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Abstract

Background

In recent months, multiple publications have demonstrated the use of convolutional neural

networks (CNN) to classify images of skin cancer as precisely as dermatologists. However,

these CNNs failed to outperform the International Symposium on Biomedical Imaging (ISBI)

2016 challenge which ranked the average precision for classification of dermoscopic mela-

noma images. Accordingly, the technical progress represented by these studies is limited.

In addition, the available reports are impossible to reproduce, due to incomplete descriptions

of training procedures and the use of proprietary image databases or non-disclosure of used

images. These factors prevent the comparison of various CNN classifiers in equal terms.

Objective

To demonstrate the training of an image-classifier CNN that outperforms the winner of the

ISBI 2016 CNNs challenge by using open source images exclusively.

Methods

A detailed description of the training procedure is reported while the used images and test

sets are disclosed fully, to insure the reproducibility of our work.

Results

Our CNN classifier outperforms all recent attempts to classify the original ISBI 2016 chal-

lenge test data (full set of 379 test images), with an average precision of 0.709 (vs. 0.637 of

the ISBI winner) and with an area under the receiver operating curve of 0.85.

Conclusion

This work illustrates the potential for improving skin cancer classification with enhanced

training procedures for CNNs, while avoiding the use of costly equipment or proprietary

image data.
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Introduction

Skin cancer is the most common malignancy in fair-skinned populations, and melanoma

accounts for the majority of skin cancer-related deaths worldwide[1,2]. In light of the rapid

increase in the prevalence of melanoma over recent decades, several institutions and entities

have emphasized and funded programs to improve measures for early detection, including

photoaging mobile apps [3–7] or screening of individuals in risk groups [8].

Dermoscopes significantly improve the diagnostic accuracy of naked-eye examinations

when screening for skin cancer [9]. Despite special training, however, general medical practi-

tioners and dermatologists rarely exceed sensitivity greater than 80% [10;11].

In 2017, Esteva et al. reported a deep-learning convolutional neural network (CNN) image

classifier that performed as well as 21 board-certified dermatologists when identifying images

with malignant lesions [12]. The CNN deconstructed digital images of skin lesions into pixel-

level maps, and generated its own diagnostic criteria for melanoma detection during training.

The test or training data has not been released to the public, however, and Esteva et al. did not

test their classifier with a publicly available benchmark, so reproduction or validation of the

results is impossible.

In recent months, several publications have demonstrated dermatologist-level skin cancer

classification via deep neural networks (CNN) [12–19]. None of these CNNs proved to outper-

form the ISBI 2016 skin cancer classification challenge in terms of average diagnostic preci-

sion, so the reported technical progress is limited [15,20]. In addition, the first systematic

review of this literature pointed to the lack of reproducibility of these studies, due to incom-

plete descriptions of training procedures and the use of proprietary image databases [20].

In general, the classification of images of skin cancer via a deep learning algorithm may be

improved by three strategies: using a greater number of images of positive biopsies in training;

increasing the capacity of the graphic processor units (GPUs), or modifying the training

procedure.

In this article, we demonstrate the improved training of a CNN classifier that outperforms

the winner of the ISBI 2016 challenge. The classifier was trained exclusively on dermoscopic

images from the publicly available ISIC archive. The level of detail in this report ensures the

reproducibility of our work.

Methods

The ethics committee of the University of Heidelberg waived the need to obtain an ethics vote

due to the fact that there are no patient or healthy test person samples involved and the used

images are anonymous.

This article considers the binary classification problem of sorting images into groups of

malign and benign skin lesions. We assume that the images of skin lesions have been labeled

by experts, and that dermoscopic images are used as inputs for the classifier.

CNN model and training procedures

We developed an image classifier with the convolutional neural network (CNN) architecture.

CNNs have shown excellent performance for image classification in many domains [21].

Roughly, CNNs identify patterns in the raw pixels of the input image that relate to the classifi-

cation labels.

In this study, a ResNet50 model was used to classify images into groups of malign vs. benign

skin lesions [22]. Ensembles of such residual nets dominated the ImageNet 2015 contest and

achieved nearly half the error rate of the previous winner winner GoogLeNet [23]. In our

work, the ResNet50 network was pre-trained with the ImageNet dataset, which includes 1.28
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million images grouped into 1000 object classes. The pre-trained model was then fine-tuned

for the binary skin-lesion classification task by replacing the last layer to allow only two-

dimensional outputs. The parameters of the CNN were then optimized using transfer learning.

In contrast to existing approaches for skin lesion classification [4,5] which implement

transfer learning in a very generic manner, we applied three successive specific training tech-

niques that increase the quality of the resulting classifier:

1. Exclusive training of the adapted last layer for a few epochs

2. Fine-tuning the parameters of all layers with learning rates specific to each layer

3. Sudden increases of the learning rate at specific time steps during fine-tuning

In the proposed method, the parameters of all layers except the last fully-connected layer

are frozen at first; only the parameters of the last layer are trained with a learning rate of 0.01

over three epochs.

Next, all layers of the CNN are fine-tuned. Though existing approaches apply the same learn-

ing rate for all layers of the CNN, we implement different learning rates for each layer. Layers

closer to the input are assigned slower learning rates, and layers further from the inputs are

assigned faster learning rates. This application of differential learning rates is intended to encour-

age the layers that are closer to the input to recognize more-general image features such as edges

or gradients. Then these layers do not need to be trained specifically to pick out patterns relevant

to skin lesions. In contrast, the latter layers will register application-specific features, which is

accomplished with the enhanced learning rate for these layers in the transfer-learning phase.

The layers are split into three groups with different learning rates for each group: the first 6

residual units have a learning rate of 0.009, the subsequent 8 residual blocks 0.003, and the

fully connected layers 0.01. We based our selection of these three learning rates on our experi-

ence with other image-classification tasks.

In each batch of stochastic gradient descent, or in other words each step of optimization

over the parameters of the network, the parameters approach the minimum value of the loss

function. As the parameters approach this limit, the learning rate is commonly decreased

incrementally to ensure that the optimization settles as close as possible to the minimum value

of the loss function without overshooting it [12,24]. Instead of this gradual tapering of the

learning rate, we implemented the so-called cosine annealing technique, which decreases the

learning rate according to the cosine function [25].

During optimization of the network parameters, the gradient descent is at risk of settling

into a local minimum instead of a global minimum of the loss function. The gradient descent

can be disturbed by these local minima with sudden increments of the learning rate at specific

time steps, which helps to ensure that the training reaches a global minimum of the loss func-

tion. This technique is called stochastic gradient descent with restarts (SGDR), and has been

shown to be highly effective for improving the classification performance of CNNs over those

trained with stochastic gradient descent alone [25][25].

We used the PyTorch deep learning framework to train, validate and test our network. Dur-

ing training, the number of images was increased by data augmentations including rotation,

flipping, random crop, change of lighting, and enlargement. The dimensions of all images

were forced to be 299 x 299 with cropping or padding.

Training, validation, and test data

Dermoscopic images were taken from the public ISIC archive, and only images of melanomas

and nevi were exported. The image archive includes a total of 2132 melanomas and 18170
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nevi. The diagnoses of all melanomas in these images were verified via biopsy. The diagnoses

of nevi were made either by histopathological examinations (~ 24%), by expert consensus

(~54%), or by another type of diagnosis such as a series of images with no change over time

(~22%).

For testing, we used the original test data set from the ISBI 2016 challenge consisting of 379

images of benign and malign skin lesions. To address the imbalance of the classes in the test

data, images of nevi from the ISIC archive were selected randomly until the ratio between mel-

anomas and nevi was 1:5. Then the validation set was generated by randomly selecting 10% of

the images in this set. Finally, the test set and the validation set were deleted from the total set

of images to ensure that the test set, validation set, and training set were disjoint. After this

process, the training set consists of 1888 melanomas and 10490 nevi, the validation set contains

210 melanomas and 1049 nevi, and the test set contains 304 benign and 75 malign skin lesions.

Results

When classifying images from the ISBI 2016 challenge dataset, our CNN classifier achieved an

average precision of 0.709. This corresponds to an improvement of 11.3% over the precision of

the winner of the ISBI 2016 challenge (Table 1). Other results included accuracy of 83.9%, sen-

sitivity of 56%, specificity of 90.8%, and an area under the receiver operating curve (AUC

ROC) of 0.85 were achieved. Table 1 lists the test results from our CNN, results from the par-

ticipants in the ISBI 2016 challenge, and results published by Haenssle et al [15]. The receiving

operating characteristics (ROC) curve for our CNN classifier is depicted in Fig 1.

Discussion

The output of a classifier can be interpreted as a discrete probability distribution over the clas-

ses in question. When performing a binary classification, the output vector is two-dimen-

sional. The first dimension of the vector quantifies the probability that the input image belongs

to class A, whereas the second dimension of the vector reflects the probability that the input

belongs to class B. Normally, inputs with a corresponding output value greater than 0.5 are

assigned to class B and those with an output value less than 0.5 are assigned to class A. Using a

threshold of 0.5, our CNN achieves a sensitivity of 56% and a specificity of 90.8%. In a clinical

setting, it is of course important that skin cancer classifications have high sensitivity and the

highest-possible corresponding specificity. The trade-off between sensitivity and specificity

can be adjusted by varying the threshold between 0 and 1. A threshold lower than 0.5 increases

the sensitivity and decreases the specificity and vice versa. The trade-off between sensitivity

and specificity is illustrated by the ROC curve in Fig 1. Most of the classifiers initially devel-

oped for skin cancer classification were based on transfer learning using various CNN models

Table 1. Results of participants of the International Symposium on Biomedical Imaging (ISBI) 2016 challenge with the result published by Haenssle et al.

Average Precision Accuracy AUC ROC Sensitivity Specificity

Our approach 0.709 0.839 0.85 0.56 0.908

Rank 1 0.637 0.855 0.804 0.507 0.941

Rank 2 0.619 0.813 0.802 0.573 0.872

Rank 3 0.598 0.834 0.826 0.32 0.961

Rank 4 0.563 0.786 0.796 0.667 0.816

Rank 5 0.559 0.844 0.775 0.24 0.993

Haenssle et al. not listed not listed 0.79 not listed not listed

https://doi.org/10.1371/journal.pone.0218713.t001
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such as AlexNet, GoogLenet, or VGGNet. All approaches published so far use images from the

ImageNet database as inputs for pre-training. The best results so far have been achieved by

fine-tuning the pre-trained parameters of all the layers in the network, while our method

focused fine-tuning on layers furthest from the input.

We achieved an initial performance improvement by training only the parameters of the

last layer with a few epochs before fine-tuning all the layers. In contrast to existing approaches,

the fine-tuning step had differential learning rates to the layers in the CNN. The parameters of

the layers closest to the input were therefore adjusted less than those of the latter layers. To

quantify the improvement of these learning techniques, we conducted simulations with the

same classification settings but without pre-training the last layer, and using a constant learn-

ing rate of 0.01 instead of a differential learning rate. After 12 training epochs, the average

mean precision of the classifier working on the ISBI 2016 test set was 0.6015. A precision

improvement of 0.1 was therefore accomplished with carefully designed training techniques

alone.

Further improvements leading to the ultimate results of our approach (Table 1) were

achieved by selecting the appropriate CNN model. During the evaluation of our approach, we

found that the ResNet50 model was most suitable for classification of benign and malign skin

lesions, when compared with, for example the ResNet34 or VVGNet model.

While new datasets and challenges have been released, the comparison to the ISBI 2016

challenge is still relevant. The paper focuses not on mere outperformance but shows that by

solely using novel deep learning techniques, an outperformance of previous classifiers can be

achieved. This comparison indicates a rapid development of the field of deep learning and

shows that no costly computational resources or additional proprietary image data is strictly

necessary for outperformance.

Fig 1. Receiver operating characteristic (ROC) curve of the proposed skin classifier tested on the ISBI 2016

challenge data.

https://doi.org/10.1371/journal.pone.0218713.g001
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Inaccuracy of the current reference standard (biopsy)

If a skin-lesion classifier is to be clinically useful, the diagnostic accuracy of the method used

(i.e. a CNN) must be comparable to the current standard of care. For instance, in case a biopsy

was taken, the reference standard is the result of histopathologic tests, but if the lesion is con-

sidered benign, the clinical diagnosis by the specialist is accepted as the reference standard. In

addition, a 2010 study of discordance in the histopathology for melanoma diagnosis in the US

reported discordant results in 392 cases, or 14.3% of the study sample [26], and a 2016 study

from another US center reported an even higher discordance in 19% of 600 sample cases,

indicating that the problem of discordant histopathology not improved over time [27]. Such

discrepancies in the reference standard have clinical consequences for patients, and they influ-

ence studies of diagnostic accuracy [26–28]. Diagnostic discordance needs to be considered

when discussing the thresholds for acceptable levels of diagnostic accuracy when developing

new diagnostic measures. While biopsy-classified images remain the gold standard for accu-

rate classifier training, they must be used at least in the test set that aims at estimating the

accuracy of the CNN. They should also be used when training the classifier, in ideal circum-

stances. In the long run, the current gold standard needs to be made more precise, or a differ-

ent method needs to be proposed.

Conclusions

Our work illustrates how to improve the precision of CNN skin-cancer classifiers with training

procedures alone—regardless of additional computational resources or additional proprietary

image data. This makes the approach realistic for replication and allows for easier translation

into a real-world scenario. Future research should confirm our findings in prospective studies

and include a broader differential diagnosis in the algorithms’ training.
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