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Abstract: Targeting kinases linked to insulin resistance (IR) and inflammation may help in reducing
the risk of type 2 diabetes (T2D) and Alzheimer’s disease (AD) in its early stages. This study aimed
to determine whether DHA-rich fish oil supplementation reduces glycogen synthase kinase (GSK-3),
which is linked to both IR and AD. Baseline and post-intervention plasma samples from 58 adults with
abdominal obesity (Age: 51.7 ± 1.7 years, BMI: 31.9 ± 0.8 kg/m2) were analysed for outcome measures.
Participants were allocated to 2 g DHA-rich fish oil capsules (860 mg DHA + 120 mg EPA) (n = 31) or
placebo capsules (n = 27) per day for 12 weeks. Compared to placebo, DHA-rich fish oil significantly
reduced GSK-3β by −2.3 ± 0.3 ng/mL. An inverse correlation (p < 0.05) was found between baseline
insulin and IR and their changes following intervention only in participants with C-reactive protein
levels higher than 2.4 mg/L. DHA-rich fish oil reduces GSK-3 and IR, suggesting a potential role of
long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) in ameliorating AD risk.

Keywords: long-chain omega-3 polyunsaturated fatty acids; docosahexaenoic acid; insulin resistance;
obesity; Alzheimer’s disease; glycogen synthase kinase-3

1. Introduction

Obesity is now a major global epidemic [1]. It not only predisposes to an array of risk factors
such as insulin resistance (IR) and chronic low-grade inflammation but also poses a risk to several
non-communicable chronic diseases like type 2 diabetes (T2D) and cardiovascular disease [2], leading
to increased morbidity and mortality amongst adults. The vascular effects of obesity may have a role in
the development of a rapidly expanding disease in the elderly population, Alzheimer’s disease (AD) [3].
Although the mechanisms are not precise, the detrimental impact of obesity on cognitive function may
be, at least in part, due to vascular defects like IR and chronic low-grade inflammation, impaired insulin
metabolism or insulin resistance [4]. There are multiple risk factors for AD, including age, obesity,
chronic inflammation, genetics and insulin resistance [3]. A prospective study of >10,000 participants
examining the association between body mass index (BMI) and dementia over 36 years reported that
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obese participants (BMI ≥ 30) at midlife had more than 3-fold increase in the risk of developing AD
compared to those with a normal weight range (18.5–25 kg/m2) [5]. Blood-based kinases such as protein
kinase R and c-Jun N-terminal kinase, and in particular glycogen synthase kinase-3 (GSK-3) implicated
in both IR and Tau phosphorylation and Aβ plaques, were found to be elevated in individuals with
mild cognitive impairment and AD [6]. Interventions targeting such kinases in the high-risk groups
might be beneficial as an early intervention to reduce the risk of T2D and AD.

Research studies on long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA), eicosapentaenoic
(EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) have previously shown neuroprotective
properties [7,8]. A substantial amount of evidence is available on the effects of LCn-3PUFA, specific to
DHA and EPA, over neuronal membrane properties, brain plasticity, inflammation and memory [9].
DHA is quantitatively the most important omega-3 PUFA in the brain; however, the endogenous
synthesis of LCn-3PUFA is low within the brain compared with uptake from the plasma pools [10],
thus suggesting that the brain maintains DHA levels via the uptake from dietary sources such as fish or
LCn-3PUFA oils (fish or algae oils). At a cellular level, EPA and DHA have been shown to contribute
to the modulation of gene expression and of kinases, as well as activation of signaling pathways and
metabolite formation, involved in neuroprotection [11].

LCn-3PUFA may play a role in the alleviation of obesity-induced IR by promoting the adipose tissue
function and maintaining its integrity [12,13]. Strong evidence from pre-clinical and ex vivo studies
suggests mechanisms of EPA and DHA in ameliorating IR linked to obesity [14]. Epidemiological
evidence presents an inverse association between higher levels of circulating LCn-3PUFA and the
incidence of type 2 diabetes [15,16]. Cross-sectional studies [17] and a meta-analysis [18] from our
research team have reported an inverse sex-dependent relationship between LCn-3PUFA, IR and type 2
diabetes, demonstrating favorable effects, only in females. These results suggest that sex may also
be one of the potential confounders contributing to the inconsistent findings between LCn-3PUFA
and diabetes. Interestingly, clinical trials have produced contrasting results to that of in vivo evidence
from animal studies [19]. Therefore, further research is required to elucidate the role of LCn-3PUFA in
ameliorating IR.

In the current study, we aimed to determine the effect of fish oil enriched with DHA as a
source of LCn-3PUFA, on GSK-3 and IR in a randomized controlled trial involving overweight and
obese individuals.

2. Materials and Methods

2.1. Participants

Participants were recruited for the ‘Do omega-3 polyunsaturated fatty acids have a gender-specific
effect on insulin resistance?’ double-blind randomized controlled trial (ACTRN: 12616000287437)
from the Newcastle (Callaghan, NSW, Australia) community through advertisements, local media
and social media, and via the Hunter Medical Research Institute Volunteer Register. Volunteers were
eligible to participate if they were aged between 18 and 70 years, had a body mass index (BMI) between
25–45 kg/m2, had a waist circumference ≥88 cm (females) or ≥102 cm (males). Participants were
excluded if they were diagnosed with diabetes, were taking medications to lower blood sugar levels or
to influence insulin sensitivity (e.g., Metformin), if they were pregnant or breastfeeding, were intolerant
to the study products, were taking anticoagulants such as aspirin or warfarin, had a history of severe
gastrointestinal or neurological disorders, consumed >2 serves of oily fish per week or reported taking
fish oil supplements.

2.2. Study Design and Intervention

Eligible participants were randomly allocated using a computer-generated sequence to one of
two groups, DHA-rich fish oil or Placebo (corn oil). Participants were asked to consume either 2 × 1 g
DHA-rich fish oil capsules/day containing 430 mg DHA + 60 mg EPA or 2× placebo capsules each
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containing 1 g of corn oil, for a period of 12 weeks. DHA-rich fish oil and placebo capsules were
manufactured and provided in kind by EPAX, Norway. The dose of DHA was based on the previous
studies that showed efficacy of DHA on IR [20,21]. Participants were asked to maintain their habitual
diet and usual physical activity levels for the study duration, with dietary intake (3-day food record)
and physical activity (international physical activity questionnaire, IPAQ—long form questionnaire)
measured at the beginning and end of the study period to ensure compliance. Compliance to the
study intervention was measured using capsule log, return capsule count, and gas chromatography
analysis of the fatty acid profile of erythrocyte membranes. The study was conducted in accordance to
the Declaration of Helsinki and following Good Clinical Practice guidelines and had ethical approval
from the University of Newcastle Human Research Ethics Committee (H-2015-0167). Written informed
consent was obtained from all participants prior to enrolment in the study.

2.3. Outcome Measurements

All anthropometric measurements were conducted using bio-electrical impedance scales
(InBody 230, Biospace Co., Ltd., Seoul, Korea), according to standard operating procedures. Participants’
height (cm) was measured using a wall-mounted stadiometer (SE206, Seca, Hamburg, Germany) and
waist circumference (WC in cm) was measured using a non-tensible tape measure at the mid-point
between the lower rib and the iliac crest. Body mass index (BMI; kg/m2) was calculated using the
formula BMI = weight (kg)/height (m2). A 20 mL fasting venous blood samples were collected from
the antecubital vein into pre-coated vacutainers for plasma glucose (mmol/L), serum insulin (µIU/L),
high sensitivity C-reactive protein (CRP; mg/L) and total cholesterol (TC; mmol/L), and were analysed
by a commercial pathology laboratory (Hunter New England Area Pathology Services). Erythrocyte
fatty acid composition was analysed using a one-step transmethylation method followed by gas
chromatography (Hewlett Packard 7890A Series GC with Chemstations Version A.04.02) [22]. GSK-3β
was analysed using enzyme-linked immunosorbent assay (ELISA) kits. This ELISA kit has high
specificity for human GSK-3β and no detectable cross-reactivity with other proteins which might
interfere with the assay process and results (manufacturer of the kit- Aviva systems biology, detection
range: 0.625–40 ng/mL; mean intra-assay CV < 10%; mean inter-assay CV < 12%). HOMA-IR, used
as an indicator of insulin resistance, was calculated using an established equation—fasting glucose
(mmol/L) * fasting insulin (µIU/L)/22.5.

2.4. Statistical Analysis

A total of seventy-two participants were recruited for the main study. Required plasma samples
were available for fifty-eight participants for the analysis of the current study outcomes. For this study,
n = 58 (27 allocated to placebo group and 31 allocated to DHA-rich fish oil intervention group) were
analysed for GSK-3β resulting in a study power of 98.9% for the detection of a 2.3 ng/mL reduction
in serum GSK-3β level (1.8 ng/mL SD, alpha value set at 0.01). A power calculation was conducted
using PS power and sample size calculator (Version 3.1.2, 2014). Data were tested for normality
using Shapiro–Wilk’s test and histogram, and data described as the mean ± standard deviation
(SD) or median (interquartile range; IQR) as appropriate. Effect sizes are presented as the mean
difference [95% Confidence Interval; 95% CI]. Changes in the outcome measures within the placebo
and the intervention group across the study period were assessed using paired t-test (parametric) or
Wilcoxin Sign-rank test for non-parametric data. Treatment effects were assessed using regression
to assess absolute change from baseline using the placebo group as a reference and adjusting for
baseline levels. Pearson’s product–moment correlations with Bonferroni correction were used to
assess linear relationships between continuous variables, with between-group differences assessed
using the immediate command cortesti in Stata to test the equality of two correlation coefficients in
independent samples. It considers the respective correlation co-efficient (i.e., r-value) and sample
size, with p < 0.05 signifying a significant difference between correlations. Multiple regression models
were used to investigate effects of baseline factors (age, sex, BMI, and physical activity) on results.
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Subgroup analysis on effects of intervention were carried out in people with high and low baseline
CRP levels. All statistical tests were two tailed, and alpha was set at p < 0.05. All statistical analyses
were conducted using Stata (Version 14.2, StataCorp LLC, Lakeway, TX, USA).

3. Results

3.1. Baseline Characteristics

A total of 58 participants (DHA-rich fish oil n = 31; placebo n = 27) were analysed for GSK3β and
included in the final analyses. Baseline characteristics of participants have been summarized in Table 1.
Overall the participants both males and females were predominately middle aged (51.1 ± 1.7 years),
and mild to moderately obese (BMI: 31.9 ± 0.8 kg/m2; WC: 102.2 ± 2.4 cm). The median fasting insulin
levels (10.1 (6.1)) of the study participants indicate hyperinsulinemia, as the normal adult fasting
insulin levels are <10 mIU/L. Baseline CRP levels were positively correlated (r = 0.3513, p < 0.05) with
baseline fasting insulin levels, indicating a close relationship between systemic inflammation and
hyperinsulinemia. There were no significant differences between groups at the baseline (Table 1).

Table 1. Baseline characteristics of the study participants.

Characteristics Total Placebo
DHA-Rich

Fish Oil
(n = 58) (n = 27) (n = 31)

Age (years) 51.1 ± 1.7 48.8 ± 2.6 53.2 ± 2.5
Males/females (n/n) 20/38 9/19 11/19

Anthropometry measures
Body weight (kg) 89.4 ± 2.4 92.8 ± 4.1 86.3 ± 2.8
Muscle mass (kg) 31.5 ± 1.2 31.7 ± 1.2 31.4 ± 2.1
Fat free mass (kg) 55.2 ± 1.4 56.3 ± 2.0 54.3 ± 2.1

Body mass index (kg·m−2) 31.9 ± 0.8 33.5 ± 1.5 30.6 ± 0.8
Waist circumference(cm) 102.2 ± 2.4 106.0 ± 3.9 104.9 ± 2.9

Plasma outcome measures
Fasting glucose (mmol/L) 5.4 ± 0.1 5.3 ± 0.1 5.5 ± 0.1

Fasting serum insulin (mIU/L) 10.1 (6.1) 10.2 (7.8) 10 (5.8)
HOMA-IR 2.3 (1.4) 2.3 (2.3) 2.3 (1.1)

CRP (mg/L) 2.4 (4.6) 3.2 (4.6) 2.1 (4.9)
GSK-3β (ng/mL) 2.5 (2.1) 2.8 (1.9) 2.1 (2.9)

Red blood cell measures
Eicosapentaenoic acid ** (%w/w) 1.1 (0.4) 1.0(0.4) 1.2(0.4)
Docosahexaenoic acid ** (%w/w) 6.1 ± 0.2 6.2 ± 0.3 6.0 ± 0.2

LCn-3UFA (%w/w) 7.1 (2.1) 7.0(2.0) 7.1(2.3)
Physical activity * (metabolic equivalents-min/week) 2733 (4422) 2504 (6066) 2768 (3888)

* Baseline physical activity is missing for n = 1 participant. ** Baseline EPA and DHA data are missing for n = 2
participants. Data tested for normality and reported as the mean ± SEM or median (IQR) as appropriate. HOMA-IR:
homeostatic model of assessment-insulin resistance. CRP: c-reactive protein. LCn-3PUFA—long-chain omega-3
polyunsaturated fatty acids.

3.2. Compliance to the Study Products and Changes in the Participants’ Erythrocyte Membrane Fatty
Acid Composition

Compliance to the study capsule intake was high (>95%). Accordingly, the DHA-rich fish oil
group showed an increase in DHA and LCn-3PUFA content in erythrocyte membranes compared
to placebo (p < 0.001) (Figure 1), with increases in erythrocyte DHA (+3.5 (1.7) %w/w, p < 0.001),
EPA (+0.5 ± 0.1%w/w, p < 0.001) and LCn-3PUFA (+4.1 (2.1) %w/w, p < 0.001) in the DHA-rich fish
oil group, and no significant change in erythrocyte DHA (−0.1 (0.9) %w/w), EPA (−0.1 ± 0.1%w/w)
and LCn-3PUFA (−0.1 (1.04)) in the placebo group (Table 2). There were no significant changes
to dietary intake (kj) or physical activity levels across the intervention (data not presented), nor in
anthropometric measurements in either FO or CO groups across the intervention period (p > 0.05
for all). Three participants in the FO group reported fishy burps, but there were no adverse events
reported throughout the study.
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Figure 1. Change in erythrocyte membrane red blood cell (RBC) docosahexaenoic acid (DHA), and total
long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA). Significance set at p < 0.05. Lowercase
letters a and b represent significant difference between the placebo and the DHA-rich fish oil groups for
LCn-3PUFA and DHA, respectively.

Table 2. Changes to the study parameters within and between the placebo and the DHA-rich fish oil
groups during the intervention period.

Parameters Post-Intervention Change from Baseline Between Group Differences
Mean Difference (95% CI)

Fasting glucose (mmol/L)
Normal range: 3.3–5.5 mmol/L

Placebo 5.2 ± 0.1 −0.04 ± 0.1
DHA-rich fish oil 5.5 ± 0.1 0.04 ± 0.1 0.1 (−0.1, 0.3)

Fasting insulin (mIU/L)
Normal range: <10 mIU/L

Placebo 12.0 ±1.1 0.4 ± 0.6
DHA-rich fish oil 10.0 ± 0.9 −1.3 ± 0.7 * −1.7 (−3.5, 0.14) **

HOMA-IR
Placebo 2.9 ± 0.3 0.1 ± 0.2

DHA-rich fish oil 2.4 ± 0.2 −0.3 ± 0.2 −0.4 (−0.9, 0.1) **
C-reactive protein (mg/L)
Normal range: < 3.0 mg/L

Placebo 4.6 ± 0.9 −0.5 ± 0.4
DHA-rich fish oil 3.4 ± 0.6 −0.7 ± 0.6 −0.2 (−1.8, 1.3)

Glycogen synthase kinase-3β (ng/mL)
Placebo 2.8 ± 0.4 −0.5 ± 0.4

DHA-rich fish oil 2.4 ± 0.3 −2.3 ± 0.3 * −1.8 (−2.7, −0.9) **
Eicosapentaenoic acid (%w/w)

Placebo 1.0 ± 0.1 −0.1 ± 0.1
DHA-rich fish oil 1.8 ± 0.1 0.5 ± 0.1 * 0.6 (0.4, 0.8) **

Docosahexaenoic acid (%w/w)
Placebo 6.0 (0.2) −0.1 (0.9)

DHA-rich fish oil 9.7 (0.3) 3.5 (1.7) * 3.7 (3.1, 4.3) **
LCn-3PUFA (%w/w)

Placebo 7.1 (0.2) −0.1 (1.04)
DHA-rich fish oil 11.1 (0.5) 4.1 (2.1) * 4.2 (3.6, 5.0) **

Data are presented as the mean ± SEM, and alpha set at p < 0.05. * significant within-group changes from baseline
** between group differences (change from baseline) assessed using regression analysis adjusted for baseline value,
and presented as the mean difference (95% CI). HOMA-IR: homeostatic model of assessment-insulin resistance.
CRP: c-reactive protein. LCn-3PUFA—long-chain omega-3 polyunsaturated fatty acids.
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3.3. Effect of DHA-Rich Fish Oil on GSK-3β

A 12 week DHA-rich fish oil supplementation significantly (p < 0.01) reduced GSK-3β levels
(−2.3 ± 0.3 ng/mL) within that group and in comparison to the placebo group (p < 0.01) (Figure 2).
Regression model indicated a significant treatment effect for GSK-3β (mean difference = −1.8 ng/mL
[−2.7, −0.9], p < 0.05) across the course of the study (Table 2). The difference between groups remained
significant for GSK-3β after adjusting for age, sex, BMI and baseline physical activity levels (adjusted
R2 = 40.37, p < 0.05).
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Figure 2. Absolute change in plasma GSK-3β from baseline to post-intervention in the placebo and
the DHA-rich fish oil groups. Data are presented as the mean ± SEM. Significance is set at p < 0.05.
* Significant difference in change within group. a A significant difference between the placebo and the
DHA-rich fish oil groups. GSK-3β: glycogen synthase kinase-3β.

3.4. Effect of DHA-Rich Fish Oil on Fasting Insulin and Insulin Resistance

The DHA-rich fish oil group had a reduction in fasting insulin (−1.3 ± 0.7 mIU/L, p < 0.05) and
HOMA-IR (−0.3 ± 0.2, p < 0.05), with no change observed in the CO group (p > 0.05) for insulin
(0.4 ± 0.6) and HOMA-IR (0.1 ± 0.2). Regression models indicated a significant treatment effect for
insulin (−1.7 (−3.5, 0.14), p < 0.05) and HOMA-IR (−0.4 (−0.9, 0.1), p < 0.05) (Table 2). The difference
between groups remained significant (p < 0.05) for both insulin (adjusted R2—42.60) and HOMA-IR
(adjusted R2—40.35) after adjusting for age, sex, BMI and baseline physical activity.

Pearson’s product–moment correlations indicated an inverse correlation between the baseline
insulin (r = −0.7182, p < 0.05) and HOMA-IR (r = −0.7367, p < 0.05) levels and change in the HOMA-IR
(Figure 3) and Insulin levels (Figure 4) in the DHA-rich fish oil group across the intervention period,
with no significant correlation seen in the placebo group (insulin: r = −0.2985, p > 0.05) and HOMA-IR
(r = −0.1082, p > 0.05). Further, these correlations differed between the DHA-rich fish oil and placebo
groups (p < 0.05 and p < 0.05 for insulin and HOMA-IR respectively). A sensitivity analysis indicated
no difference in significance changes for Insulin (p < 0.05) or for HOMA-IR (p < 0.05) after removing a
potential outlier in the DHA-rich fish oil group.
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3.5. Effect of DHA-Rich Fish Oil on the Other Biomarkers

There were no significant (p > 0.05) changes for fasting glucose and CRP within the DHA-rich fish oil
(∆ fasting glucose 0.04 ± 0.1 mmol/L; ∆CRP−0.7± 0.6 mg/L) and the placebo groups (−0.04± 0.1 mmol/L;
∆CRP −0.5 ± 0.4) (Table 2). Regression models did not indicate any significant differences in fasting
glucose and CRP levels between the means of the DHA-rich fish oil and the placebo group (Table 2).

3.6. Effect of DHA-Rich Fish Oil Over GSK-3β, Insulin and HOMA-IR in Subgroups Based on Baseline
Systemic Inflammation Status

The study population was divided in two groups, categorising the study participants into groups
above and below the median baseline CRP levels (2.4 mg/L). Summary of changes in the biochemical
parameters of the participants between the groups is presented in Table 3. Pearson correlation analysis
indicated a significant inverse correlation between the baseline insulin and HOMA-IR and change in
insulin and HOMA-IR only in participants with CRP above 2.4 mg/L (Figure 5). These correlations
were significant (p < 0.05) for both insulin and HOMA-IR between the CRP ≥2.4 mg/L and <2.4 mg/L
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groups. No significant differences were observed on the effect of DHA-rich fish oil over GSK-3β
between the CRP ≥2.4 mg/L and <2.4 mg/L groups (p > 0.05).

Table 3. Effects of DHA-rich fish oil on blood markers stratified by participants’ baseline inflammation status.

C-Reactive Protein <2.4 mg/L C-Reactive Protein ≥2.4 mg/L
Outcome Measures Placebo DHA-Rich Fish Oil Placebo DHA-Rich Fish Oil

Fasting glucose (mmol/L)
Baseline 5.2 ± 0.2 5.5 ± 0.1 5.3 ± 0.1 5.4 ± 0.2

∆ Baseline −0.1 ± 0.1 −0.1 ± 0.1 −0.03 ± 0.1 0.1 ± 0.1
Fasting insulin (mIU/L)

Baseline 9.2 ± 1.2 8.7 ± 0.5 13.6 ± 1.7 14.4 ± 2.5
∆ Baseline 1.8 ± 0.9 −0.6 ± 0.7 −0.8 ± 0.7 −2.1 ± 1.2
HOMA-IR

Baseline 2.2 ± 0.3 2.1 ± 0.1 3.2 ± 0.4 3.5 ± 0.6
∆ Baseline 0.4 ± 0.2 −1.3 ± 0.2 −0.1 ± 0.2 −0.5 ± 0.3

Glycogen synthase kinase-β (ng/ML)
Baseline 2.5 ± 0.5 3.1 ± 0.5 3.4 ± 0.4 2.6 ± 0.4

∆ Baseline 0.18 ± 0.6 −2.7 ± 0.3 −1.1 ± 0.5 −1.9 ± 0.4
C-reactive protein (mg/L)

Baseline 1.3 (0.1) 1.4(0.6) 6(5.2) 6.5(4.9)
∆ Baseline 0 (0.8) 0.1(0.6) −0.9(2) −0.8(2)

Data are presented as the mean ± SEM or median (IQR), and alpha set at p < 0.05. ∆ change in the value from
baseline. HOMA-IR: homeostatic model of assessment-insulin resistance.
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Figure 5. Pearson’s product–moment correlations exhibiting relationship between baseline HOMA-IR
and fasting insulin values and responses to intervention in placebo and DHA-rich fish oil groups in
study participants with C-reactive protein <2.4 mg/L (A,C) and ≥2.4 mg/L (B,D).

4. Discussion

Dietary supplementation with DHA-rich fish oil was accompanied by a reduction in plasma levels
of GSK3. DHA-rich fish oil also lowered IR and fasting insulin in individuals with abdominal obesity
and hyperinsulinemia compared to the placebo group. The correlation analysis indicated a significant
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inverse relationship between fasting insulin and IR and changes in insulin and IR only in individuals
with high baseline CRP values. No significant changes were observed in fasting glucose and CRP
levels. In this study, baseline GSK-3β, insulin and IR were significant predictors of the response to the
treatment. Therefore, a greater reduction in these parameters was observed in participants with higher
baseline GSK-3β, IR and insulin values.

Hyperinsulinemia and IR are significantly associated with the development of both T2D and
AD [23]. Cross-sectional studies have demonstrated significant associations of HOMA-IR with mild
cognitive impairment and AD [24]. Presence of IR also accelerates the formation of neuritic plaques
which are involved in the pathogenic process of AD [25]. A large body of pre-clinical evidence is
currently available on the effects of LCn-3PUFA over insulin signalling and insulin sensitivity [14,26].
In line with these studies, epidemiological studies indicate a positive correlation between LCn-3PUFA
status and insulin sensitivity [15]. However, systematic reviews and meta-analysis of clinical trials
indicate ambiguous and inconclusive results over efficacy of LCn-3PUFA on insulin sensitivity and
glycaemic control [14,19,27]. Results from this study suggest that these inconsistencies may be due to
differences in the baseline levels of IR and insulin, as no benefit was apparent in participants with low
levels of baseline IR or insulin.

GSK3 is widely expressed in two isoforms α and β. in the human tissues and can also be detected
in the peripheral blood mononuclear cells [28]. GSK-3 is involved in the downstream signalling
pathway of kinases (phosphatidylinositol 3-kinase) that are involved in insulin signalling and IR [29].
Dysregulation of insulin pathways, referred to as IR, is linked to increased levels of GSK3 [29]. GSK-3
induce IR via enhanced phosphorylation of insulin receptor substrate-1 protein, resulting in defective
GLUT translocation interfering with insulin actions and glucose uptake [29]. Pre-clinical and clinical
studies have shown that LCn-3PUFA improve insulin sensitivity by increasing insulin-stimulated
disposal of amino acids and glucose and by improving insulin sensitivity [30,31]. In the current study,
LCn-3PUFA was shown to reduce GSK-3 levels in individuals at high risk of IR and hyperinsulinemia.
DHA-rich fish oil associated reduction in IR and fasting insulin levels suggests a possible GSK-3
mediated improvement in the insulin levels.

GSK3 is also implicated in the pathogenesis of AD viaα-form linking to precursor tau phosphorylation
and β-form linking to Aβ precursor protein [28]. Systematic reviews have concluded that dietary
supplementation with LCn-3PUFA has the potential to ameliorate AD-related symptomology [8].
The current study supports previous findings that LCn-3PUFA supplementation may interfere with
GSK-3β activity. Further studies are required to substantiate the efficacy of LCn-3PUFA on reducing
GSK3 in peripheral blood mononuclear cells obtained from individuals with cognitive impairment or
with a high risk of AD.

In addition, our study has also indicated that DHA-rich fish oil-associated reductions in IR and
insulin levels were only significant in participants with high baseline CRP levels. As the previous
evidence also strongly links inflammation and insulin resistance [32], these two observations may be
an important consideration in assessing the efficacy of DHA and EPA on IR. Results from this study
are also consistent with a systematic review, which showed that LCn-3PUFA supplementation reduced
IR in populations who displayed at least one symptom of metabolic disorder, while there was no effect
seen in healthy populations [27]. Our study population displayed at least one characteristic of metabolic
dysfunction (i.e., either hyperinsulinemia or glucose levels in the range of impaired fasting glucose or
abnormal CRP levels) and are either overweight or obese. The results in the present study indicate a
narrow window for optimal efficacy of LCn-3PUFA on measures of IR when hyperinsulinemia and
high inflammation are present before the onset of diabetes or AD. Targeting this window of opportunity
may help optimize nutritional strategies aimed towards the reduction in IR and prevention of AD.

In this intervention, we used a DHA-enriched FO capsule. EPA and DHA have been shown to
exhibit specific cellular and physiological functions. As mentioned above, DHA is more involved
in the regulation of GSK3 than EPA. Further, DHA is more effective than EPA in stimulating
peroxisome-proliferated activator receptor-gamma (PPAR-γ) and secretion of adiponectin in vitro;
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both of these are proposed mechanisms for the insulin-sensitising action of LCn-3PUFA [33]. Furthermore,
administration of DHA derived lipid mediators (D-series resolvins) in knockout-mice models of diabetes
reduced glucose intolerance and macrophage infiltration in adipose tissue [34]. Taken together, these
suggest that DHA may be more effective than EPA in reducing IR.

In an intervention study with a similar intervention period (12 weeks), Browning et al. showed that
LCn-3PUFA (1.3 g/day EPA + 2.6 g/day DHA) reduced IR in overweight women with a raised inflammatory
profile at baseline, while no effect was observed in women with low levels of inflammation [35]. These
observations are consistent with our findings that baseline levels of inflammation may influence the
response of LCn-3PUFA on insulin and IR levels. GSK-3-mediated kinase pathways are implicated
in regulating the host IR and inflammatory response, playing a pivotal role in regulating the pro-
and anti-inflammatory cytokines [36]. In-vitro studies have shown inhibition of GSK-3, which may
promote tolerance to inflammatory stimuli and suppress cytokine production [37]. Abnormal function
of GSK-3 is already indicated in high inflammatory conditions such as AD, diabetes, and cancer [38].
Therefore, LCn-3PUFA-mediated reduction or lowering of the activity of GSK-3 could potentially
explain the lowering in IR, and beneficial effects of LCn-3PUFA in people with high inflammation
levels. Further research is warranted to delineate differential effects of EPA and DHA-rich formulations
over these metabolic and inflammation parameters. In line with the observations from a meta-analysis
with 68 randomized controlled trials [39] and systematic reviews [40], this study failed to report a
significant effect of LCn-3PUFA on CRP.

Both log-based capsule count and fatty acid profiling exhibited a high level of compliance by
participants in both the DHA-rich fish oil and the placebo groups. GSK-3β ELISA kits used to measure
the primary outcome have high specificity for human GSK-3β and no detectable cross-reactivity with
other relevant proteins that could potentially interfere with assay process. The study was adequately
powered for GSK3β. The link between AD and IR is a relatively new and emerging area of research.
In this study, we were able to provide basis for DHA-rich fish oil for use as a potential adjuvant for
ameliorating common risk factors in early AD prevention interventions.

Though adequately powered, the results of this study remain a secondary analysis and are limited
by their preliminary nature. A follow-up study with a narrow age and BMI range is required to
substantiate effects of DHA-rich fish oil on GSK3β and determine whether it can affect neurological
and metabolic parameters specific to T2D and AD. The preliminary results of this study may not
be generalizable nor transferable to other populations. In relation to IR, we employed a surrogate
marker (HOMA-IR) instead of a clamp technique, the gold-standard measure of IR. This may also be
considered a limitation of the current study; however, HOMA-IR has been shown to have a relatively
high correlation (R~0.77) with clamp technique and is currently the most used surrogate marker to
measure longitudinal changes to IR [41]. Therefore, long-term studies, stratified for inflammation, may
be required for substantiating the results from the current study.

5. Conclusions

DHA-rich fish oil supplementation significantly reduced the GSK-3β levels in individuals with
obesity, a key kinase that is linked to the pathogenesis of T2D and AD. This suggests that fish oil
enriched in DHA may be a potential early intervention option to reduce the chances of developing
metabolic disease in high-risk individuals. DHA-enriched fish oil supplementation also significantly
reduced fasting insulin levels and HOMA-IR compared to placebo. LCn-3PUFA-mediated reduction in
the GSK-3 levels could be a potential mechanism involved in reducing the IR. Higher levels of insulin
and HOMA-IR at baseline were associated with a greater reduction in insulin and IR in the DHA-rich
fish oil-receiving group over the treatment period. Further, subgroup analysis indicated a significant
reduction in insulin and HOMA-IR values with high baseline systemic inflammation compared to
those with lower systemic inflammation. Thus, DHA-enriched fish may be effective in reducing insulin
resistance in populations with higher inflammation levels. Overall, DHA-rich fish oil supplementation
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may be a beneficial adjunct therapy to dietary and lifestyle advice for overweight and obese men and
women to reduce the risk of associated comorbidities.
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