
COMMENT AND OPINION

doi:10.1002/evl3.63

A note on measuring natural selection on
principal component scores
Veronica K. Chong,1 Hannah F. Fung,1 and John R. Stinchcombe1,2,3

1Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
2Koffler Scientific Reserve, University of Toronto, Toronto, Ontario, Canada

3E-mail: john.stinchcombe@utoronto.ca

Received November 8, 2017

Accepted May 25, 2018

Measuring natural selection through the use of multiple regression has transformed our understanding of selection, although

the methods used remain sensitive to the effects of multicollinearity due to highly correlated traits. While measuring selection

on principal component (PC) scores is an apparent solution to this challenge, this approach has been heavily criticized due to

difficulties in interpretation and relating PC axes back to the original traits. We describe and illustrate how to transform selection

gradients for PC scores back into selection gradients for the original traits, addressing issues of multicollinearity and biological

interpretation. In addition to reducing multicollinearity, we suggest that this method may have promise for measuring selection on

high-dimensional data such as volatiles or gene expression traits. We demonstrate this approach with empirical data and examples

from the literature, highlighting how selection estimates for PC scores can be interpreted while reducing the consequences of

multicollinearity
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“Unfortunately, the biological meaning of principal compo-
nents or discriminant functions is not always obvious.”—
Endler (1986, p. 192)
“ . . . it is difficult to translate from selection on principal
components to selection on the original traits.”—Brodie et al.
(1995)

Understanding how natural selection acts on correlated traits

remains a fundamental challenge in evolutionary biology (Lande

and Arnold 1983). Most ecologically important traits that influ-

ence an organism’s fitness are correlated with other features of

their morphology, life history, and behavior. The canonical ap-

proach to estimating selection on correlated traits is selection

gradient analysis (Lande and Arnold 1983). By regressing esti-

mates of relative fitness on multiple traits, the direct effects of

individual traits can be distinguished from the effects of selection

on correlated traits. Widespread application of the Lande–Arnold

framework has revolutionized our understanding of natural selec-

tion and has given empiricists a straightforward tool for evaluating

the fitness consequences of phenotypic variation.

One challenge to the Lande–Arnold approach, however, has

remained especially stubborn: regressing fitness estimates on cor-

related traits can become problematic when traits exhibit multi-

collinearity (Mitchell-Olds and Shaw 1987). If the correlation

between traits is high enough, it becomes impossible to reliably

estimate their separate contributions to relative fitness. Multi-

collinearity is frequently diagnosed with a combination of vari-

ance inflation factors (VIF) or condition indices produced by

most regression packages, with a frequent rule of thumb that a

VIF greater than 10 indicates serious multicollinearity (Belsley

et al. 1980; Neter et al. 1989; see also O’Brien 2007). Typi-

cal recommendations for multicollinearity include larger sample

sizes, dropping or summing variables (Lande and Arnold 1983;

Mitchell-Olds and Shaw 1987), principal component analysis

(Lande and Arnold 1983; see below), or alternative approaches

such as partial least squares. While these methods have valuable

statistical properties, their widespread adoption has been lim-

ited. In many instances, estimating selection on highly correlated

traits simultaneously is the object of study, and thus traits can-

not be dropped. For partial least squares, interpretability of the

coefficients or the factors identified can remain problematic, as

does their lack of correspondence to selection gradients that can

be used to predict evolutionary responses.
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MEASURING SELECTION ON PRINCIPAL COMPONENTS

The merits of measuring selection on principal component

scores, in particular, have been debated since the advent of se-

lection gradient analysis. Lande and Arnold (1983) themselves

measured selection on PC scores when analyzing selection on the

Bumpus’ (1899) house sparrows dataset. Their use of principal

components was for data reduction when analyzing nine traits

with 49 female birds. They noted that while directional selection

was detected on some of the original traits, they failed to detect di-

rectional selection on PC1 scores. One of the major advantages of

selection gradient analysis—measuring and comparing the mag-

nitude of direct selection on correlated traits—can be lost, as one

obtains an estimate of selection on a composite trait that may not

be the same in sign or statistical significance as the original traits.

PC scores are constructed based on their patterns of variation and

covariation, regardless of their importance for fitness, and can be

hard to interpret biologically, especially when they encompass

many traits (see Mitchell-Olds and Shaw 1987 for an extended

discussion). For these interpretive reasons, selection estimates on

PC scores have been criticized (e.g., Endler 1986; Mitchell-Olds

and Shaw 1987; Conner 2007; Hunt et al. 2007).

In this Comment and Opinion, we present and illustrate a

simple approach that circumvents the interpretation problem of

measuring selection on principal components. By projecting se-

lection estimates for PCs back into the original trait space, their

interpretability is preserved. We illustrate this with an empirical

example in the mouse ear cress, Arabidopsis thaliana, as well as

examples from the literature where previous authors have pre-

sented selection estimates for PC scores.

Projecting selection gradients for PCs back into trait
space
For most incarnations, traits will have separate units, and we

assume that PCA has been performed on the correlation rather

than the covariance matrix. A vector of selection gradients for

PC scores (i.e., regression coefficients of relative fitness on PC

scores) can be projected into the original trait space by:

β= EA, (1)

where β is a vector of reconstituted selection gradients, E is a

matrix with eigenvectors from the original PCA as columns, and

A is the vector of regression coefficients obtained from regressing

relative fitness on PC scores (Jolliffe 2002, p. 169). The coeffi-

cients in A describe the relationships between relative fitness and

PC scores, while the elements of E describe the relationships be-

tween the PC scores and the original traits; combining them yields

the relationship between traits and relative fitness. While an anal-

ogous equation for nonlinear selection gradients would clearly be

useful, we are unaware of any similar expression in the statistical

literature.

Using all the eigenvectors of a PCA for E and regression with

all PC scores as traits for A with (1) returns ordinary least squares

regression coefficients (Jolliffe 2002, p. 169; Wilks 2005, p. 505)

and does not eliminate multicollinearity. Using a subset of PCs

can reduce multicollinearity and estimate selection on the original

traits. To estimate uncertainty in the elements of β, we estimate

their variances using equation 6 of Lafi and Kaneene (1992),

and from them SEs. If one wishes to perform hypothesis testing

on these reconstituted selection gradients, parameter estimates

and SEs could be used to estimate t-statistics and P-values. Prior

to illustrating the use of (1) with our own data and literature

examples, we note two important items that we return to below.

First, using (1) necessarily involves a decision about how many

PC axes to include, with attendant costs and benefits. Second,

the elements of β estimated by (1) represent selection within

the subspace represented by the columns of E, for example, if

the columns of E represent 70% of the phenotypic variation, the

elements of β represent selection on the traits in the subspace

describing 70% of the phenotypic variance.

Materials and Methods
SIZE AND PHENOLOGY IN Arabidopsis thaliana

The mouse ear cress, Arabidopsis thaliana (Brassicaceaae), is a

selfing annual rosette plant. Our goal was to test the hypothesis

that natural selection favoring early flowering, which is commonly

observed in experiments even with low mortality (Austen et al.

2017), could be explained as selection on correlated traits, such

as flowering duration and branch number. We reasoned that early

flowering plants could potentially have longer flowering durations

and more opportunity to produce branches, which could them-

selves support flowers and fruit. Stock (2015) crossed two parental

lines collected from a single population in Doylestown, Penn-

sylvania, that had alternative alleles at the flowering time genes

FRIGIDA (FRI) and FLOWERING LOCUS C (FLC; Caicedo et al.

2004; Shindo et al. 2005) to produce an F1. She allowed this F1

to self-fertilize to produce F2 progeny, which has all allelic com-

binations at these two genes. Stock (2015) scored flowering time

and allowed �500 F2 individuals to self-fertilize, producing F3

seed that we used for our experiment. We used five replicates

from 50 F3 lines chosen to evenly span the F2 flowering time

distribution.

We synchronized germination by stratifying seeds in

0.15 mg/100 mL agar solution for six days at 4°C (Stock et al.

2015). We planted each seed in a standard conetainer with satu-

rated Sunshine Mix #1 soil (Sun Gro Horticulture, Agawam, MA).

We arranged plants into conetainer racks in a randomized, blocked

design, where the two shelves of a growth chamber represented

experimental blocks, with plants of each line evenly divided

between shelves. We maintained a light–temperature regime of
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16-hour days (22°C) followed by nights of 20°C (Suter and Wid-

mer 2013; Stock et al. 2015). We bottom-watered every two days

by placing conetainers in trays of water for approximately 3 hours.

After three months, we gradually reduced watering to simulate a

terminal end of season drought, and all plants senesced after four

months.

We scored bolting date, and first and last flowering date

throughout the experiment; at harvest, we measured branch

number, rosette diameter, and counted the number of rosette

leaves. We collected and counted fruits as a proxy for fitness

(Stinchcombe et al. 2004). We measured flowering time as the

number of days between planting and the first flowering date, and

flowering duration as the number of days between first and last

flowering dates. Analyses were performed using R version 3.1.2

(R Core Team 2014) and SAS v9.4 (Cary, NC).

TRAIT CORRELATIONS AND SELECTION

We calculated line means prior to analysis of correlations between

traits and selection (Rausher 1992). We used Pearson correlation

coefficients as estimates of the line mean correlations among the

traits. We then estimated selection differentials using simple uni-

variate regressions regressing relative fruit number on individual

traits, using line means and with traits standardized to a mean of

0 and variance of 1. We next estimated selection gradients for all

traits, by regressing relative fruit number on them in a multiple

regression. Strong multicollinearity between flowering time and

duration lead to high VIFs. To circumvent this, we used equation

(1) above with four PCs, which explained 99% of the variation

among line means.

LITERATURE EXAMPLES

We searched for examples measuring selection on PCs to illustrate

potential use of equation (1); we used published tables of PCAs

and selection estimates for PC scores, rather than raw data. Our

goal was to find illustrative examples rather than a comprehensive

meta-analysis. We describe new findings obtained through the

application of (1).

Results
Arabidopsis EXPERIMENT

The traits showed a range of correlations, ranging from rosette di-

ameter and flower duration, which were uncorrelated (rg = 0.06,

P = 0.647), to flowering time and duration, which were highly cor-

related (rg = –0.95, P < 0.0001; Figure 1). Flowering time showed

strong correlations with branch number (rg = –0.74, P < 0.001)

and rosette leaf number (rg = 0.70, P < 0.0001); flowering dura-

tion had essentially the opposite correlation pattern (rg = 0.72 and

–0.73, respectively, for branch number and rosette leaf number;

Table 1). PCA showed that flowering time and flowering duration
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Figure 1. Line mean correlation between flowering time and

flowering duration in the Arabidopsis chamber experiment. The

inbred line mean correlation is –0.95.

always had opposite signs in their loadings on PC1–PC4; rosette

diameter, branch number, and rosette leaf number loaded heavily

on PC2–PC4.

SELECTION ON FLOWERING TIME AND FLOWERING

DURATION

Univariate estimates of selection suggest that early flowering, long

flowering durations, more branches, and fewer rosette leaves are

favored (Table 2, Figure 2A–D). Interpreting these selection dif-

ferentials is complicated by the strong correlations among traits:

positive selection for branch number, for example, could be due

to indirect selection for early flowering time (branch number is

negatively correlated) or selection for longer flowering durations

(branch number is positively correlated). Traditional multiple re-

gression, while presented, is difficult to interpret: the high VIFs

for flowering time (12.54) and flowering duration (11.32) suggest-

ing caution in interpreting these gradients. While both flowering

time and flowering duration have large and significant selection

differentials, neither are significant in the multiple regression, and

both have SEs approximately three- to fourfold larger than the SE

for the differentials, again because of multicollinearity.

Estimating selection gradients via equation (1) using four

PCs showed strong directional selection for earlier flowering

(β ± SE = –0.17 ± 0.05) and for extended flowering durations

(β = 0.17 ± 0.06). The sign of these selection gradients makes

sense relative to their selection differentials and the sign and mag-

nitude of the trait correlation; SEs are approximately 1/3 to 1/4

of those observed in the multiple regression. These data sug-

gest that selection is acting in approximately equal strength on

flowering time and flowering duration in opposite directions. The

quantitative similarity of these selection gradients is likely due to

the strong correlation between them, and reflects the two traits

having approximately equal and opposite loadings on PC1–PC4
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Table 1. Line mean correlations for the Arabidopsis study, with eigenvector loadings for PC1–PC4.

Flowering
Time

Flowering
Duration

Branch
Number

Rosette
Diameter PC1 PC2 PC3 PC4

Flowering time 1 0.522 –0.215 0.154 –0.352
Flowering duration –0.95 1 –0.523 0.157 -0.244 0.426

P < 0.0001
Branch number –0.74 0.72 1 –0.476 –0.018 0.856 –0.189

P < 0.0001 P < 0.0001
Rosette diameter –0.12 0.06 –0.09 1 0.045 0.913 –0.047 –0.397

P = 0.39 P = 0.67 P = 0.54
Rosette leaf number 0.70 –0.73 –0.64 0.33 0.473 0.306 0.425 0.708

P < 0.0001 P < 0.0001 P < 0.0001 P = 0.02
Percent variance explained 65.17% 23% 6.94% 3.5%

Table 2. Selection estimates for the Arabidopsis experiment.

Univariate Regressions Multiple Regression
Principal Component
Regression

Trait s ± SE t P β ± SE t P VIF β ± SE

Flowering time –0.37 ± 0.05 6.96 <0.0001 –0.30 ± 0.19 1.57 0.12 12.54 –0.17 ± 0.05
Flowering duration 0.35 ± 0.06 6.29 <0.0001 0.05 ± 0.18 0.27 0.78 11.32 0.17 ± 0.06
Branch number 0.295 ± 0.06 4.73 <0.0001 0.07 ± 0.08 0.95 0.35 2.45 0.09 ± 0.08
Rosette diameter 0.11 ± 0.07 1.52 0.136 0.059 ± 0.07 0.87 0.39 1.60 0.07 ± 0.07
Rosette leaf number –0.218 ± 0.07 3.18 0.0026 0.061 ± 0.09 0.63 0.53 3.21 –0.06 ± 0.10

Univariate estimates of selection are from regressions of relative fruit production on each trait alone; significant differentials are shown in bold. Selection

gradients are estimated from a multiple regression of relative fitness on all traits, although the estimates for flowering time and duration are uncertain

because of multicollinearity (indicated by variance inflation factors (VIF)). Principal component regression estimates are regression coefficients for PC1–PC4

projected back into the original trait space.

(Table 1). These data suggest that accounting for selection on

correlated traits such as duration, branch number, size, and leaf

number did not eliminate the observed selection favoring early

flowering time, even if longer flowering durations are favored.

The estimated selection gradients for branch number, rosette

diameter, and rosette leaf number are all approximately equal to

their SEs, suggesting that within the space of PC1–PC4, direct se-

lection on these traits was weak. In addition, the reconstituted se-

lection gradients for branch number, rosette diameter, and rosette

leaf number (and their SEs) are of roughly the same magnitude

as in the original multiple regression, suggesting that calculations

from (1) accurately characterized selection on them.

LITERATURE EXAMPLES

Size and emergence in damselflies
Anholt (1991) measured selection on body size components in the

damselfly Enallagma boreale. Several features of this study stand

out. First, it was repeated across two years, and second, it included

selection separately for males and females. Third, sample sizes

were already large, and Anholt reported that he used PCs because

of multicollinearity, as diagnosed by VIFs. Anholt (1991) summa-

rized the date of emergence, wing length, abdomen length, and

mass at emergence with PCA, performing four separate PCAs,

corresponding to each year–sex combination. He estimated selec-

tion differentials for PC1 and PC2 (which accounted for �85%

of the variance, depending on sex–year combination), using both

relative survival and relative mate acquisition as fitness estimates.

We focus here on the survival data, as sample sizes were much

larger (565–993 vs. 14–40). Because PC1 and PC2 are by defi-

nition uncorrelated, separate regressions of fitness on each PC to

estimate selection differentials are equivalent to multiple regres-

sion of fitness on both PCs simultaneously. Consequently, we used

the differentials for PC scores to calculate selection gradients.

Anholt interpreted PC1 as a size axis (due to the positive

loadings of the size and mass characters), with the negative load-

ings of date of emergence on PC1 as reflecting the commonly

observed trade-off between size and emergence date. In contrast,

PC2 was interpreted as a date of emergence axis because date

loaded most heavily, although wing length and abdomen showed

moderate loadings in the same direction. As a consequence, PC1

represents a trade-off between date and size, whereas PC2 rep-

resents moderate positive associations between date and size.
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Figure 2. Selection differentials for (A) flowering time and (B) flowering duration, (C) Rosette leaf number, and (D) branch number in

the Arabidopsis experiment. Differentials are portrayed in the original trait units; plotted points are line means.

Because date of emergence figures in two PC axes in opposite

directions vis-a-vis three other traits, and because the two PC

axes were under selection in opposite directions in three of four

cohorts, calculating selection gradients allows a straightforward

assessment of the net pattern of selection on these traits without

keeping track of the relative sign of multiple eigenvector elements

and selection coefficients for PC scores across years and sexes.

Our recalculations for the 1985 cohort suggest that selection in

males favors early emergence dates (β = –0.35 ± 0.15) and large

mass (β = 0.3321 ± 0.14), whereas in females the pattern is

more variable on emergence date (β = –0.27 ± 0.19) and almost

absent on mass (β = –0.065 ± 0.17). For the 1986 cohort, our

calculations suggest that the dominant pattern in both males and

females was for later emergence dates (βmales = 0.472 ± 0.18;

βfemales = 0.533 ± 0.26).

Size traits in turtles
Janzen (1993) studied selection on body size in hatchling snapping

turtles (Chelydra serpentine). After releasing 112 hatchlings, he

recaptured 66 individuals and estimated selection. Janzen summa-

rized five size-related traits with PCA (initial egg mass, hatchling

mass, carapace length, carapace width, and plastron length), us-

ing all of them as predictors of relative survival in a regression

with other traits including locomotor performance, the size of the

clutch that eggs came from, and water potential of the substrate

eggs that were incubated (which affects size and hatching times).

We used the first four PCs, which explained 99.1% of the phe-

notypic variance, and confined our attention to size traits used to

construct the PCs. We note that subsequent work by Janzen and

Stern (1998) suggests using logistic regression these cases, but we

calculated selection gradients from multiple regression on PCs to

illustrate the differences in interpretation.

When we projected selection estimates for the four PCs

back into the original trait space, we found directional selec-

tion against hatchling mass (β = –0.360 ± 0.17), and in favor of

greater carapace width (β = 0.370 ± 0.18) and plastron length

(β = 0.309 ± 0.15). Two features of our reanalysis differ from

the original results. First, Janzen reported positive directional se-

lection on PC1, which he logically interpreted as an axis of size

(because all elements of PC1 were positive for size-related traits).

Our findings illustrate that selection on the component traits of

PC1 is not always in the same direction, even when all traits

load on PC1 with similar sign and PC1 is under selection. The

largest gradient we calculated was for decreased mass. The over-

all patterns of selection against mass, and in favor of carapace

width and plastron length, come from selection on PC3 and PC4.

PC3, which was under positive selection, had strong loadings

of plastron length. PC4 had strong and nearly opposite loadings

of hatchling mass and carapace width, which showed selection

gradients of opposite sign when recalculated. While the overall
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pattern of selection on the individual traits make sense in light

of selection on the PCs and the loadings of the overall traits, the

converse is not true: without calculation, it is difficult if not im-

possible to infer net patterns of selection on individual traits from

regression coefficients for PCs.

Tadpole morphology
Kraft et al. (2006) raised 560 tadpoles of the striped marsh frog

(Limnodynastes peroneii) in either the presence or absence of

dragonfly predators (Anax sp.), and measured the plastic re-

sponse of morphological traits and their subsequent effects on

survival. They measured nine morphological traits (total length,

tail height, tail muscle height, body length, body height, tail area,

tail muscle area, body width, and tail muscle width), and per-

formed PCA on log transformed data. They found that PCs 4

and 5 (explaining 1.3% and 0.9% of the phenotypic variance, re-

spectively) differed significantly between predator-induced and

control tadpoles. They measured selection on all nine PCs in a

multiple regression, finding significant negative selection on PC2

and positive selection on PC4 and PC5 for both the control and

predator-induced individuals. Because sign is arbitrary within a

PC axis, negative selection on PC2 is difficult to interpret: PC2 in

their study had negative loadings of tail muscle width and positive

loadings of body height. Individuals to the extreme of PC2 thus

had either narrow tail muscles and large body heights or, equiva-

lently, wide tail muscles and small body heights. Which of these

character combinations had lower fitness would make dramatic

differences in the interpretation of selection.

When we projected selection coefficients for PC1–PC5 (rep-

resenting 98.4% of the phenotypic variance), we found that selec-

tion was acting most strongly on body width in the control indi-

viduals (β = –0.0395), while most strongly on tail muscle height

in the induced individuals (β = 0.0426). (SEs for the regression

coefficients for PCs were not presented, precluding estimation

of SEs of the reconstituted selection gradients.) The case of tail

muscle width and body height is also clarified: in both treatments,

selection favors wider tail muscles and short body heights.

Flower volatiles and size
Schiestl et al. (2011) measured selection on 11 floral volatiles and

inflorescence size in 70 individuals of the orchid Gymnadenia

odoratissima. They performed several steps to facilitate selection

analysis: first they reduced the number of floral volatiles ana-

lyzed from >40 to 11 most abundant compounds in addition to

inflorescence size. They summarized these variables with four

principal components, which were subjected to a varimax rota-

tion, explaining 84% of the variation. The varimax rotation is

meant to facilitate interpretation by creating a set of factors where

each factor has predominant loadings from a reduced set of the

original traits.

Projecting their selection coefficients for the factors back into

the original trait space revealed appreciable selection on five mea-

sured traits: inflorescence size (β = 0.3208 ± 0.065), phenylac-

etaldehyde (β = 0.1580 ± 0.066), eugenol (β = 0.1290 ± 0.061),

(z)-isoeugenol (β = –0.1733 ± 0.066), and phenylethyl

(β = 0.1669 ± 0.061). Natural selection within the subspace de-

scribed by the first four PCs was approximately twice as strong on

inflorescence size as on the volatile traits. Schiestl et al. (2011)

detected negative selection on the third factor (most associated

with α-pinene and (z)-isoeugenol after varimax rotation), yet α-

pinene does not appear to be under selection when the coefficients

are projected back into the original trait space.

Flower volatiles, display size, and phenology
Parachnowitsch et al. (2012) also measured selection on floral

volatiles, in their case in the beardtongue Penstemon digitalis.

They measured 30 traits in 88 individuals, and faced power chal-

lenges in estimating selection gradients for volatiles and other

traits. Their solution was to only include traits in a multiple regres-

sion if they showed significant or marginally significant selection

differentials. They noted several inherent challenges in measuring

selection on floral volatiles: there are many compounds within a

floral bouquet; simply measuring selection differentials cannot

distinguish direct and indirect selection; if more than one trait

loads on a PC, it is difficult to determine which trait is under

selection if that factor is significant; and measuring selection on

principal components or varimax-rotated factors inhibits compar-

isons to previous reports of selection on other floral traits.

We used the eight PCs presented by Parachnowitsch

et al. (2012), which explained 72% of the variance. In ad-

dition to volatiles, they included morphological and life his-

tory traits, including flower size, corolla pigment, date of first

flower, daily floral display size, number of days of flower-

ing, and flower number. They observed very strong selection

on PC3, which was associated with cis-6-nonenal, linalool,

unknown-1, and daily display. By projecting selection esti-

mates for eight PCs into the original trait space, we see that

while selection was observed for the four traits associated

with PC3 (β = 0.0569 ± 0.0167; β = 0.0468 ± 0.01286;

β = 0.114 ± 0.0161; β = 0.1708 ± 0.01918, respectively), it

was by far the strongest on daily display size. Interestingly, the

one compound that was significant in the multiple regression per-

formed by the authors, linalool, has an intermediate magnitude

selection gradient when estimated in this manner.

Discussion
Our use of principal components regression combined with simple

algebra offers the prospect of addressing the challenge of multi-

collinearity, while solving the problems of interpreting selection
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on PC axes. Below we evaluate general trends that come from

our reanalyses, compare the approach to related approaches in

selection analysis, and close with a discussion of the limitations

and judgments inherent to the approach we advocate.

GENERAL LESSONS

We see three general lessons that have emerged from our ap-

proach. First, in numerous examples, it is much simpler to under-

stand the reconstituted selection gradients on the original traits

than on the PC axes, solving the interpretational challenges raised

by Endler (1986), Mitchell-Olds and Shaw (1987), Brodie et al.

(1995), Conner (2007), and Hunt et al. (2007). For example, for

the Arabidopsis experiment, the net outcome of selection on flow-

ering time and flowering duration being of approximately equal

magnitude and opposite signs was difficult to see from the PC

scores, and completely masked by the multiple regression. Like-

wise, in interpreting the studies of Anholt (1991) and Kraft et al.

(2006), the original traits are straightforward to understand bio-

logically, while selection on the PC axes can only be understood

by considering multiple PC axes that have selection estimates of

opposite signs, and are themselves made up of traits loading on

those axes with opposite signs. While in some cases PCs have

clear biological interpretations (e.g., the early flowering/small vs.

late flowering/large axis studied by Colautti et al. (2010) and Co-

lautti and Barrett (2010)), for more complicated cases like the ones

analyzed here projecting selection estimates on PCs back into the

original trait space may be a valuable approach. It is important to

recall, however, that these reconstituted selection gradients esti-

mate how selection is acting on the portion of multivariate trait

space spanned by the PCs that were originally included. Includ-

ing more PCs captures more of the variation in the original traits

measured and is closer to the typical goal of selection gradient

analysis.

Second, a natural interpretation of selection on PC axes is

that they represent selection on the trait that loads most heavily

on that axis. Several of our examples challenge this interpretation:

for example, in the Schiestl et al.’s study, α-pinene loaded most

heavily on an axis under selection, yet it did not appear to be under

much selection when selection on PCs was projected back into the

original trait space. Lande and Arnold (1983) noted that selection

on PC scores can be diluted if traits under selection show strong

phenotypic covariances with those unimportant for fitness. Our

literature review revealed the converse problem: several cases in

which seemingly straightforward selection on the PC axes was in

fact a complex pattern of selection on the underlying traits. The

reason for this is that traits load on all PC axes, rather than just

one, and associations between these other PC axes and fitness

contribute to the net pattern of selection on the traits.

Third, and perhaps most important, multicollinearity or high-

dimensional data (e.g., floral volatiles and gene expression) do not

need to be a stopping point for selection gradient analysis. For

these types of studies, multicollinearity or high dimensionality

will force investigators into doing something: either forgoing anal-

ysis, changing biological hypotheses, dropping traits, modifying

their approach to selection gradient analysis, or facing complex

interpretation challenges. The studies we reviewed were explicit

about their approaches to these challenges. However, it is unclear

how many studies in the literature encountered multicollinear-

ity or high-dimensional data and dropped traits or changed their

analysis approach, especially because the challenges and criti-

cisms associated with measuring selection on PC axes may have

convinced many authors to forgo PC regression. Measuring selec-

tion on PC axes and then projecting into the original phenotypic

space, while not perfect, offers a route forward. We expect that PC

approach may be useful for studies where investigators will typ-

ically have many more trait estimates (e.g., expression of many

thousand genes, volatiles, and metabolites) than individuals or

estimates of relative fitness.

SIMILARITY TO OTHER APPROACHES

Our approach is similar to other variants of selection gradient

analysis, and it is worth considering the similarities and differ-

ences. At first glance, it appears similar to canonical rotation

analysis (Phillips and Arnold 1989; Simms 1990; Blows 2007)

because both involve PCA, although there are key differences. In

that approach, the γ matrix of stabilizing, disruptive, and corre-

lational selection gradients is subject to eigenanalysis to identify

the axes of trait variation under the strongest nonlinear selection.

In contrast, our approach is to apply PCA to the raw data, estimate

linear selection on the synthetic axes, and then project back into

the original trait space. Janzen and Stern (1998) presented a sim-

ilar approach to ours, showing how to convert logistic regression

coefficients into selection gradients that can be used to predict

evolutionary change. Finally, our approach is somewhat simi-

lar to projection pursuit regression (Schluter and Nychka 1994).

Projection pursuit regression can be applied to identify a single

axis (a linear combination of traits) or multiple axes (multiple or

combinations of traits) that explain the most variation in fitness

(see also Morrissey and Sakrejda (2013) and Morrissey (2014)).

It is important to note that projection pursuit regression rotates

traits in a way that explains the most variation in relative fitness,

while traditional PC axes are ordered by the variation in the traits

themselves, but not fitness. Morrissey (2014) considered numer-

ous types of regression methods for selection gradient estimation

using both empirical data and simulations; he strongly supported

projection pursuit regression. We see our approach as complemen-

tary, with one benefit being that it involves the typical machinery

of least-squares regression and PCA familiar to many biologists,

and can be applied retrospectively to summary data reported in

papers (as we have here).
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MEASURING SELECTION ON PRINCIPAL COMPONENTS

Our approach can also be interpreted in light of work

on signal-to-noise ratios (Marroig et al. 2012). The similarity

becomes clear when considering selection on PCs (recall that

using equation (1) with all PC’s returns standard least squares

estimates, so the following argument also applies to traits on the

original scale). Trailing PCs represent a small amount of variation

and are estimated with greater error. Consequently, these trailing

PCs have a larger influence on inverted matrices, and because

the role of matrix inversion at the heart of multiple regression,

disproportionately contribute noise rather than signal to parame-

ter estimates. In addition, the eigenvalues of leading PCs tend to

be overestimated, while those of trailing PCs are underestimated

( Meyer and Kirkpatrick 2008). Thus, even in the absence of any

underlying correlation structure in the traits, noise and sampling

error will have a dramatic effect on estimates of selection due

to limited sample sizes (Marroig et al. 2012). Multicollinearity

exacerbates this challenge by concentrating variation in a limited

number of dimensions, making the estimation of trailing PCs,

and hence selection on them, even more problematic for a given

sample size. Marroig et al. (2012) illustrate alternative ways of

dealing with signal-to-noise challenges for estimates of selection.

They explore in detail an “extension” approach where unreliable

eigenvalues representing sampling noise are replaced by the last

reliable eigenvalue. In contrast, our approach eliminates the trail-

ing eigenvalues and eigenvectors entirely, and measures selection

in the phenotypic space described by the leading (and presumably

most reliable) PCs. An important topic for future work might

be to compare the extension method, our approach, as well as

other forms of biased regression estimation (cf. Bair et al. 2006;

Morrissey 2014) for addressing the problems poised by multi-

collinearity and sampling variation.

PROSPECTS AND CAVEATS

Our use of PCA in combination with selection gradient analysis

for our own data and examples from the literature entailed costs

that are worth considering before wider application. First, the

reconstituted regression coefficients are no longer unbiased esti-

mators like least-squares estimates (Jolliffe 2002; Wilks 2005).

By omitting PCs that explain relatively little variance, one re-

duces the variance in the estimated regression coefficients caused

by multicollinearity (and their associated VIFs), but at the ex-

pense of statistical bias (Jolliffe 2002). Jolliffe (2002, p.170–171)

shows how multicollinearity is driven by PCs with small eigenval-

ues, and accordingly that regression coefficients for the predictor

traits that load heavily on those axes will be estimated imprecisely

in the original regression (see also Wilks 2005, p.505). Eliminat-

ing multicollinearity requires dropping a PC axis; it is important to

note that information about all of the original traits still remains

in the model, through the retained PC axes. In contrast, a trait

omitted from a traditional regression could still have important

effects on fitness, and be correlated with included predictors, but

it is impossible to evaluate the effects of traits not included or

reported in a selection analysis.

While omitting trailing PCs eliminates multicollinearity,

Mitchell-Olds and Shaw (1987) criticized the assumption that

trailing PCs (trait combinations with less variance) were not pre-

dictive of relative fitness and could be safely omitted. Likewise,

Joliffe (1982) described several cases outside of evolutionary bi-

ology where PCs explaining relatively little variance were still

predictive of the response variable. In the event that these PCs

are associated with relative fitness, omitting them is not an ad-

visable solution. In contrast, Blows and McGuigan (2015) and

Sztepanacz and Blows (2017) show how the distribution of even

leading eigenvalues from phenotypic and genetic data can be strik-

ingly difficult to distinguish from sampling variation, suggesting

that trailing principal components might primarily represent sam-

pling variation. In the statistical literature, numerous approaches

have been developed for determining how many PCs to use in

principal component regression; Jolliffe (2002, p.173–177) and

Hill et al. (1977) provide overviews. One practical way forward

would be to evaluate whether trailing PCs, which are responsible

for multicollinearity, are predictive of relative fitness. If they are

not (as in the Arabidopsis example), omitting these PCs and then

projecting selection estimates back into the original trait space

seems to be a viable option. Fundamentally, some judgment of

the investigator will be required to decide how many PCs to in-

clude without reintroducing multicollinearity while still capturing

a sufficient portion of phenotypic variance to evaluate biological

hypotheses about selection.

ACKNOWLEDGMENTS
Our work is supported by NSERC Canada (JRS and VKC) and the De-
partment of Ecology and Evolutionary Biology. We thank B. Gilbert, D.
Jackson, D. Punzalan, J. Forrest, and C. Wood for discussion; comments
by A. Charmantier, G. Marroig, and two anonymous reviewers improved
the manuscript.

DATA ARCHIVING
Empirical data and literature data are available on Dryad. https://doi.
org/10.5061/dryad.d28080r

LITERATURE CITED
Austen, E. J., L. Rowe, J. R. Stinchcombe, and J. R. K. Forrest. 2017. Ex-

plaining the apparent paradox of persistent selection for early flowering.
New Phytol. 215:929–934.

Anholt, B. R. 1991. Measuring selection on a population of Damselflies with
a manipulated phenotype. Evolution 45:1091–1106.

Belsley, D.A., E. Kuh, and R.E. Welsch. 1980. Regression diagnostics: Iden-
tifying influential data and sources of collinearity. John Wiley and Sons,
Hoboken, New Jersey.

Bair, E., T. Hastie, D. Paul, and R. Tibshirani. 2006. Prediction by supervised
principal components. J. Am. Statist. Assoc. 101:119–137.

EVOLUTION LETTERS AUGUST 2018 2 7 9

https://doi.org/10.5061/dryad.d28080r
https://doi.org/10.5061/dryad.d28080r


V. K. CHONG ET AL.

Blows, M.W. 2007. A tale of two matrices: multivariate approaches in evolu-
tionary biology. J. Evol. Biol. 20:1–8.

Blows, M. W., and K. McGuigan. 2015. The distribution of genetic vari-
ance across phenotypic space and the response to selection. Mol. Ecol.
24:2056–2072.

Brodie, E. D., A. J. Moore, and F. J. Janzen. 1995. Visualizing and quantifying
natural selection. Trends Ecol. Evol. 10:313–318.

Bumpus, H. 1899. The elimination of the unfit as illustrated by the intro-
duced sparrow, Passer domesticus. Biological lectures from the Marine
Biological Laboratory . Boston, Ginn & Company, Woods Hole, Mas-
sachusetts.

Caicedo, A. L., J. R. Stinchcombe, K. M. Olsen, J. Schmitt, and M. D. Purug-
ganan. 2004. Epistatic interaction between Arabidopsis FRI and FLC

flowering time genes generates a latitudinal cline in a life history trait.
Proc. Natl. Acad. Sci. USA 101:15670–15675.

Colautti, R. I., and S. C. H. Barrett. 2010. Natural selection and genetic
constraints on flowering phenology in an invasive plant. Int. J. Plant Sci.
171:960–971.

Colautti, R. I., C. G. Eckert, and S. C. H. Barrett. 2010. Evolutionary con-
straints on adaptive evolution during range expansion in an invasive
plant. Proc. R. Soc. B Biol. Sci. 277:1799–1806.

Conner, J. K. 2007. A tale of two methods: putting biology before statistics in
the study of phenotypic evolution. J. Evol. Biol. 20:17–19.

Endler, J. A. 1986. Natural selection in the wild. Princeton Univ. Press, Prince-
ton, New Jersey.

Hill, R. C., T. B. Fomby, and S. R. Johnson. 1977. Component selection
norms for principal components regression. Commun. Statist. 6:309–
334.

Hunt, J., J. B. Wolf, and A. J. Moore. 2007. The biology of multivariate
evolution. J. Evol. Biol. 20:24–27.

Janzen, F. J. 1993. An experimental analysis of natural selection on body size
of hatchling turtles. Ecology 74:332–341.

Janzen, F. J., and H. S. Stern. 1998. Logistic regression for empirical studies
of multivariate selection. Evolution 52:1564–1571.

Jolliffe, I.T. 1982. A note on the use of principal components in regression.
Appl. Statist. 31:300–303.

Jolliffe, I. T. 2002. Principal component analysis. Springer, NY, New York.

Kraft, P. G., C. E. Franklin, and M. W. Blows. 2006. Predator-induced phe-
notypic plasticity in tadpoles: extension or innovation? J. Evol. Biol.
19:450–458.

Lande, R., and S. J. Arnold. 1983. The measurement of selection on correlated
characters. Evolution 37:1210–1226.

Lafi, S.Q. and J.B. Kaneene. 1992. An explanation of the use of principal
components analysis to detect and correct for multicollinearity. Prev.
Vet. Med. 13:261–275.

Marroig, G., D.A.R. Melo, and G. Garcia. 2012. Modularity, noise, and natural
selection. Evolution 66:1506–1524.

Meyer, K., and M. Kirkpatrick. 2008. Perils of parsimony: properties
of reduced-rank estimates of genetic covariance matrices. Genetics
180:1153–1166.

Mitchell-Olds, T., and R. G. Shaw. 1987. Regression analysis of natural
selection: statistical inference and biological interpretation. Evolution
41:1149–1161.

Morrissey, M.B. 2014. In search of the best methods for multivariate selection
analysis. Methods Ecol. Evol. 5:1095–1109.

Morrissey, M.B. and K. Sakrejda. 2013. Unification of regression-based meth-
ods for the analysis of natural selection. Evolution 67:2094–2100.

Neter, J., W. Wasserman, and M. H., Kutner. 1989. Applied linear regression
models. Irwin, Homewood, Illinois

O’Brien, R.M. 2007. A caution regarding rules of thumb for variance inflation
factors. Qual. Quant. 41:673–690.

Parachnowitsch, A. L., R. A. Raguso, and A. Kessler. 2012. Phenotypic se-
lection to increase floral scent emission, but not flower size or colour in
bee-pollinated Penstemon digitalis. New Phytol. 195:667–675.

Phillips PC., and Arnold SJ. 1989. Visualizing multivariate selection. Evolu-
tion 43:1209–1222.

R Core Team. 2014. R: a language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria.

Rausher, M. D. 1992. The measurement of selection on quantitative traits:
biases due to environmental covariances between traits and fitness. Evo-
lution 46:616–626.

Schiestl, F. P., F. K. Huber, and J. M. Gomez. 2011. Phenotypic selection
on floral scent: trade-off between attraction and deterrence? Evol Ecol.
25:237–248.

Schluter, D., and D. Nychka. 1994. Exploring fitness surfaces. Am Nat.
143:597–616.

Shindo, C., M. J. Aranzana, C. Lister, C. Baxter, C. Nicholls, M. Nordborg,
et al. 2005. Role of FRIGIDA and FLOWERING LOCUS C in determin-
ing variation in flowering time of Arabidopsis. Plant Physiol. 138:1163–
1173.

Simms EL. 1990. Examining selection on the multivariate phenotype: plant
resistance to herbivores. Evolution 44:1177–1188.

Stinchcombe, J.R., L.A. Dorn, and J. Schmitt. 2004. Flowering time plasticity
in Arabidopsis thaliana: a reanalysis of Westerman & Lawrence (1970).
J. Evol. Biol. 17:197–207.

Stock, A. J. 2015. Evolution of Arabidopsis thaliana flowering time in re-
sponse to water availability post-introduction. MSc thesis, University of
Toronto, Toronto, ON, Canada.

Stock, A. J., B. V. McGoey, and J. R. Stinchcombe. 2015. Water availability as
an agent of selection in introduced populations of Arabidopsis thaliana:
impacts on flowering time evolution. PeerJ. 3:e898.

Sztepanacz, J. L., and M. W. Blows. 2017. Accounting for sampling error
in genetic eigenvalues using random matrix theory. Genetics 206:1271-
1284.

Suter, L., and A. Widmer. 2013. Environmental heat and salt stress induce
transgenerational phenotypic changes in Arabidopsis thaliana. PLoS
ONE. 8:e60364.

Wilks, D.S. 2005. Statistical methods in the atmospheric sciences. Elsevier,
NY, New York.

Associate Editor: A. Charmantier

2 8 0 EVOLUTION LETTERS AUGUST 2018


