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Abstract

A national ART program was launched in Tanzania in October 2004. Due to the existence of multiple HIV-1 subtypes and
recombinant viruses co-circulating in Tanzania, it is important to monitor rates of drug resistance. The present study
determined the prevalence of HIV-1 drug resistance mutations among ART-naive female bar and hotel workers, a high-risk
population for HIV-1 infection in Moshi, Tanzania. A partial HIV-1 pol gene was analyzed by single-genome amplification and
sequencing in 45 subjects (622 pol sequences total; median number of sequences per subject, 13; IQR 5–20) in samples
collected in 2005. The prevalence of HIV-1 subtypes A1, C, and D, and inter-subtype recombinant viruses, was 36%, 29%, 9%
and 27%, respectively. Thirteen different recombination patterns included D/A1/D, C/A1, A1/C/A1, A1/U/A1, C/U/A1, C/A1,
U/D/U, D/A1/D, A1/C, A1/C, A2/C/A2, CRF10_CD/C/CRF10_CD and CRF35_AD/A1/CRF35_AD. CRF35_AD was identified in
Tanzania for the first time. All recombinant viruses in this study were unique, suggesting ongoing recombination processes
among circulating HIV-1 variants. The prevalence of multiple infections in this population was 16% (n = 7). Primary HIV-1
drug resistance mutations to RT inhibitors were identified in three (7%) subjects (K65R plus Y181C; N60D; and V106M). In
some subjects, polymorphisms were observed at the RT positions 41, 69, 75, 98, 101, 179, 190, and 215. Secondary
mutations associated with NNRTIs were observed at the RT positions 90 (7%) and 138 (6%). In the protease gene, three
subjects (7%) had M46I/L mutations. All subjects in this study had HIV-1 subtype-specific natural polymorphisms at
positions 36, 69, 89 and 93 that are associated with drug resistance in HIV-1 subtype B. These results suggested that HIV-1
drug resistance mutations and natural polymorphisms existed in this population before the initiation of the national ART
program. With increasing use of ARV, these results highlight the importance of drug resistance monitoring in Tanzania.
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Introduction

Antiretroviral therapy (ART) has resulted in dramatic reduction

of morbidity and mortality among HIV-1 infected individuals [1–

3]. However, the emergence of drug-resistant viral variants and

their potential spread remains a legitimate concern with serious

implications for the course of the epidemic [4–7].

A virologic failure during the course of ART regimen is

frequently related to HIV drug resistance, which arises from

mutations in the genes that encode the molecular targets for the

drugs, i.e., the HIV-1 protease (PR) and reverse transcriptase (RT)

pol gene products. The HIV-1 RT is highly error-prone due to a

lack of proofreading capacity, which often results in numerous

polymorphisms. If viral mutations are associated with HIV drug

resistance, these viral variants can have selective advantage and

avoid drug pressure [8–10].

HIV-1 mutations associated with drug resistance are classified

as either primary (major) or secondary (minor). Primary mutations

are selected under drug pressure, may lead to a several-fold

decrease in sensitivity to one or more antiretroviral drugs, and are

extremely rare in the absence of treatment [11]. Secondary

mutations are defined as having little or no effect on drug

susceptibility, but may lead to increased resistance or increased

replication capacity in the presence of major mutations [11,12].

Thus the appearance of a primary mutation in a genome already

containing secondary mutations could influence the speed with

which highly resistant viruses are selected during ART [13].

As access to ART rapidly increases in resource-limited

countries, the prevalence of circulating HIV-1 drug resistant

strains is also expected to increase. Acquired HIV-1 drug

resistance developed during the course of treatment can spread

upon viral transmission to newly infected individuals. The

transmitted HIV-1 drug resistance may pose a challenge for

therapeutic control of infection, by reducing the efficacy of first-

line antiretroviral (ARV) treatment, and impact clinical outcome.

ART was introduced to Tanzania in 1995 with mono and dual

regimens available to only a small number of patients due to the

high cost of the drugs [14,15]. Access to ART has increased since

the Tanzanian government launched its public-sector ART

program free of charge in October 2004 [14,15].
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The current standard first-line ART for HIV-1 infection in

Tanzania consists of two nucleoside reverse transcriptase inhibitors

(NRTIs), zidovudine (ZDV) or stavudine plus lamivudine (3TC),

and one non-nucleoside reverse transcriptase inhibitor (NNRTI),

nevirapine (NVP) or efavirenz (EFV). If the patient fails to respond

to the first-line regimens, the second-line regimens include

abacavir/didanosine (ABC/ddI) in combination with lopinavir

or saquinavir boosted with ritonavir (LPV/r or SQVr) [14–16].

Protease inhibitors (PIs) have been used rarely in Tanzania, and

were not available in the public sector at the time the specimens

for this study were collected.

Tanzania is one of the African countries severely affected by the

HIV/AIDS epidemic with 5.7% of its 40 million people infected

with HIV [17]. The HIV-1 subtypes A1, C, and D, as well as

CRF10_CD and unique inter- and intra-subtype recombinant

viruses, have been reported in Tanzania [18–26].

Recently we found that HIV-1 subtypes A1, C, and D, and

inter- and intra-subtype recombinant viruses, were prevalent

among female bar and hotel workers in Northern Tanzania

[21,26]. HIV-1 subtypes and recombinants may be associated with

various phenotypes such as disease progression [27], transmission

patterns [28], as well as different pathways of drug resistant

evolution [29–32].

HIV-1 subtypes may respond differently to ARV regimens [33–

35]. Within the HIV-1 group M, it has been reported that isolates

of subtype D tend to be less susceptible to ZVD, 3TC, ddI, NVP,

and ritonavir [35]. Similarly, it has been reported that some

subtype G strains have decreased susceptibility to PIs [36,37]. In

HIV-1 CRF01_AE infection, the RT mutations T69N and V75M

were seen more frequently than in HIV-1 subtype B [38].

The evolution of drug-resistant mutations in the non-B HIV-1

epidemic may not necessarily follow the patterns observed in HIV-

1B infection [32]. However, limited information is available on

non-B HIV-1 subtypes, particularly in regions like Tanzania

where multiple HIV-1 subtypes A1, C, and D, as well as a high

number of unique inter- and intra-subtype recombinant viruses,

co-circulate. It is important to estimate the baseline prevalence of

viral polymorphisms that might be associated with HIV-1 drug

resistance in regions with multiple HIV-1 subtypes.

The present study estimated the prevalence of HIV-1 drug

resistance mutations in pol within a high-risk population of HIV-1-

infected ART-naı̈ve female bar and hotel workers, by single-

genome amplification and sequencing (SGA/S) of specimens

collected in 2005.

Methodology

Ethics statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki, and was approved by the research

ethics committees at the Kilimanjaro Christian Medical Centre

(KCMC), Tanzania National Institute for Medical Research, and

Harvard School of Public Health (HSPH). All study subjects

provided written informed consent for participation in the study.

Study population
The samples for this study were collected from treatment-naı̈ve

female bar and hotel workers who were enrolled in a prospective

cohort study between December 2004 and March 2007.

Descriptions of assessment of HIV-1 status, recruitment of study

subjects, characteristics of the cohort, and sampling procedures

have been provided elsewhere [21,39,40]. All subjects enrolled in

this study had similar sexual risk behaviors and are considered one

of the high-risk populations for HIV-1 infection in Tanzania [21].

Subjects were followed-up quarterly over one year. At each study

visit women were examined, consented, and interviewed about

their sexual behavior and HIV-related risk factors, and blood

samples were collected for further analysis.

Among 800 subjects enrolled in the study, 139 (17%) were HIV-

1 positive by serological testing [21,39,40]. A subset of 50 out of

139 HIV-1 positive subjects with at least two samples collected one

year apart has been recently characterized [21].

In this study we estimated the prevalence of HIV-1 drug

resistance mutations and pol diversity. Thus a subset of 50 samples

collected at enrollment was genotyped. The median age of subjects

at study entry was 30 years (IQR 26–37). None of the study

subjects reported previous exposure to ART. Viral load in plasma

was quantified [21]. The viral load results are shown in Table S1.

Single-genome amplification and sequencing (SGA/S)
The isolation of peripheral blood mononuclear cells (PBMCs)

from whole blood and genomic DNA have been described

previously [21]. A fragment of the HIV-1 pol gene of about

1,660 bp encoding the entire PR and part of RT (position 2085–

3763; HXB2 numbering) was amplified using a modified SGA/S

technique [41,42] based on the limiting dilutions method [43].

The first-round PCR was conducted with primers IBF1 (59-AAA

TGA TGA CAG CAT GTC AGG GAG -39; nucleotides 1826–

1847; HXB2 numbering) and 3891L (59-TCC TCT GTC AGT

AAC ATA CCC TG-39; nucleotides 3913–3932; HXB2 number-

ing). PCR amplification was performed in 20 ml and contained

1 ml of proviral DNA, 1.8 mM FastStart High Fidelity Buffer

(Roche), 10 mM deoxynucleotide triphosphate (dNTPs (dATP,

dCTP, dGTP and dTTP)) (Roche), 10 pmol of each primer

(Integrated DNA Technologies) and 5U FastStart High Fidelity

Enzyme (Roche). The second-round PCR reaction was done with

primers 2018U (59-TTG GAA ATG TGG AAA GGA AGG AC-

39; nucleotides 2031–2050; HXB2 numbering) and 3775L (59-

TAC TAG GGG AGG GGT ATT AAC A-39; nucleotides 3797–

3815; HXB2 numbering). The reaction was carried out in a final

volume of 25 ml and contained 1 ml of the first-round PCR

product diluted 1:50 and 24 ml of master mix containing 1.8 mM

FastStart High Fidelity buffer, 10 mM dNTPs, 10 pmol of each

primer and 5U FastStart High Fidelity Enzyme. Thermal cycling

conditions for both PCR rounds were as follows: 95uC for

2 minutes, followed by 35 cycles at 95uC for 20 sec, 54uC for

20 sec and 72uC for 2 sec with a final extension step at 72uC for

7 min. Reaction mixtures were stored at 4uC until use.

Amplified products were electrophoretically analyzed by apply-

ing 5 ml of second PCR amplification product to 1% agarose gel

containing ethidium bromide, and visualized under ultraviolet

light. Amplicons were purified by Exo-Sap [44] and directly

sequenced on both strands on the ABI 3730 DNA analyzer using

BigDye technology.

Phylogenetic analysis and subtype determination
Generated proviral DNA sequences were assembled and edited

using SeqScape V 2.7. The pol sequences were aligned together

with the HIV-1 subtype reference sequences retrieved from the

Los Alamos HIV-1 sequence database [45] using the MUSCLE

algorithm [46] in MEGA 5.0 [47]. Minor manual adjustment was

done by Bioedit version 7.0 [48]. Maximum likelihood (ML)

phylogenetic trees were constructed by PhyML version 3.0.1 [49]

and visualized by FigTree v1.3.1 [50]. The approximate likelihood

ratio test (aLRT) was used as a statistical test for support of splits

[51]. aLRT values $0.95 were considered significant and are

displayed at the tree nodes. The neighbor-joining (NJ) trees were

constructed by MEGA 5.0 using the Kimura-two parameter

HIV-1 pol Diversity in Northern Tanzania
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model with 1000 bootsrap replicates [52]. Bootstrap values $80%

were considered significant [53]. HIV-1 subtypes were determined

based on branching topology, clustering and splits support of the

analyzed sequences and their phylogenetic relationships with HIV-

1 reference subtype sequences from the Los Alamos HIV-1

sequence database, as described elsewhere [21].

The proviral DNA sequences were analyzed for evidence of

APOBEG3G-induced hypermutations using Hypermut tool V2.0

[54]. Thirteen quasispecies from five subjects with a p value of #

0.05 were considered enriched for mutations consistent with

APOBEG3G signatures and were excluded from analysis. The

final set included 622 pol sequences.

Screening for inter-subtype recombination and
breakpoints identification

All sequences generated in this study were screened for evidence

of inter-subtype recombination by Recombination Identification

Program (RIP 3.0) [45] and REGA HIV-1 Subtyping Tool-

Version 2.0 [55]. The identified recombinant viruses were further

analyzed for breakpoints identification using bootscan by SimPlot

software v3.5.1 [56] as previously described [21]. The HIV-1

subtype reference sequences were retrieved from the Los Alamos

HIV Sequence Database [45]. Identified breakpoints were visually

inspected in BioEdit. To confirm the HIV-1 subtypes in the inter-

subtype recombinant viruses, nucleotide sequences on both sides

of the breakpoint were analyzed independently by re-constructing

phylogenetic trees using the splits at the putatively identified

breakpoints, as described previously [21].

For the sequences with both recombinants and pure subtypes

(multiple infections), we established whether or not the recombi-

nant viruses originated within the infected individuals. The

recombinant sequences were split at the putatively identified

breakpoints, realigned with the pure subtypes which originated

from the same subjects together with the reference sequences,

including CRFs if required and examined by neighbor-joining

phylogenetic tree analysis.

Multiplicity of HIV-1 infection
To determine HIV-1 infections with multiple viral variants, the

HIV-1 pol gene analysis was performed as described recently for

HIV-1 env gene analysis [21].

Drug resistance mutation analyses
The HIV-1 pol quasispecies were evaluated for HIV-1 drug

resistance mutations and for naturally occurring polymorphisms in

the PR and RT using the International AIDS Society–USA (IAS-

USA) major mutation list [57] and the Stanford University HIV

Drug Resistance Database [58].

Control for cross-contamination
Control of laboratory cross-contamination during specimen

collection, processing, amplification, and/or sequencing was

performed routinely, as described previously [21].

Statistical analysis
Descriptive statistics were performed using Sigma Stat v.3.5.

The bootstrap and aLTR support values for splits in the inferred

phylogenetic trees were computed by MEGA 5.0 and PhyML

respectively.

Accession numbers
Sequences have been assigned GenBank database accession

numbers KF530900–KF531521.

Results

HIV-1 pol subtyping
In this study we targeted the same subjects described in our

recent study on diversity of the V1-C5 region of HIV-1 env gp 120

[21]. A total of 622 pol sequences were generated from 45 subjects

[21]. The median number of pol sequences per subject was 13

(IQR 5–20). Samples from five subjects (codes 86, 181, 321, 404,

945) could not be amplified.

Analysis of phylogenetic relationships between the generated pol

sequences revealed that A1 was the most common HIV-1 subtype

(35.6%), followed by subtype C (28.9%) and HIV-1 inter-subtype

recombinant viruses (26.7%). HIV-1 subtype D was less prevalent

(8.9%). Similar results were observed in our previous study on the

V1-C5 env gene. However, the pol-based prevalence of HIV-1 inter-

subtype recombinants (26.7%) was higher than the env-based

prevalence (8.6%) [21], although this finding did not reach

statistical significance (p = 0.0513, Fisher exact test). Using the

combined env/pol data, the overall HIV-1 subtype distribution was

A1/A1 (35.6%), C/C (24.4%), D/D (4.4%) and inter-subtype

recombinants (35.6%), highlighting a higher rate of HIV-1 inter-

subtype recombinants in the combined analysis (Table 1). Figure 1

shows the phylogenetic relationships among a subset of 488 non-

recombinant HIV-1 pol sequences. The 134 HIV-1 inter-subtype

recombinant pol DNA sequences were analyzed separately, as their

topology in the phylogenetic tree was not informative.

HIV-1 inter-subtype recombinant viruses
The distribution of HIV-1 inter-subtype recombinant viruses in

two regions (env and pol) is shown in Table 2. HIV-1 inter-subtype

recombinant viruses were found in 12 (26.7%) of the 45 subjects

(Table 1). In seven subjects (codes 33, 87, 355, 558, 733, 838 and

909), all of the quasispecies for the pol gene were represented by

inter-subtype recombinant viruses, while five subjects (codes 177,

209, 322, 491 and 603) had multiple HIV-1 subtype infections,

suggesting possible recombination and/or dual infections in this

population. To determine the relationship between the non-

recombinant subtypes and the putative recombinant regions based

on the pol gene, phylogenetic analysis was performed. Results for

the pol gene showed that in four of the five subjects (codes 177,

322, 491 and 603) with dual infections, the pure subtypes were

found to be parental strains of the recombinant viruses, while in

the remaining subject (code 209), the pure subtype was not a

parental strain of the recombinant virus (data not shown).

We also identified two complex circulating recombinant forms

(CRFs), CRF10_CD/C/CRF10_CD and CRF35_AD/A1/

CRF35_AD in this population (Fig. 2). CRF10_CD has been

previously reported in Tanzania [20,22,23], while this is the first

time that CRF35_AD has been reported in this population as well

as in Tanzania. The CRF35_AD/A1/CRF35_AD recombinant

was further analyzed to confirm the recombination patterns of the

40 generated viral quasispecies of subject 733 (number of viral

quasispecies per subject ranged from 1 to 45 quasispecies). ML

trees were generated separately for the three regions, 2,080–2,536,

2,537–2,987, 2988–3746 (HXB2 numbering). Results showed that

the first analyzed fragment clustered with HIV-1 CRF35_AD

reference (Fig. S1B; aLRT support of 0.88). The second fragment

clustered with HIV-1 subtype A1 reference (Fig. S1C; aLRT

support of 0.76). The third fragment clustered with HIV-1

CRF35_AD reference (Fig. S1D; aLRT support of 0.93). The low

aLRT support value for all the three fragments could possibly be

due to the short length and limited number of informative sites.

The relationship of these strains to other published HIV-1 pol

sequences was investigated with the BLAST subtyping tool [59].

HIV-1 pol Diversity in Northern Tanzania
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The closest available sequence was HIV-1 isolate TV725 from

Canada [60]. Similar analyses were performed for the

CRF10_CD/C/CRF10_CD recombinant virus to confirm the

HIV-1 sub-genomic regions (data not shown).

Phylogenetic analysis of both env and pol genes indicated 16

(35.6%) of 45 subjects were infected with HIV-1 inter-subtype

recombinant viruses. Among these recombinant viruses: two

subjects (codes 33 and 322) had recombination breakpoints in

both env and pol regions; ten subjects (codes 87, 177, 209, 355, 491,

558, 603, 733, 838 and 909) had a virus with breakpoints in the

pol gene only; two subjects (codes 471 and 510) had recombi-

nation breakpoints in env gene only; and two subjects (codes 697

and 740) had discordant env and pol subtypes, A1/C and A1/D,

respectively.

Recombinant strains were analyzed in detail based on the

location of recombination breakpoints. Putative recombinant

regions were split according to the breakpoints and analyzed by

neighbor-joining trees and HIV-1 reference subtypes. Results for

this analysis are shown in Figure 2. Thirteen different recombi-

nation patterns were observed in the pol gene: 11 recombination

patterns were observed in 11 of the 12 subjects with recombinant

viruses, while two different recombination patterns were observed

in the remaining subject (Fig. 2; code 209). Of note, in the env

analysis of the same subjects, we observed only five different

patterns [26], suggesting that the pol region has a high

recombination rate in this population.

The HIV-1 inter-subtype recombinant viruses in this study were

unique, shared no recombination breakpoints, and demonstrated

Figure 1. ML phylogenetic tree of HIV-1 protease and reverse transcriptase sequences of the pol gene from 45 subjects. The ML was
constructed by PhyML 3.0.1 and visualized in FigTree. The tree is rooted with the HIV-1 group N consensus sequence as an outgroup. 488 non-
recombinant pol sequences generated from the 45 subjects were analyzed with HIV-1 reference subtypes from the Los Alamos HIV-1 Sequence
Database. HIV-1 inter-subtype recombinant pol DNA sequences were excluded in this figure. HIV-1 reference subtypes A1, C, and D are shown in red,
pink and blue, respectively. The other references are shown in orange. Approximate likelihood ratio test (aLRT) values of $0.95 were considered
significant and are shown by an asterisk (*). The scale at the bottom of the figure corresponds to 0.01 nucleotide substitutions per site.
doi:10.1371/journal.pone.0102258.g001

Table 1. Distribution of HIV-1 subtypes among female bar and hotel workers in Moshi, Kilimanjaro, Tanzania in 2005.

Subtype V1-C5 env gene* pol gene (PR and RT) Env*/pol genes combination

A1 24 (53.3%) 16 (35.6%) 16 (35.6%)

C 14 (31.1%) 13 (28.9%) 11 (24.4%)

D 3 (6.7%) 4 (8.9%) 2 (4.4%)

Recombinant 4 (8.9%) 12 (26.7%) 16 (35.6%)

Total 45 45 45

*Kiwelu et al., 2013.
doi:10.1371/journal.pone.0102258.t001
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complex subtype structure. For example, a portion of HIV-1 in

subject 209 clustered with none of the group M HIV-1 subtypes.

However, when we compared the 18 viral quasispecies of subject

209 with the HIV-1 sequences in GenBank using BLAST [59], the

closest available HIV-1 sequences to the 18 viral quasispecies of

subject 209 were HIV-1 pol sequences from Spain with 94%

identity [61].

HIV-1 multiple infections
The prevalence of multiple HIV-1 infections in this study was

16% (n = 7). Two subjects (codes 66 and 291) were infected with

HIV-1 multiple variants of HIV-1 subtype C, while the remaining

five subjects (codes 177, 209, 322, 491, and 603) were infected with

both pure subtypes and recombinant viruses. Recently we reported

that 12 (27%) of 45 subjects had multiple HIV-1 infections based

on analysis of the HIV-1 env gene [21]. However, congruence

between two structural viral genes, env and pol, in identification of

multiplicity of HIV-1 infection was poor, at least in this

population. Thus, only one of 12 subjects with multiple env

infections (code 291) was infected with multiple variants of HIV-1

subtype C based on the pol gene analysis. Multiple HIV-1 infection

was not confirmed in the other 11 subjects due to non-significant

bootstrap support values (6 subjects), low number of quasispecies

(2 subjects), or no evidence for multiple distinct variants (3

subjects). At the same time, one subject (code 66) with

homogeneous env quasispecies indicating HIV-1 infection with a

single variant, was classified as infected with multiple HIV-1

variants based on the pol gene analysis. A summary of HIV-1

infection with single and multiple viral variants is shown in Table

S2.

Reverse transcriptase inhibitor (RTI) resistance mutations
Table 3 summarizes the mutations and polymorphisms associ-

ated with PR and RT inhibitors. Primary HIV-1 drug resistance

mutations to RT inhibitors were identified in three (7%; codes

201, 245 and 291) of the 45 subjects. The identified NRTI

mutations included D67N and K65R, while the NNRTI

mutations were V106M and Y181C. The NRTI-associated

polymorphisms were observed at positions 41, 69, 75 and 215.

The prevalence of the secondary mutations associated with

NNRTI at positions 90 and 138 was 11% (n = 5). Single

polymorphisms associated with NNRTIs were detected at

positions 98, 101, and 190. A subtype-specific polymorphism at

position 179 (V179I) was observed among all 16 (100%) subjects

infected with HIV-1 subtype A1. Some subjects harbored multiple

secondary mutations (e.g., subject 905 with V90I and E138K)

and/or polymorphisms (e.g., subject 237 with A98S and

L101Q).The significance of the observed polymorphisms in

HIV-1 non-B subtypes is unknown.

Table 2. Distribution of HIV-1 V1-C5 env and pol sequences among female bar and hotel workers in Moshi, Kilimanjaro, Tanzania,
with at least one inter-subtype recombinant virus.

Subject code V1-C5 env gene [21] PR and RT (pol gene)

33 D/A1 D/A1/D

87 A1 C/A1

177 A1 A1

A1/C/A1

209 A1 A1/U*/A1

C/U*/A1

322 A1 C

A1/C/A1 C/A1

355 A1 U*/D/U*

471 C/A1 C

491 A1 A1

C

D/A1/D

510 D/U* D

D/U*/D

558 C A1/C

603 C A1

A1/C

697 A1 C

740 A1 D

733 D CRF35_AD/A1/CRF35_AD

838 C CRF10_CD/C/CRF10_CD

909 A1 A2/C/A2

Total Recombinants 4 (8.6%) 12 (26.7%)

U* unclassified region.
doi:10.1371/journal.pone.0102258.t002
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Protease polymorphisms associated with protease
inhibitor resistance mutations

In the protease gene, three subjects (7%) had major mutations at

position 46 (M46I/L) associated with PR drug resistance

mutations (Table 3). Viral polymorphisms were present at multiple

positions across protease, e.g., at positions 16, 20, 34, 36, 60, 62,

63, 64, 69, 71, 74, 77, 89, 90 and 93, that are associated with PI-

resistance in HIV-1 subtype B. The most frequent polymorphisms

were seen at positions M36I (81%), H69K (86%), L89M (74%),

and I93L (62%). Given the abundance of viral polymorphisms

potentially associated with PI-drug resistance in subtype B, their

frequencies were compared with the HIV-1 subtypes A1 and C

frequencies in treatment-naı̈ve individuals available from the

Stanford HIV Drug Resistance Database (Fig. 3). No statistically

significant difference was found (p = 0.161 and p = 0.104, respec-

tively), suggesting HIV-1 subtype-specific polymorphisms are not

associated with PI drug resistance.

Discussion

This study determined the prevalence of HIV-1 subtypes and

HIV-1 drug resistance mutations among treatment-naı̈ve female

bar and hotel workers, a high-risk population for HIV-1 infection

in Moshi, Tanzania. The most prevalent subtype was HIV-1

subtype A1, followed by HIV-1 subtype C, HIV-1 inter-subtype

recombinant viruses and HIV-1 subtype D. Similar results were

reported in our previous HIV-1 env-based study [21]. However,

the frequency of HIV-1 inter-subtype recombinant viruses in the

HIV-1 pol gene (26.7%) showed a trend to be higher (p = 0.051;

Fisher exact test) than the frequency observed in the HIV-1 env

gene (8.6%) in the same population [21]. Similarly, a high

prevalence of HIV-1 inter-subtype recombinant viruses was

reported in the previous studies using the pol gene [62–65]. The

combined HIV-1 env [21] and pol prevalence of HIV-1 inter-

subtype recombinant viruses was 35.6%. It is possible that near

full-length HIV-1 genome analysis could show even higher

prevalence of recombinant viruses. Our study supported the

previous findings that examining multiple regions of the HIV-1

Figure 2. Schematic representation of recombinant viruses detected in 12 subjects showing recombination breakpoints. Localization
of breakpoints between HIV-1 subtypes was done by SimPlot analysis and identified breakpoints were visually inspected in BioEdit. The numbers in
each bar indicate breakpoints and were given HXB2 numbering. The first bar represents the protease and reverse transcriptase genes. The dashed
lines indicate the positions where protease gene starts, 2, 253 (HXB2 numbering), and ends, 2,549 (HXB2 numbering). The genome segments are
colored according to HIV-1 subtypes. Red, orange, yellow, blue, green, and light blue represent sequences from HIV-1 subtypes A1, A2, C, D,
CRF10_CD and CRF35_AD, respectively. The black bar represents the unclassified (U) regions. Confirmation of recombination was conducted by
constructing phylogenetic trees of the putative recombinant regions against reference HIV-1 subtypes.
doi:10.1371/journal.pone.0102258.g002
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genome may allow detection of more subjects infected with

multiple infections and recombinant viruses [66–68]. A high

prevalence of HIV-1 inter-subtype recombinant viruses in the

HIV-1 pol gene suggests that recombination occurs in the pol

region. These results are consistent with the previous studies

demonstrating that pol appears to be a hot spot for recombination

[62,63,66,69].

The recombination patterns and breakpoints in the HIV-1 pol

gene were unique in all 12 (26.7%) subjects infected with HIV-1

inter-subtype recombinant viruses. In contrast, in the HIV-1 env

gene we observed only five recombination patterns in the same

population [26]. Additionally, five of the 12 subjects with

recombinant viruses had dual infections of pure HIV-1 subtypes

and recombinant viruses. The pure HIV-1 subtypes in four

subjects were parental strains of the recombinants, suggesting that

dual infections were responsible for the generation of these

recombinants. Six complex recombinant viruses including circu-

lating recombinant forms (CRFs) were reported in this study:

A1/U/A1, C/U/A1, U/D/U, A2/C/A2, CRF10_CD/C/

CRF10_CD, and CRF35_AD/A1/CRF35_AD. The complex

recombinant virus CRF35_AD/A1/CRF35_AD was not previ-

ously reported in Tanzania. The CRF35_AD had been previously

described among injecting drug users in Kabul, Afghanistan

[60,70,71]. The HIV-1 sub-subtype A2 was reported for the first

time in Moshi among female bar and hotel workers [72] and was

later reported among pregnant women in the Kilimanjaro region

[23]. The CRF10_CD recombinant has been previously described

in Tanzania [20,22,23]. Our results suggest that the HIV-1 sub-

subtype A2 and CRF10_CD are present at a low prevalence in this

population. The three recombinant variants A1/U/A1, C/U/A1

and U/D/U include regions that did not cluster with any HIV-1

group M subtype, and were therefore considered unclassified

regions (U). The source of unclassified regions remains unknown

although we cannot exclude a complex recombination between

recombinants of unknown degree.

All recombinant viruses identified in this study were unique, and

contained the co-circulating HIV-1 subtypes A1, C and D in

Tanzania. Similar results were reported in the HIV-1 env gene in

the same population [21] and in previously published studies in

Tanzania [23,73,74].

The high prevalence of HIV-1 inter-subtype recombinant

viruses in this population may be associated with multiple factors.

First, there is the high-risk behavior of women working in hotels

and bars in Moshi, Tanzania, who have a high rate of sexual

Table 3. Mutations and polymorphisms at positions associated with drug resistance to PIs, NRTIs, and NNRTIs among female bar
and hotel workers in Moshi, Kilimanjaro, Tanzania, in 2005.

Subject code HIV-1Subtype Total no. of quasispecies Mutation position No. of quasispecies with mutation

PI: Primary mutation

276 C 10 M46I 1

480 A1 32 M46I 1

733 CRF35_AD/A1/CRF35_AD 40 M46L 1

NRTI: Primary mutation

245 A1 22 D67N 1

201 C 13 K65R 1

NRTI: Polymorphisms

740 D 22 M41I 1

66 C 13 T69A 1

245 A1 22 T69P 1

209 A1 24 V75A 1

909 A2/C/A2 21 V75A 1

46 A1 24 T215A 1

NNRTI: Primary mutation

201 C 13 Y181C 1

491 C 45 V106M 4

NNRTI: Secondary mutation

168 A1 19 V90I 1

838 CRF10_CD/C/CRF10_DC 16 V90I 2

905 A1 16 V90I 9

E138K 1

237 A1 13 E138A 5

291 C 32 E138A 2

NNRTI: Polymorphisms

237 A1 13 A98S 6

L101Q 1

480 A1 32 G190E 1

doi:10.1371/journal.pone.0102258.t003
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partner change which may facilitate multiple HIV infections and

recombinations [73,75]. Second, co-circulation of HIV-1 subtypes

A1, C, D and some other HIV-1 subtypes in this population

contributes to the generation of inter-subtype recombinant viruses

[21]. Third, analysis of multiple regions of the HIV-1 genome

including env and pol genes allows the detection of more

recombinant viruses.

In this study the prevalence of HIV-1 multiple infections was

16% (n = 7 of 45). Two of the seven subjects were infected with

multiple HIV-1 variants of the same subtype, while the remaining

five subjects were infected with a mixture of pure HIV-1 subtypes

and recombinant viruses. However, based on the HIV-1 env gene,

only 12 (27%) of the 45 subjects were infected with multiple HIV-1

variants of the same subtype [21]. Based on the HIV-1 pol gene

five more subjects were infected with HIV-1 multiple infections,

suggesting that analysis of a single region of the HIV-1 genome

may underestimate the true proportion of HIV-1 multiple

infections.

Analysis of HIV-1 drug resistance mutations and polymor-

phisms among female bar and hotel workers revealed that three

(7%) of the 45 subjects harbored HIV-1 drug resistance mutations

to RT inhibitors, NRTIs and NNRTIs. This is higher than in

some previous studies in Tanzania among HIV-1 treatment-naive

individuals [15,64] but is in line with other studies in Tanzania

[14,76]. Our results suggest that HIV-1 strains with drug-resistant

mutations to RT inhibitors existed in this population due to

suboptimal regimens and adherence during the earlier phase of the

HIV/AIDS epidemic in Tanzania, i.e., before the implementation

of the national ART program.

Three (7%) subjects had a major mutation at the protease

amino acid position 46 (M46I/L) that confers high resistance to

protease inhibitors (PIs) only in combination with other mutations,

and can occur among untreated persons as natural polymorphisms

[77–80], as was reported previously in Tanzania among

treatment-naı̈ve individuals [14,15]. Since PIs were not used in

Tanzania at the time that the samples were collected, the

mutations M46I and M46L most likely represent natural

polymorphisms rather than transmitted drug-resistant strains.

However, unreported exposure to PI or HIV transmission from

individuals receiving PIs cannot be excluded.

All subjects in this study harbored three or more polymorphisms

at amino acid positions associated with PIs in HIV-1 subtype B.

H69K (86%), M36I (81%), L89M (74%), and I93L (62%) were

considered to be subtype-specific natural polymorphisms since

they occur at high frequency in HIV-1 subtypes A1, C or D [81].

Data from the Stanford HIV Drug Resistance Database for HIV-1

subtypes A1 and C confirmed that the observed polymorphisms

are common among HIV-1 treatment-naı̈ve individuals [58].

Polymorphisms were defined as mutations that occurred in more

than 1% of sequences from untreated persons. Subtype-specific

polymorphisms were defined as mutations that were significantly

more prevalent in each non-B subtype than in subtype B viruses

from untreated persons [30]. Subjects with and without HIV-1

drug resistance mutations had similar sexual risk behaviors.

The undisclosed use of ART can be a hidden problem in sub-

Saharan Africa. Recently Kahle et al. examined drug levels among

subjects with low HIV-1 RNA loads and reported a higher than

expected prevalence of unreported ARV drugs use [82]. In this

study five subjects were found with primary drug resistant

mutations associated with NRTIs, or protease inhibitors. Only

one of these subjects, code 201, had plasma viral load below 2.7

log10 copies/ml. Due to a shortage of plasma specimens we were

not able to measure levels of ART in these subjects, which is a

clear study limitation. It would be important to address levels of

ART in individuals with drug-resistant mutations and/or low

HIV-1 RNA load.

The presence of a high number of substitutions at positions

associated with drug resistance mutations in non-B viruses might

influence the risk of treatment failure through lowering the genetic

barriers to the development of drug resistance [83,84]. Further

Figure 3. Polymorphisms in protease gene in HIV-1 subtypes A1 and C, compared to ARV-naı̈ve individuals from the Stanford HIV-1
Drug Resistance Database.
doi:10.1371/journal.pone.0102258.g003
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studies will be required to gain a better understanding of the

clinical and biological implications of the natural polymorphisms

at positions associated with drug resistance to PIs and RT

inhibitors in non-B HIV-1 subtypes, including the significance of

recombinant viruses with the increasing use of ARV drugs.

This study has limitations, some of which have been previously

reported [21]. First, analysis of one region of the HIV-1 genome,

the pol gene (PR and RT), may underestimate the true proportion

of HIV-1 subtypes, recombinants and multiplicity of infection.

Secondly, the duration and stage of HIV-1 infection were

unknown, and the study had no power to determine whether

the HIV-1 inter-subtype recombination was due to co-infection,

super-infection, or both. Thirdly, in order to detect HIV-1

multiple infections of the same subtype, analysis of multiple viral

quasispecies is needed; however, some of the subjects had a

relatively low number of quasispecies available. Fourth, some of

the subjects had undetectable plasma HIV-1 viral RNA, which is

likely to be associated with low efficiency of PCR amplification. In

addition, we cannot exclude the possibility that some of the

subjects may have been receiving HAART at the time of sample

collection without our knowledge.

In conclusion, our study demonstrated that the HIV-1 epidemic

in Tanzania is highly diverse, with multiple HIV-1 infections and

unique HIV-1 inter-subtype recombinants, as well as complex

circulating recombinant forms. HIV-1 subtypes A1 and C are still

prevalent in this population, including large proportions of unique

HIV-1 inter-subtype recombinant viruses. CRF35_AD was

reported for the first time in this population, in Moshi as well as

in Tanzania. We have further reported the baseline prevalence of

HIV-1 drug resistance mutations and natural polymorphisms at

amino acid positions associated with HIV-1 drug resistance to

NRTIs, NNRTIs and PIs before ARV drugs were widely used in

Tanzania. The results of this study will help to better understand

the pathogenesis of HIV-1 infection and the emergence of drug

resistance, and should aid in the development of therapeutic

strategies in Tanzania.
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