity of COVID-19 in patients
with preexisting autoimmune diseases.
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