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DNA methylation is an important factor regulating gene expression in organisms. However, whether DNA methylation

plays a key role in adaptive evolution is unknown. Here, we show evidence of naturally selected DNA methylation in

Arabidopsis thaliana. In comparison with single nucleotide polymorphisms, three types of methylation—methylated CGs

(mCGs), mCHGs, and mCHHs—contributed highly to variable gene expression levels among an A. thaliana population.

Such variably expressed genes largely affect a large variation of specialized metabolic quantities. Among the three types

of methylations, only mCGs located in promoter regions of genes associated with specialized metabolites show a selective

sweep signature in the A. thaliana population. Thus, naturally selected mCGs appear to be key mutations that cause the ex-

pressional diversity associated with specialized metabolites during plant evolution.

[Supplemental material is available for this article.]

All living organisms use DNA as a heritable material. The heritable
DNA-based information depends on the order of four chemical
bases: adenine (A), guanine (G), cytosine (C), and thymine (T).
Among the four bases, C can undergo an enzyme-mediated chem-
ical modification called DNA methylation. DNA methylation sig-
nificantly affects transcriptional regulation. Consequently, DNA
methylation plays important roles in development, cell differenti-
ation, reprogramming, and stress responses in both plants and
mammals (Feng et al. 2010). There are three types of DNAmethyl-
ation: CG, CHG, and CHH—where H=A, T, or C. Each type of
DNA methylation is maintained by different systems in plants
(Kawashima and Berger 2014; Zhang et al. 2018). Among methyl-
ated CG (mCG), methylated CHG (mCHG), and methylated CHH
(mCHH), only the mCG is inherited from parents (Iwasaki and
Paszkowski 2014). Especially, the inheritance of mCGs in plant ge-
nomes is stable over many generations compared to animal ge-
nomes (Feng et al. 2010; Zemach et al. 2010; Takuno et al. 2016).
Therefore, it is of interest to examine the adaptive evolution trig-
gered by mutated mCGs as the other heritable material.
However, mCHG and mCHH tend to be modified in specific
developmental stages through trans effects (Bouyer et al. 2017;
Kawakatsu et al. 2017; Kawakatsu and Ecker 2019). Inherited
mCGs cause phenotypic changes in Arabidopsis, and the changes
may be advantageous for a particular condition, indicating that
mCGs contribute to adaptive evolution in Arabidopsis (Dubin
et al. 2015; Williams and Gehring 2017; He et al. 2018).
Nevertheless, there are no reports of inherited mCGs undergoing
positive selection.

It is unclear what kinds of traits triggered bymCGs have been
positively selected in an Arabidopsis population. There is a large va-
riety of specialized metabolites produced by plants, and the accu-

mulated specialized metabolites are highly diverse within a single
species (Wink 2008; Pichersky and Lewinsohn 2011; Weigel 2012;
Carreno-Quintero et al. 2013; Alseekh et al. 2015; Matsuda et al.
2015; Pichersky and Raguso 2018; Tohge et al. 2018). Some of
the specializedmetabolites have various functions related to repro-
duction and responses to abiotic/biotic stress (Pichersky and
Lewinsohn 2011; Pichersky and Raguso 2018; Tohge et al. 2018).
The differences in the accumulated specialized metabolites
strongly affect fitness in the natural environment (Kerwin et al.
2015). Among theA. thaliana accessions, differentiallymethylated
regions are concentrated in genes related to specialized metabo-
lites (Kawakatsu et al. 2016). DNAmethylation in the promoter re-
gion of a gene may alter the production of specialized metabolites
in A. thaliana (Kooke et al. 2019). Thus, specialized metabolite
diversity may result from the diversity of DNA methylation in
Arabidopsis (Kawakatsu et al. 2016; Kooke et al. 2019). However,
at the genomic level, gene expression is rarely controlled by
DNA methylation, except that of transposable elements (TEs), in
comparison with nucleotide mutations (Matzke et al. 2015;
Meng et al. 2016; Zhang et al. 2018). Therefore, the contribution
of DNAmethylation to specializedmetabolite production remains
unclear at the genomic level.

Results

Association between gene expression and DNA methylation

We obtained 1,397,934 single nucleotide polymorphisms (SNPs)
and 4,448,076 single methylation polymorphisms (SMPs)
(mCGs: 1,653,070, mCHGs: 814,938, and mCHHs: 1,980,068)
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from 620 accessions of A. thaliana in the 1001 Genomes Consor-
tium and Kawakatsu et al. (Supplemental Table S1; The 1001 Ge-
nomes Consortium 2016; Kawakatsu et al. 2016). Among the
24,030 genes, all the SMP types were concentrated in the promoter
regions, from 3 kb upstream of the transcriptional start sites to the
termination sites (Fig. 1A). The expression levels of the 24,030
genes in the 620 accessions were obtained from the RNA-seq
data presented in Kawakatsu et al. (2016) (Supplemental Table
S2). To examine the range of cis-regulatory effects of SMPs on
gene expression, we identified SMPs having significant correla-
tions with gene expression using a linear mixed model and 1000
randomly selected genes. The associated SMPs were concentrated
from 1 kb upstream of the transcriptional start sites to l kb down-
stream from the termination sites (Fig. 1B). To address the cis-reg-
ulatory effects, we focused on this region in each gene.

To compare the cis-regulatory effects between SMPs (mCGs,
mCHGs, and mCHHs) and SNPs in each of the 24,030 genes, we
identified mCGs, mCHGs, mCHHs, and SNPs that were signifi-
cantly associated with gene expression levels among 620 acces-
sions (FDR-corrected P values < 0.05) (Table 1; Supplemental
Tables S3–S6). The numbers of genes with at least one significantly
associated mCG, mCHG, mCHH, and SNP were 6690, 3319, 3463,
and 21,924, respectively (Fig. 1C), indicating that SNPs havemuch
larger cis-regulatory effects than SMPs. There were 8425 genes that
had significantly associated SMPs in the mCGs, mCHGs, or
mCHHs. Only 405 of 8425 genes did not have any associated
SNPs (Fig. 1C). Out of 21,924 genes with significantly associated
SNPs, 13,904 genes did not have associated SMPs in the mCGs,
mCHHs, or mCHHs (Fig. 1C). These results indicate that, at the ge-
nomic level, SNPs are a major factor regulating gene expression in
view of the number of associated genes. This result is supported by
previous reports (Matzke et al. 2015; Meng et al. 2016; Zhang et al.
2018). On the other hand, genes associated with SMPs in the
mCGs or mCHGs tend to have higher r2 than genes associated

with SNPs (Supplemental Fig. S1). This
result indicates that each mCG or
mCHG has a large effect on gene expres-
sion compared to SNPs.

Association between expression

variation and DNA methylation

We examined the variation in gene ex-
pression within a single species. It is pos-
sible that SMPs have different effects on
expressional variations compared to
SNPs. Therefore, we evaluated the degree
of expressional variation among the 620
accessions using the coefficients of varia-
tion (CVs). Approximately 95% of genes
had low levels of expressional variation
(CV<3), and only ∼5% had large levels
of expressional variation (CV≥3) (Fig.
2A). In addition, the distribution of CVs
has two peaks (Fig. 2A). The higher peak
is largely contributed by TE genes (medi-
an of CV=3.18) compared to the other
genes (median of CV=0.41) (Supple-
mental Figs. S2, S3). We then compared
the expressional variations between
genes associated with SMPs and SNPs.
Genes associated with mCHGs and

mCHHs tended to have higher CVs than genes associated with
SNPs (median of CV in SNPs=0.4, median of CV in mCGs=
0.41, median of CV in mCHGs=0.87, median of CV in
mCHHs = 0.75; mCG: P=1.51×10−2, mCHG: P<2.20×10−16,
and mCHH: P< 2.20×10−16; Wilcoxon rank-sum test) (Fig. 2B).
Furthermore, for all SMP types, genes associated with only SMPs
and not SNPs tended to have much higher CVs than genes associ-
ated with only SNPs and not SMPs (median of CV in SNPs=0.4,
median of CV in mCGs=1.16, median of CV in mCHGs=3.03,
median of CV in mCHHs=3.03; mCG: P<2.20×10−16, mCHG: P
<2.20× 10−16, and mCHH: P<2.20×10−16; Wilcoxon rank-sum
test) (Fig. 2B). This trend is shown in both TE genes and the other
genes (Supplemental Figs. S4–S7). These results indicate that SMPs
are a main factor in the control of highly variable gene expression
within a single species.

DNAmethylation has different effects on gene expression de-
pending on its location (Zhang et al. 2018). The DNAmethylation
of TE regions causes the TE to be silenced, and the DNA
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Figure 1. Distribution of DNA methylation associated with gene expression. (A) The distributions of
mCGs, mCHGs, and mCHHs in 24,320 genes. The x-axis represents SMP positions relative to the tran-
scriptional start and termination sites in 24,320 genes from 620 A. thaliana accessions. The blue line rep-
resents the distribution of the mCGs, mCHGs, and mCHHs. (B) The distributions of mCGs, mCHGs, and
mCHHs associated with gene expression in a cis-regulatory manner in 1000 randomly selected genes.
The x-axis represents SMP positions relative to the transcriptional start and termination sites in 1000 ran-
domly selected genes from 620 A. thaliana accessions. (C) The numbers of genes with significant asso-
ciations between expression and mCGs, mCHGs, mCHHs, or SNPs.

Table 1. Numbers of SMPs and SNPs in 620 global A. thaliana
accessions

mCGs mCHGs mCHHs SNPs

# of genes with SMPs (or
SNPs)

20,233 7683 7468 23,861

# of total SMPs (or SNPs) 581,231 114,173 303,734 983,237
# of SMPs (or SNPs) on

promoter
44,024 31,470 111,814 229,993

# of SMPs (or SNPs) on
exon

404,012 49,244 91,539 347,424

# of SMPs (or SNPs) on
intron

92,930 8120 19,079 230,768

# of SMPs (or SNPs) on
downstream

40,265 25,339 81,302 175,052
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methylation of promoters mainly causes
transcriptional repression. The DNA
methylation of a gene body is correlated
with constitutive expression, not repres-
sion (Zhang et al. 2006; Kawakatsu et al.
2016). To address which types of SMPs
control highly variable gene expression
within a single species, SMPs and SNPs
were classified into promoter (1-kb
region upstream of the transcriptional
start site to the transcriptional start
site), exon, intron, and downstream
(transcriptional termination site to l kb
downstream from the transcriptional ter-
mination site). For genes associated with
mCGs, mCHGs, mCHHs, and SNPs, CVs
were compared among these regions.
The genes associated with most of the
SMPs tended to have significantly higher
CVs than genes associated with SNPs, ex-
cept for mCGs located on exon or intron
regions (Fig. 2C). This trend was clearer
for genes associated with only SMPs
and not SNPs (Fig. 2D). Genes with
mCHGs and mCHHs located on exon re-
gions, compared to the other regions,
tended to have higher CVs (P<0.05;Wil-
coxon rank-sum test) (Supplemental Ta-
bles S7, S8). Genes with mCGs located
on promoter and downstream regions,
compared to exon and intron regions,

tended to have higher CVs (P<0.05;Wil-
coxon rank-sum test) (Fig. 2C,D; Supple-
mental Tables S7, S8). These results
indicate that mCHGs and mCHHs locat-
ed on exon regions associated with high-
ly variable gene expression, but only
mCGs located on promoter and down-
stream regions are associated with highly
variable gene expression. Thus, there is a
difference in how CG methylation and
non-CG methylation regulates gene
expression.

Association between DNA methylation

and specialized metabolite diversity

To understand the functional categories
having higher expressional variation lev-
els, we examined Gene Ontology (GO)
terms enriched for genes having the 5%
highest and lowest CV values. These
GO terms were associated with special-
ized metabolism and ubiquitous catego-
ries, respectively (Fig. 3A,B). Thus, genes
associated with specialized metabolism
tended to have high levels of expression-
al variation. We further examined the
GO terms enriched for genes associated
with only SMPs. The genes associated
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Figure 2. Variation in the expression of genes associated with SMPs or SNPs. (A) Coefficients of varia-
tion (CVs) for 24,320 genes from 620 accessions. (B) CVs of genes associated with SNPs, mCGs, mCHGs,
and mCHHs. (C ) CVs of genes associated with SNPs, mCGs, mCHGs, and mCHHs located in promoter,
exon, intron, or downstream regions. (D) CVs of genes associated with only SNPs, only mCGs, only
mCHGs, and only mCHHs located in promoter, exon, intron, or downstream regions. In each box
plot, the box represents the 25%–75% range, themiddle line represents the median, the dotted line rep-
resents the 1%–99% range, and the outer circles represent outliers. The significant differences in CVs
among genes associated with SNPs and the SMP groups were evaluated using the Wilcoxon rank-sum
test; (∗∗∗) P<0.001, (∗) P<0.05, (ns) not significant.
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Figure 3. Relationship between DNA methylation and mQTG expression. (A) Top 10 enriched GO
terms in genes with high CVs (top 5%). (B) Top 10 enriched GO terms in genes with low CVs (bottom
5%). The false discovery rate (FDR) was calculated from GO enrichment analyses using the χ2 test. (C)
The rates of mQTGs having high CVs (top 5%) associated with SNPs, mCGs, mCHGs, and mCHHs in
620 A. thaliana accessions. The rates represent the numbers ofmQTGs with high CVs (top 5%) associated
with SNPs, mCGs, mCHGs, andmCHHs each divided by the number of total genes associatedwith SNPs,
mCGs, mCHGs, and mCHHs, respectively. (D) The rates of mQTGs with high CVs (top 5%) associated
with only SNPs, only mCGs, only mCHGs, and only mCHHs in the 620 accessions. The rates represent
the numbers of mQTGs with high CVs (top 5%) associated with only SNPs, only mCGs, only mCHGs,
and only mCHHs each divided by the number of genes associated with only mCGs, only mCHGs, and
only mCHHs, respectively. (E) The rates of mQTGs with high CVs (top 5%) associated with SNPs,
mCGs, mCHGs, andmCHHs in 28 accessions. (F) The rates of mQTGs with high CVs (top 5%) associated
with only SNPs, only mCGs, only mCHGs, and only mCHHs in 28 accessions. The differences in the rates
between SNPs and each of the three kinds of SMPs (mCGs, mCHGs, and mCHHs) were evaluated using
the χ2 test; (∗∗∗) P<0.001, (∗∗) P<0.01.
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with only mCG, mCHG, or mCHH tended to be enriched in GO
terms related to specialized metabolism (Supplemental Table S9).
Thus, mCG,mCHG, andmCHH are highly correlated with the ex-
pressional variation of metabolome quantitative trait genes
(mQTGs).

To determine whether DNAmethylation was associated with
the diversity of specialized metabolites, we identified 13,425
mQTGs in Arabidopsis using our previous study (Shirai
et al. 2017). We focused on 415 of 13,425 mQTGs that had
CVs >2.978 (top 5%). Although all of genes with the 5% highest
CVs include a high rate of TE genes (370/1209=31%), mQTGs
with the 5% highest CVs include a low rate of TE genes (22/415
=5.30%). Moreover, mQTGs with the 1% highest CVs associated
with mCGs do not include any TE genes. Therefore, it is unlikely
that TE genes may be a main determinant for specialized metabo-
lism. Of the genes associated with mCGs, mCHGs, mCHHs, and
SNPs, 124, 106, 102, and 319 genes, respectively, were mQTGs
with the 5% highest CVs (mCGs: 124/6690=1.85%, mCHGs:
106/3319=3.19%, mCHHs: 102/3463=2.95%, SNPs: 319/21,924
=1.46%) (Fig. 3C). The proportions of mQTGs having the 5%
highest CVs among the genes associated with all SMP types were
significantly greater than that of the SNPs (mCGs: P= 6.49×
10−3, mCHGs: P= 6.00× 10−17, mCHHs: P=2.40×10−13; χ2 test)
(Fig. 3C). Thus, SMPs may be correlated with mQTGs having large
expressional variations. These tendencies are not dependent on
the locations of the SMPs (Supplemental Figs. S8, S9). Similar
trends were also shown for genes associated with either only
SMPs or SNPs. Out of 262, 195, 188, and 13,904 genes associated
with mCGs, mCHGs, mCHHs, and SNPs, 18, 18, 14, and 171
genes, respectively, were mQTGs having the 5% highest CVs
(mCGs: 18/262=6.87%, mCHGs: 18/195= 9.23%, mCHHs: 14/
188=7.45%, and SNPs: 171/13,904=1.23%) (Fig. 3D). The propor-
tions of mQTGs having the 5%highest CVs among genes associat-
edwith all the SMP typeswere significantly greater than that of the
SNPs (mCGs: P=1.20×10−16, mCHGs: P=3.78×10−24, mCHHs:
P =1.04×10−14; chi-square test) (Fig. 3D).

To validate the associations between DNA methylation and
mQTGs with high CVs, we prepared another type of data set. We
focused on only 28 characteristic accessions selected from amicro-
array profile of 21,957 genes in 75A. thaliana accessions (Methods;
Supplemental Tables S10, S11; Shirai et al. 2017). This data set
tended to have greater expressional variation than random selec-
tions (Supplemental Fig. S10). For the selected 28 accessions, we
obtained 1,911,086 SMPs (mCGs: 638,352, mCHGs: 383,377,
and mCHHs: 889,357) and 1,269,078 SNPs. The distributions of
the SMPs were quite similar to those in the 620 accessions
(Supplemental Fig. S11). We focused on SMPs and SNPs located
on gene bodies (exon and intron) and 1-kb regions on either side
of the genes (Supplemental Table S12). As in the former analysis,
we performed an association analysis between the SMPs (or the
SNPs) and gene expression by the same method (Methods;
Supplemental Tables S13–S16). Out of 854, 312, 541, and 5881
genes associated with mCGs, mCHGs, mCHHs, and SNPs, 103,
48, 78, and 323 genes, respectively, were mQTGs having the 5%
highest CVs (mCG: 103/854=12.06%, mCHGs: 48/312=
15.38%, mCHHs: 78/541=14.42%, and SNPs: 323/5881 =5.49%)
(Fig. 3E). The proportions of mQTGs having the 5% highest CVs
among the genes associated with all SMP types were significantly
greater than that of the SNPs (mCGs: P=3.59×10−17, mCHGs:
P =1.73×10−14, and mCHHs: P=8.08×10−20; χ2 test) (Fig. 3E).
Similar trends were also shown in the analysis of the genes associ-
atedwith either only SMPs or SNPs. Out of 444, 150, 274, and 5216

genes associated with mCGs, mCHGs, mCHHs, and SNPs, 49, 16,
32, and 233 genes, respectively, were mQTGs having the 5%
highest CVs (mCG: 49/444=11.04%, mCHGs: 16/150=10.67%,
mCHHs: 32/274=11.68%, and SNPs: 233/5216 =4.47%) (Fig.
3F). The proportions ofmQTGs having the 5%highest CVs among
the genes associated with all SMP types were significantly greater
than that of the SNPs (mCGs: P=2.08× 10−11, mCHGs: P=2.37×
10−4, and mCHHs: P=7.53×10−9; χ2 test) (Fig. 3F). In summary,
association analyses of the global 620 accessions and the 28 char-
acteristic accessions indicated that all the SMP types tended to be
associated with mQTGs having large expressional variations.

Selective sweep of DNA methylation

Specialized metabolite diversity contributes to local adaptation.
Therefore, the DNA methylation associated with specialized
metabolites may have been positively selected among the 620
A. thaliana accessions. We first focused on three kinds of DNA
methylation associated with mQTGs having the 5% highest CVs
(1892 mCGs, 1761 mCHGs, and 1949 mCHHs) and evaluated
the selection pressure using Tajima’s D test. If a SMP had under-
gone directional selection that indicated either positive or purify-
ing selection, then accessions harboring the SMP would have
lower Tajima’sD values than accessions lacking the SMP in the ge-
nomic region. Therefore, we compared Tajima’s D values in a
10-kb region (5-kb upstream of and 5-kb downstream from the
chosen DNAmethylation site) between accessions with and with-
out DNA methylation (Supplemental Tables S17, S18). Accessions
with either mCGs located on any regions, mCHGs located on any
regions, ormCHH located on only promoter region tended to have
significantly lower Tajima’s D values than accessions lacking the
DNA methylation (P< 1.00× 10−3; Wilcoxon rank-sum test)
(Supplemental Fig. S12A; Supplemental Table S19). This tendency
became much stronger when mQTGs having the 1% highest CVs
(330 mCGs, 214 mCHGs, and 188 mCHHs) were analyzed using
the same procedure (P<1.00×10−3; Wilcoxon rank-sum test)
(Fig 4A; Supplemental Table S19). We calculated the ratios of me-
dian of Tajima’s D in accessions with either mCGs or mCHGs to
the median of Tajima’s D in accessions lacking the DNA methyla-
tion in either the 1%or 5%highest CVs. (Supplemental Table S20).
The ratios in mQTGs having the 1% highest CVs are higher than
those in mQTGs having the 5% highest CVs (the 1% highest
CVs, mCGs: 1.55–3.03, mCHGs: 1.33–1.96; the 5% highest CVs,
mCGs: 1.50–1.87, mCHGs: 1.13–1.41). Thus, mCGs and mCHGs
may be subjected to directional selection. However, most of the
mCHHs are unlikely to be controlled by directional selection.
The differences of Tajima’s D might be caused by population
structure. However, accessions with DNA methylation essentially
had the same subpopulation classified by geographic distributions
in comparison with those without DNA methylation (Supple-
mental Fig. S13). Therefore, it is unlikely that the differences of
population structure significantly affect Tajima’sD between acces-
sions with and without DNAmethylation. In addition, Tajima’s D
shows significantly different trends among the locations (promot-
er, exon, intron, downstream) or types of SMPs (mCG, mCHG,
mCHH) (Fig 4A). Furthermore, we inferred Tajima’sD values under
a neutral process based on the expected demographic history of
620 accessions (Supplemental Methods; Supplemental Fig. S14;
Supplemental Tables S21, S22; Hudson 2002; Ossowski et al.
2010; Excoffier and Foll 2011). The inferred Tajima’s D values are
significantly higher than those in any types/locations of SMPs
(FDR<0.05; Wilcoxon rank-sum test) (Supplemental Fig. S15;
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Supplemental Table S23). These results suggest that the time-
course change of population size is also not a main determinant
for Tajima’s D between accessions with and without DNA
methylation.

However, SNP density in genomic regionsmay affect Tajima’s
D extensively.We then recalculated Tajima’sD values in 100 SNPs
windows (upstream 50 SNPs and downstream 50 SNPs of the
chosen DNA methylation site) instead of 10-kb windows and per-
formed the same analyses (Supplemental Methods). Consequent-
ly, only accessions with mCGs located on promoter regions
tended to have significantly lower Tajima’s D values than acces-
sions lacking the DNA methylation (P<1.00×10−2; Wilcoxon
rank-sum test) (Supplemental Fig. S16) as shown in the 10-kb win-
dow analysis (Fig. 4). This result indicates that mCGs located on
promoter regions have been controlled by strong directional selec-
tion in comparison to either the other types/locations of SMPs.We
also inferred Tajima’sD values in 100 SNPs window analysis under
a neutral process based on the expected demographic history. The
inferred Tajima’s D values are significantly higher than those in
any types/locations of SMPs (FDR<0.05; Wilcoxon rank-sum
test) (Supplemental Fig. S17; Supplemental Table S24). Thus, these
results support the outputs of the10-kb window analysis.

We evaluated the selection pressure of DNA methylation by
analyzing nucleotide diversity (π). The π near DNA methylation

sites is decreased by a selective sweep when genes controlled by
DNA methylation are under a strong positive selection pressure
(Maynared Smith and Haigh 1974). To assess the selective sweeps
near the DNA methylation sites in 620 A. thaliana accessions, we
calculated differences in π values between accessions with and
without DNA methylation at sites associated with mQTGs. As a
negative control, we prepared neutral SNPs and calculated identi-
fied differences in π values between accessions with major alleles
and thosewithminor alleles (Supplemental Table S25).We first fo-
cused on 1892 mCGs, 1761 mCHGs, and 1949 mCHHs associated
with mQTGs having the 5% highest CVs. However, differences in
π values were not identified between these DNA methylation sites
and neutral SNPs (Supplemental Fig. S12B; Supplemental Table
S26). We then focused on 330 mCGs, 214 mCHGs, and 188
mCHHs associated with mQTGs having the 1% highest CVs.
Only mCGs located on promoter regions had larger differences
in π than neutral SNPs (P=7.88×10−3; Wilcoxon rank-sum test)
(Fig. 4B; Supplemental Table S26). In addition, accessions with
mCGs located on promoter regions tend to have lower π values
than neutral SNPs (Supplemental Fig. S18). These results indicate
that the mCGs on promoter regions had undergone positive selec-
tive sweeps in the mQTGs having highly varied expression (1%
highest CVs) among the 620 A. thaliana accessions. Although dif-
ferences in π were not identified between mCHGs and neutral
SNPs, mCHGs were subjected to directional selection as deter-
mined by Tajima’sD analysis. This suggests thatmCHGswere sub-
jected to purifying selection rather than positive selection. For
mCHHs, the Tajima’s D and π analyses suggested that mCHHs
have not undergone strong selection.

To further support the selective sweep to mCGs on promoter
regions,we calculatedZ-transformed FST (ZFST) between accessions
with and without selected mCGs at mCG sites associated with
mQTGs (Supplemental Methods; Axelsson et al. 2013). As a result,
ZFST values tend to be higher than those of the other genomic re-
gions (Supplemental Fig. S19). These results strongly support that
the mCGs on promoter regions had undergone selective sweeps.

Discussion

Using genome, methylome, and transcriptome data from 620 ac-
cessions of A. thaliana, we identified 13,462 cis-regulatory SMPs
(6690mCGs, 3319mCHGs, and 3453mCHHs) and 21,924 cis-reg-
ulatory SNPs that were associated with the expression of 24,030
genes. Thus, SNPs tended to have much greater cis-regulatory ef-
fects than SMPs recognized by mCG, mCHG, and mCHH.
However, these mutations only led to a low level of diversity in
gene expression because most of the genes did not have large ex-
pressional variations among the 620 accessions (Fig. 2A–D).
Therefore, we examined which mutations led to a high level of
diversity in gene expression. The presence of the three kinds of
SMPs was largely associated with a higher diversity in gene expres-
sion than the presence of SNPs. Furthermore, specialized metabo-
lites tended to be regulated by genes, leading to a high level of
diversity in gene expression among accessions (Fig. 3A–E). This
trend was validated by our genome, methylome, and transcrip-
tome data from 28 accessions. Thus, the present analysis proposes
that DNAmethylation causes a large variation in gene expression,
which contributes to the diversity of specialized metabolites in
A. thaliana.

Our results suggest that DNA methylation contributes to
local adaptation by promoting specialized metabolite diversity in
A. thaliana. Recent studies have also suggested a relationship

A

B

Figure 4. Selective sweep of DNA methylation associated with mQTG
expression. (A) Tajima’sD values near SMPs associated with mQTG expres-
sion. The x-axis represents SMP or SNP locations, and the y-axis represents
Tajima’sD values. The boxes represent Tajima’sD values of accessions with
no DNA methylation or accessions with DNA methylation at SMP sites as-
sociated with mQTGs having high CVs (top 1%). (B) The differences in nu-
cleotide diversity (π) near SMPs associated with mQTG expression. The x-
axis represents the SMP or SNP locations, whereas the y-axis represents the
differences in π. Gray boxes represent the π differences of neutral SNPs. The
other boxes represent the π differences of each type of SMP associatedwith
mQTGs having high CVs (top 1%). The differences between the neutral
SMPs and the SNPs associatedwithmQTGswere analyzed at each location
using a Wilcoxon rank-sum test. In each box plot, the box represents the
25%–75% range, the middle line represents the median, the dotted line
represents the 1%–99% range, and the outer circles represent outliers.
The differences between the two groups were determined at each location
using a Wilcoxon rank-sum test; (∗∗∗) P<0.001, (∗∗) P<0.01.
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between DNA methylation and local adaptation in plants (Dubin
et al. 2015; Gardiner et al. 2018; He et al. 2018; Schmid et al. 2018).
However, there are few reports of naturally selected DNAmethyla-
tion. Therefore, we examined the positive selective sweep of DNA
methylation using π, Tajima’s D, and ZFST values. Our results
showed that naturally selected mCGs on promoter regions are
key mutations resulting in the expressional diversity associated
with specialized metabolites during plant evolution.

As an additional example of selective sweep to mCGs, we fo-
cused on a mCG located on the promoter region of AT1G14800
(Chromosome 1: 5,098,964). The mCG is associated with mQTGs
having the 1% highest CVs. The genomic region near the mCG
site has the 1% highest difference of π, the 1% highest ZFST, and
negative Tajima’s D. For the mCG, we applied SweeD, a software
for detecting selective sweep from site frequency spectrum (Sup-
plemental Methods; Supplemental Fig. S20; Pavlidis et al. 2013).
As a result, the composite likelihood ratio (CLR) near the mCG
site is significantly more elevated than the neighboring genomic
regions (Supplemental Fig. S21; Supplemental Table S27). On
the other hand, the elevation of CLR near the mCG site is not
observed in accessions lacking the mCG (Supplemental Fig. S21;
Supplemental Table S28). Thus, we show a clear evidence for selec-
tive sweep to mCGs on promoter regions.

We identified the evidence of a positive selective sweep for
only mCGs, not for mCHGs and mCHHs. This difference in selec-
tion pressure may be caused by the difference in mCG, mCHG,
andmCHHmaintenance. The CGmethylation patterns are main-
tained by METHYLTRANSFERASE 1 during DNA replication
(Iwasaki and Paszkowski 2014; Kawashima and Berger 2014;
Zhang et al. 2018), and the mutated mCGs are transmitted to
the next generation (Iwasaki and Paszkowski 2014; Kawashima
and Berger 2014). Therefore, the variation in mCG contributes to
adaptive evolution, similarly to SNPs, in plants. However, the
CHG and CHH methylation patterns are not transmitted through
generations because of their maintenance mechanisms (Iwasaki
and Paszkowski 2014; Kawashima and Berger 2014; Zhang et al.
2018). In addition, the CHG and CHH methylation patterns are
highly dependent on trans-regulation (Greaves et al. 2016; Zhang
et al. 2016). Therefore, positive selection has limited direct effects
on mCHGs and mCHHs.

We detected a positive selective sweep of mCGs in the pro-
moter region. The DNAmethylation of promoter regions strongly
suppresses gene expression in plants (Zhang et al. 2006, 2018;
Yang et al. 2015) by inhibiting the binding of transcription factors
(Kawakatsu et al. 2016; O’Malley et al. 2016). Here, mCGs of pro-
moters suppressed the expression of specialized metabolite genes
(Supplemental Fig. S22; Supplemental Table S29). Thus, suppress-
ing gene expression through CG methylation induces specialized
metabolite diversity in some of A. thaliana accessions, which
may contribute to their adaptability.

ThemCGs in exonand intron regions are alsonaturally select-
ed but are not subject to selective sweep.mCGs in exon and intron
regions significantly affect splicing patterns (Zhang et al. 2006;
Kawakatsu et al. 2016). In addition,mCGs in exon region are likely
to prohibit TE insertion (Regulski et al. 2013). Thus,mCGs in exon
and intron regions contribute to functional stability of expressed
genes. Therefore, mCGs in exon and intron regions may be main-
tained by purifying selection rather than selective sweep.

Although mCHGs are rarely subjected to a selective sweep,
they appear to be associated with the highly diverse expression
of specialized metabolic genes that are under strong purifying se-
lection. This selection may be related to the characteristic func-

tions and maintenance mechanisms of mCHGs. The mCHGs are
maintained by feedback loops with the dimethylation of lysine 9
in histone H3 (H3K9me2) (Iwasaki and Paszkowski 2014;
Kawashima and Berger 2014; Zhang et al. 2018). H3K9me2, like
DNAmethylation, is also associatedwith the repression of gene ex-
pression and the silencing of TEs (Zhang et al. 2018). Moreover,
mCHGs and H3K9me2 are associated with imprinted paternally
expressed genes (Klosinska et al. 2016; Moreno-Romero et al.
2019), and they both tend to repress the maternal alleles of these
genes (Klosinska et al. 2016; Moreno-Romero et al. 2019). Some
of the imprinted genes regulate specialized metabolism (Roy
2016). Thus, the functional importance of imprintingmay be con-
trolled by strong purifying selection through mCHGs.

The Tajima’s D analysis also indicated that only mCHHs lo-
cated in introns were affected by directional selection. Some in-
trons of plant genes contain several TEs (Zhang et al. 2018).
These regions are highly methylated to avoid alternative splicing
(Ong-Abdullah et al. 2015). The directional selection toward
mCHHs in introns may be correlated with these expressional reg-
ulations. However, selection pressure toward mCHHs is clearly
weak compared to those of mCG and mCHG. This weak selection
may be caused by the instability of mCHHs. Methylation levels at
CHH sites change greatly throughout a plant’s life (Bouyer et al.
2017; Kawakatsu et al. 2017; Kawakatsu and Ecker 2019). In addi-
tion, mCHHs have no mechanisms for stable maintenance com-
pared with mCGs and mCHGs. Thus, mCHHs may not play
important roles in plant evolution.

The mCGs located in promoters are subjected to positive
selective sweeps. However, the tendency is mild compared to
that of SNPs (Supplemental Fig. S23; Supplemental Table S26).
Thus, the mild selective sweep may be correlated with the muta-
tional rates at themCG sites. Methylated cytosines frequentlymu-
tate to thymines through deamination. This causes the high
mutational rate of methylated cytosine (Duncan and Miller
1980; Ossowski et al. 2010; Gardiner et al. 2018). In fact, in the pre-
sent study, methylated cytosine tended to mutate more to thy-
mine compared to unmethylated cytosine (Supplemental Fig.
S24; Supplemental Table S30). Thus, the instability of methylated
sites may result in their limited contribution to adaptive evolution
compared with SNPs.

In summary, the present study revealed that all types of DNA
methylation were associated with genes, leading to a high level of
gene expressional diversity among 620 A. thaliana accessions. The
genes associated with DNAmethylation were frequently related to
specialized metabolite diversity. Although all types of DNA meth-
ylation are similarly associated with gene expression, the selection
pressure is quite different among mCGs, mCHGs, and mCHHs.
To examine evidence of naturally selected DNA methylation in
A. thaliana accessions, we focused on previously identified
mQTGs for 1335 specialized metabolites (Shirai et al. 2017). In
genes related to specialized metabolite diversity, the mCGs and
mCHGs tended to be affected by strong directional selection. In
particular, mCGs located in promoter regions tended to be associ-
ated with positive selective sweeps. Thus, the present study shows
that mCGs contribute to adaptive evolution in plants.

Methods

SNPs and SMPs in 620 A. thaliana accessions

We obtained SNPs, SMPs, and expression profiles of 620 accessions
of A. thaliana from the 1001 Genomes Consortium and Kawakatsu
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et al. (The 1001Genomes Consortium2016; Kawakatsu et al. 2016).
We removed SNPs and SMPs called in less than half of the acces-
sions. The remaining 1,397,934 SNPs and 4,448,076 SMPs (mCGs:
1,653,070, mCHGs: 814,938, and mCHHs: 1,980,068) with
allele frequencies >5% were used in further analyses. The
locations of the SNPs and SMPs were annotated using the SnpEff
program (Cingolani et al. 2012). The expression data of 24,030
genes were also collected from Kawakatsu et al. (2016) (NCBI
Gene Expression Omnibus [GEO; https://www.ncbi.nlm.nih.gov/
geo/]) under accession number GSE80744 (Supplemental Table S2).

SNPs and SMPs in 28 accessions

We used our previous microarray expression data for 26,995 genes
in 75 A. thaliana accessions (GEO, GSE89805) (Shirai et al. 2017).
From the 26,995 genes, we selected 21,957 genes that had no
SNPs in the microarray probe sites (Supplemental Table S11). Us-
ing the expression patterns, we performed a clustering analysis
of the 75 accessions using the ward.D2 method in R package
“hclust” (Supplemental Fig. S25; R Core Team 2015). On the basis
of the clustering results, we manually chose 28 accessions with
characteristic expression patterns (Supplemental Fig. S25; Supple-
mental Table S10). We extracted genomic DNA from two-wk-old
seedlings of the 28 accessions. The extracted DNAs were fragment-
ed using a Covaris sonicator (Covaris). Genomic libraries were con-
structed using an Illumina TruSeq Sample Preparation kit
following themanufacturer’s instructions. The libraries were treat-
edwith sodiumbisulfite using an EpiTect Bisulfite Kit (Qiagen) fol-
lowing the manufacturer’s instructions. The bisulfite-converted
libraries were PCR-amplified using Taq hot-start polymerase
(TaKaRa Bio). The library quality was monitored using an Agilent
2100 Bioanalyzer. We performed paired-end sequencing (2 ×100
bp) of the bisulfite-treated and nontreated libraries on an Illumina
HiSeq 2000 platform (see Data access). The reads were adapter-
trimmed and quality-filtered using Trimmomatic software (Bolger
et al. 2014). The reads from nontreated DNA were mapped to the
TAIR10 genome (https://www.arabidopsis.org) using BWA soft-
ware (Li and Durbin 2009). PCR duplicates were removed using
the Picard package (version 1.07) (http://broadinstitute.github
.io/picard/). SNP calling and quality control were performed using
GATK 3.4 software (McKenna et al. 2010). We removed the sites
with a missing rate > 0.5. The remaining SNPs with allele frequen-
cies > 5% were used for analyses. The reads from bisulfite-treated
DNA were mapped and PCR duplicates removed using Bismark
v0.14.5 (Krueger and Andrews 2011). The methylation levels
were detected using the same tool. SMP sites were detected by bi-
nomial tests (false discovery rate [FDR] < 0.05) following the meth-
ods of Lister et al. (2008). SMPs called in less than half of the
accessionswere removed. The remaining SMPswith allele frequen-
cies > 5% were used for analyses.

Metabolome quantitative trait genes

We performed a metabolite–transcriptome correlation analysis to
detect mQTGs having low false positive rates (Shirai et al. 2017).
This analysis enabled us to compare the effects on gene expression
between SNPs and SMPs. Our previous study detected mQTGs by
applying this method to 1335 specialized metabolites. From the
candidate mQTGs, we selected 13,425 genes having significant
correlationswithmore than fivemetabolites asmQTGs for the pre-
sent study (Supplemental Table S31).

Association analysis

To examine the relationships between SMPs (or SNPs) and targeted
gene expression, we focused on SMPs (or SNPs) located in the tar-

geted gene body (exon and intron) and 1 kb on both sides of the
targeted gene. To examine the association between the SMPs (or
SNPs) and the gene expression levels, we applied a linear mixed
model using the R package “lme4′(R Core Team2015). In themod-
el, the predictive variables are SMPs (or SNPs). The response vari-
ables are expression levels. First, we performed an association
analysis between SMPs (or SNPs) and expression data from the
RNA-seq of 620 A. thaliana accessions. To determine population
structure, we used an ADMIXTURE analysis of the 620 accessions
(Alexander et al. 2009). As a result, the 620 accessions were divided
into 13 groups on the basis of their ancestry (Supplemental Fig.
S26; Supplemental Table S1). The differences among the groups
were used as the random effects in the linear mixed model.
Then, we performed an association analysis between each SMP
(or SNP) and expression using the microarray profile of each
gene in the 28 accessions. The differences among accessions
were used as the random effects when considering the population
structure in the linear mixed model. For each association analysis,
we used FDR<0.05 as the threshold. We calculated the false posi-
tive rates of the models. For the calculation, we prepared negative
control data that included 5000 sets of randomly selected genes
and randomly selected SMPs (or SNPs). The numbers of the select-
ed SMPs (or SNPs) at each gene were determined by the average
numbers of SMPs (or SNPs) at the gene in each data set
(Supplemental Table S32). We applied each model to the negative
control data. From the results, we counted the number of false pos-
itive associations and true negative associations. The false positive
rates were calculated using the following equation: False positive
rate = False positives/(False positives +True negatives). For each
model, the false positive rate of the analysis was less than 0.1
(Supplemental Fig. S27).

Detection of selective sweeps

To detect selection pressure for DNA methylation related to spe-
cialized metabolite diversity, we calculated Tajima’s D values
(Tajima 1989). At each SMP site associated with the expression
of an mQTG, we divided the 620 accessions into two groups,
with and without DNA methylation at the SMP site. In
each group, we calculated the Tajima’s D value in a 10-kb region
(5-kb upstream of and 5-kb downstream from the SMP site)
using the VCFtools program (Danecek et al. 2011). The distribu-
tions of Tajima’s D values were compared using a Wilcoxon
rank-sum test.

To detect selective sweeps for DNA methylation, we calculat-
ed π in accordance with our previously published methods (Shirai
et al. 2017). At each SMP site associated with the expression of an
mQTG, we divided the 620 accessions into two groups, with and
without DNA methylation at the SMP site. In each group, we cal-
culated π in a 10-kb region (5-kb upstreamof and 5-kb downstream
from the SMP site) using the VCFtools program (Danecek et al.
2011). The differences in π were calculated using the following
equation: The differences in π= |log10 (the π of the accessions
with DNAmethylation/the π of accessions without DNAmethyla-
tion)|. Similarly, we analyzed π at neutral SNP sites. We randomly
selected 4500 SNP sites from the 1,397,934 SNP sites (Supplemen-
tal Table S25). We excluded SNPs with strongly biased frequencies
(allele frequency>0.8 or allele frequency<0.2) that were poten-
tially affected by selection pressure (Supplemental Fig. S28). We
defined the remaining SNPs as neutral SNPs. At each neutral SNP
site, we divided the 620 accessions into two groups on the basis
of the allele (minor or major allele). In each allele group, we calcu-
lated π in the 10-kb region. The difference in πwas calculated using
the following equation: The differences in π= |log10 (the π of the ac-
cessions withminor alleles/the π of accessions withmajor alleles)|.

Shirai et al.

1066 Genome Research
www.genome.org

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271726.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271726.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271726.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271726.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271726.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271726.120/-/DC1
https://www.arabidopsis.org
https://www.arabidopsis.org
https://www.arabidopsis.org
https://www.arabidopsis.org
https://www.arabidopsis.org
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271726.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271726.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271726.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271726.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271726.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271726.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271726.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271726.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271726.120/-/DC1


The distributions of the differences in π were compared using a
Wilcoxon rank-sum test.

Data access

The raw sequencing data generated in this studyhave been submit-
ted to the DNA Data Bank of Japan (DDBJ; https://www.ddbj.nig
.ac.jp) under accession number DRA003230.

Competing interest statement

The authors declare no competing interests.

Acknowledgments

We thank Lesley Benyon, PhD, from the Edanz Group (https://en-
author-services.edanzgroup.com/ac) for editing a draft of this
manuscript. We also thank the National Institute of Genetics
of the Research Organization of Information and Systems for pro-
viding excellent supercomputer services. This study was supported
by Grants-in-Aid for Scientific Research (20H03317, 20H05905,
20H05906, 25710017, 18KK0176, 19H05348, 18H02420,
19K22313 to K.H.) and Asahi Glass Foundation (to K.H.).

Author contributions: R.N. prepared samples and performed
Illumina library preparation. M.S. and Y.S. performed Illumina se-
quencing. M.P.S. and K.S. collected genome and methylome data.
K.S. analyzed the data. K.S. and K.H. wrote themanuscript. The re-
search was directed by K.S. and K.H.

References

The 1001Genomes Consortium. 2016. 1,135 genomes reveal the global pat-
tern of polymorphism in Arabidopsis thaliana. Cell 166: 481–491. doi:10
.1016/j.cell.2016.05.063

Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of
ancestry in unrelated individuals. Genome Res 19: 1655–1664. doi:10
.1101/gr.094052.109

Alseekh S, Tohge T, Wendenberg R, Scossa F, Omranian N, Li J, Kleessen S,
Giavalisco P, Pleban T, Mueller-Roeber B, et al. 2015. Identification and
mode of inheritance of quantitative trait loci for secondary metabolite
abundance in tomato. Plant Cell 27: 485–512. doi:10.1105/tpc.114
.132266

Axelsson E, Ratnakumar A, ArendtML,Maqbool K,WebsterMT, Perloski M,
Liberg O, Arnemo JM, Hedhammar Å, Lindblad-Toh K. 2013. The geno-
mic signature of dog domestication reveals adaptation to a starch-rich
diet. Nature 495: 360–364. doi:10.1038/nature11837

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 30: 2114–2120. doi:10.1093/bio
informatics/btu170

Bouyer D, Kramdi A, Kassam M, Heese M, Schnittger A, Roudier F, Colot V.
2017. DNA methylation dynamics during early plant life. Genome Biol
18: 179. doi:10.1186/s13059-017-1313-0

Carreno-Quintero N, Bouwmeester HJ, Keurentjes JJB. 2013. Genetic analy-
sis of metabolome-phenotype interactions: frommodel to crop species.
Trends Genet 29: 41–50. doi:10.1016/j.tig.2012.09.006

Cingolani P, Platts A, Wang LL, CoonM, Nguyen T, Wang L, Land SJ, Lu X,
RudenDM. 2012. A program for annotating and predicting the effects of
single nucleotide polymorphisms, SnpEff: SNPs in the genome of
Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6: 80–92. doi:10
.4161/fly.19695

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA,
Handsaker RE, Lunter G, Marth GT, Sherry ST, et al. 2011. The variant
call format and VCFtools. Bioinformatics 27: 2156–2158. doi:10.1093/
bioinformatics/btr330

Dubin MJ, Zhang P, Meng D, Remigereau M-S, Osborne EJ, Paolo Casale F,
DreweP, Kahles A, JeanG, Vilhjálmsson B, et al. 2015. DNAmethylation
in Arabidopsis has a genetic basis and shows evidence of local adapta-
tion. eLife 4: e05255. doi:10.7554/eLife.05255

Duncan BK,Miller JH. 1980.Mutagenic deamination of cytosine residues in
DNA. Nature 287: 560–561. doi:10.1038/287560a0

Excoffier L, Foll M. 2011. fastsimcoal: a continuous-time coalescent simula-
tor of genomic diversity under arbitrarily complex evolutionary scenar-
ios. Bioinformatics 27: 1332–1334. doi:10.1093/bioinformatics/btr124

Feng S, Jacobsen SE, Reik W. 2010. Epigenetic reprogramming in plant and
animal development. Science 330: 622–627. doi:10.1126/science
.1190614

Gardiner LJ, Joynson R, Omony J, Rusholme-Pilcher R, Olohan L, Lang D,
Bai C, Hawkesford M, Salt D, Spannagl M, et al. 2018. Hidden variation
in polyploid wheat drives local adaptation. Genome Res 28: 1319–1332.
doi:10.1101/gr.233551.117

Greaves IK, Eichten SR,GroszmannM,WangA, YingH, PeacockWJ, Dennis
ES. 2016. Twenty-four–nucleotide siRNAs produce heritable trans-chro-
mosomal methylation in F1 Arabidopsis hybrids. Proc Natl Acad Sci 113:
E6895–E6902. doi:10.1073/pnas.1613623113

He L, WuW, Zinta G, Yang L, Wang D, Liu R, Zhang H, Zheng Z, Huang H,
Zhang Q, et al. 2018. A naturally occurring epiallele associates with leaf
senescence and local climate adaptation in Arabidopsis accessions. Nat
Commun 9: 460. doi:10.1038/s41467-018-02839-3

Hudson RR. 2002.Generating samples under aWright–Fisher neutralmodel
of genetic variation. Bioinformatics 18: 337–338. doi:10.1093/bioinfor
matics/18.2.337

Iwasaki M, Paszkowski J. 2014. Epigenetic memory in plants. EMBO J 33:
1987–1998. doi:10.15252/embj.201488883

Kawakatsu T, Ecker JR. 2019. Diversity and dynamics of DNA methylation:
epigenomic resources and tools for crop breeding. Breed Sci 69: 191–204.
doi:10.1270/jsbbs.19005

Kawakatsu T, Huang SC, Jupe F, Sasaki E, Schmitz RJJ, UrichMAA, Castanon
R, Nery JRR, Barragan C, He Y, et al. 2016. Epigenomic diversity in a
global collection of Arabidopsis thaliana accessions. Cell 166: 492–505.
doi:10.1016/j.cell.2016.06.044

Kawakatsu T, Nery JR, Castanon R, Ecker JR. 2017. Dynamic DNA methyla-
tion reconfiguration during seed development and germination.
Genome Biol 18: 171. doi:10.1186/s13059-017-1251-x

Kawashima T, Berger F. 2014. Epigenetic reprogramming in plant sexual re-
production. Nat Rev Genet 15: 613–624. doi:10.1038/nrg3685

Kerwin R, Feusier J, Corwin J, RubinM, LinC,Muok A, Larson B, Li B, Joseph
B, FranciscoM, et al. 2015. Natural genetic variation in Arabidopsis thali-
ana defense metabolism genes modulates field fitness. eLife 4: e05604.
doi:10.7554/eLife.05604

Klosinska M, Picard CL, GehringM. 2016. Conserved imprinting associated
with unique epigenetic signatures in the Arabidopsis genus.Nat Plants 2:
16145. doi:10.1038/nplants.2016.145

Kooke R, Morgado L, Becker F, Van Eekelen H, Hazarika R, Zheng Q, De Vos
RCH, Johannes F, Keurentjes JJB. 2019. Epigenetic mapping of the
Arabidopsis metabolome reveals mediators of the epigenotype-pheno-
type map. Genome Res 29: 96–106. doi:10.1101/gr.232371.117

Krueger F, Andrews SR. 2011. Bismark: a flexible aligner and methylation
caller for Bisulfite-Seq applications. Bioinformatics 27: 1571–1572.
doi:10.1093/bioinformatics/btr167

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–
Wheeler transform. Bioinformatics 25: 1754–1760. doi:10.1093/bioinfor
matics/btp324

Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH,
Ecker JR. 2008. Highly integrated single-base resolutionmaps of the epi-
genome in Arabidopsis. Cell 133: 523–536. doi:10.1016/j.cell.2008.03
.029

Matsuda F, Nakabayashi R, Yang Z, Okazaki Y, Yonemaru JI, Ebana K, Yano
M, Saito K. 2015. Metabolome-genome-wide association study dissects
genetic architecture for generating natural variation in rice secondary
metabolism. Plant J 81: 13–23. doi:10.1111/tpj.12681

Matzke MA, Kanno T, Matzke AJM. 2015. RNA-directed DNA methylation:
the evolution of a complex epigenetic pathway in flowering plants.
Annu Rev Plant Biol 66: 243–267. doi:10.1146/annurev-arplant-
043014-114633

Maynared Smith J, Haigh J. 1974. The hitch-hiking effect of a favourable
gene. Genet Res 23: 23–35. doi:10.1017/S0016672300014634

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M, et al. 2010. The Genome
Analysis Toolkit: a MapReduce framework for analyzing next-genera-
tion DNA sequencing data. Genome Res 20: 1297–1303. doi:10.1101/
gr.107524.110

Meng D, Dubin M, Zhang P, Osborne EJ, Stegle O, Clark RM, Nordborg M.
2016. Limited contribution of DNAmethylation variation to expression
regulation in Arabidopsis thaliana. PLoS Genet 12: e1006141. doi:10
.1371/journal.pgen.1006141

Moreno-Romero J, Del Toro-De León G, Yadav VK, Santos-González J,
Köhler C. 2019. Epigenetic signatures associated with imprinted pater-
nally expressed genes in the Arabidopsis endosperm. Genome Biol 20:
41. doi:10.1186/s13059-019-1652-0

O’Malley RC, Huang SSC, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M,
Gallavotti A, Ecker JR. 2016. Cistrome and epicistrome features shape

Selective sweeps of epigenetic mutations in plants

Genome Research 1067
www.genome.org

https://www.ddbj.nig.ac.jp
https://www.ddbj.nig.ac.jp
https://www.ddbj.nig.ac.jp
https://www.ddbj.nig.ac.jp
https://www.ddbj.nig.ac.jp
https://www.ddbj.nig.ac.jp
https://www.ddbj.nig.ac.jp
https://en-author-services.edanzgroup.com/ac
https://en-author-services.edanzgroup.com/ac
https://en-author-services.edanzgroup.com/ac
https://en-author-services.edanzgroup.com/ac
https://en-author-services.edanzgroup.com/ac
https://en-author-services.edanzgroup.com/ac


the regulatory DNA landscape. Cell 165: 1280–1292. doi:10.1016/j.cell
.2016.04.038

Ong-Abdullah M, Ordway JM, Jiang N, Ooi SE, Kok SY, Sarpan N, Azimi N,
Hashim AT, Ishak Z, Rosli SK, et al. 2015. Loss of Karma transposon
methylation underlies the mantled somaclonal variant of oil palm.
Nature 525: 533–537. doi:10.1038/nature15365

Ossowski S, Schneeberger K, Lucas-Lledó JI,WarthmannN, Clark RM, Shaw
RG,Weigel D, LynchM. 2010. The rate andmolecular spectrumof spon-
taneous mutations in Arabidopsis thaliana. Science 327: 92–94. doi:10
.1126/science.1180677

Pavlidis P, Živkovic ́ D, Stamatakis A, Alachiotis N. 2013. SweeD: likelihood-
based detection of selective sweeps in thousands of genomes. Mol Biol
Evol 30: 2224–2234. doi:10.1093/molbev/mst112

Pichersky E, Lewinsohn E. 2011. Convergent evolution in plant specialized
metabolism. Annu Rev Plant Biol 62: 549–566. doi:10.1146/annurev-
arplant-042110-103814

Pichersky E, Raguso RA. 2018. Why do plants produce so many terpenoid
compounds? New Phytol 220: 692–702. doi:10.1111/nph.14178

R Core Team. 2015. R: a language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna. https://www.R-project
.org/.

RegulskiM, Lu Z, Kendall J, DonoghueMTA, Reinders J, Llaca V, Deschamps
S, Smith A, Levy D, McCombie WR, et al. 2013. The maize methylome
influences mRNA splice sites and reveals widespread paramutation-
like switches guided by small RNA. Genome Res 23: 1651–1662. doi:10
.1101/gr.153510.112

Roy S. 2016. Function of MYB domain transcription factors in abiotic stress
and epigenetic control of stress response in plant genome. Plant Signal
Behav 11: e1117723. doi:10.1080/15592324.2015.1117723

Schmid MW, Heichinger C, Coman Schmid D, Guthörl D, Gagliardini V,
Bruggmann R, Aluri S, Aquino C, Schmid B, Turnbull LA, et al. 2018.
Contribution of epigenetic variation to adaptation in Arabidopsis. Nat
Commun 9: 4446. doi:10.1038/s41467-018-06932-5

Shirai K, Matsuda F, Nakabayashi R, Okamoto M, Tanaka M, Fujimoto A,
Shimizu M, Shinozaki K, Seki M, Saito K, et al. 2017. A highly specific
genome-wide association study integrated with transcriptome data re-
veals the contribution of copy number variations to specialized metab-
olites in Arabidopsis thaliana accessions. Mol Biol Evol 34: 3111–3122.
doi:10.1093/molbev/msx234

Tajima F. 1989. Statistical method for testing the neutral mutation hypoth-
esis by DNA polymorphism. Genetics 123: 585–595. doi:10.1093/genet
ics/123.3.585

Takuno S, Ran JH, Gaut BS. 2016. Evolutionary patterns of genic DNAmeth-
ylation vary across land plants. Nat Plants 2: 15222. doi:10.1038/
nplants.2015.222

Tohge T, Perez de Souza L, Fernie AR. 2018. On the natural diversity of phe-
nylacylated-flavonoid and their in planta function under conditions of
stress. Phytochem Rev 17: 279–290. doi:10.1007/s11101-017-9531-3

Weigel D. 2012. Natural variation in Arabidopsis: frommolecular genetics to
ecological genomics. Plant Physiol 158: 2–22. doi:10.1104/pp.111
.189845

Williams BP, Gehring M. 2017. Stable transgenerational epigenetic inheri-
tance requires a DNA methylation-sensing circuit. Nat Commun 8:
2124. doi:10.1038/s41467-017-02219-3

Wink M. 2008. Plant secondary metabolism: diversity, function and
its evolution. Nat Prod Commun 3: 1205–1216. doi:10.1177/
1934578X0800300801

Yang H, Chang F, You C, Cui J, Zhu G, Wang L, Zheng Y, Qi J, Ma H. 2015.
Whole-genome DNA methylation patterns and complex associations
with gene structure and expression during flower development in
Arabidopsis. Plant J 81: 268–281. doi:10.1111/tpj.12726

Zemach A, McDaniel IE, Silva P, Zilberman D. 2010. Genome-wide evolu-
tionary analysis of eukaryotic DNA methylation. Science 328: 916–
919. doi:10.1126/science.1186366

Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen H, Henderson
IR, Shinn P, Pellegrini M, Jacobsen SE, et al. 2006. Genome-wide high-
resolution mapping and functional analysis of DNA methylation in
Arabidopsis. Cell 126: 1189–1201. doi:10.1016/j.cell.2006.08.003

Zhang Q, Wang D, Lang Z, He L, Yang L, Zeng L, Li Y, Zhao C, Huang H,
Zhang H, et al. 2016. Methylation interactions in Arabidopsis hybrids re-
quire RNA-directedDNAmethylation and are influenced by genetic var-
iation. Proc Natl Acad Sci 113: E4248–E4256. doi:10.1073/pnas
.1607851113

Zhang H, Lang Z, Zhu JK. 2018. Dynamics and function of DNA methyla-
tion in plants. Nat Rev Mol Cell Biol 19: 489–506. doi:10.1038/s41580-
018-0016-z

Received September 14, 2020; accepted in revised form April 6, 2021.

Shirai et al.

1068 Genome Research
www.genome.org

https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/

