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Abstract

Tryptophan (Trp) metabolism involves three primary pathways: the kynurenine (Kyn) pathway (KP), the 5-hydroxy-
tryptamine (serotonin, 5-HT) pathway, and the indole pathway. Under normal physiological conditions, Trp metabo-
lism plays crucial roles in regulating inflammation, immunity, and neuronal function. Key rate-limiting enzymes such
as indoleamine-2,3-dioxygenase (IDO), Trp-2,3-dioxygenase (TDO), and kynurenine monooxygenase (KMO) drive
these metabolic processes. Imbalances in Trp metabolism are linked to various cancers and often correlate with poor
prognosis and adverse clinical characteristics. Dysregulated Trp metabolism fosters tumor growth and immune
evasion primarily by creating an immunosuppressive tumor microenvironment (TME). Activation of the KP results

in the production of immunosuppressive metabolites like Kyn, which modulate immune responses and promote
oncogenesis mainly through interaction with the aryl hydrocarbon receptor (AHR). Targeting Trp metabolism thera-
peutically has shown significant potential, especially with the development of small-molecule inhibitors for IDOT,
TDO, and other key enzymes. These inhibitors disrupt the immunosuppressive signals within the TME, potentially
restoring effective anti-tumor immune responses. Recently, IDO1 inhibitors have been tested in clinical trials, showing
the potential to enhance the effects of existing cancer therapies. However, mixed results in later-stage trials under-
score the need for a deeper understanding of Trp metabolism and its complex role in cancer. Recent advancements
have also explored combining Trp metabolism inhibitors with other treatments, such as immune checkpoint inhibi-
tors, chemotherapy, and radiotherapy, to enhance therapeutic efficacy and overcome resistance mechanisms. This
review summarizes the current understanding of Trp metabolism and signaling in cancer, detailing the oncogenic
mechanisms and clinical significance of dysregulated Trp metabolism. Additionally, it provides insights into the chal-
lenges in developing Trp-targeted therapies and future research directions aimed at optimizing these therapeutic
strategies and improving patient outcomes.
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Introduction

Trp, an essential amino acid not synthesized by the
human body, must be obtained through diet [1-5]. It
is a fundamental component of protein synthesis and a
precursor for many crucial biomolecules, influencing
various metabolic pathways [6-10]. Although a small
fraction of free Trp contributes to protein synthesis and
the production of neurotransmitters like serotonin and
neuromodulators such as tryptamine, over 95% is utilized
in the kynurenine (Kyn) pathway (KP) of Trp degrada-
tion. This pathway generates several metabolites with
distinct biological activities in immune responses and
neurotransmission [11-14].

Trp and its metabolites are crucial in various physio-
logical processes, including biomass production, cellular
energy, and cell growth [15-18]. They play a significant
role in coordinating organismal responses to environ-
mental changes, acting as key elements in both metabolic
and signaling pathways [19-21]. The primary metabolic
pathways for Trp include the synthesis of serotonin
and the KP. Serotonin significantly influences the cen-
tral nervous system and plays a critical role in regulat-
ing intestinal motility, emesis, vasoconstriction, platelet
aggregation, and wound healing [22-26]. It also serves
as a precursor to melatonin, which regulates sleep and
circadian rhythms in diurnal animals. The KP produces
a series of bioactive metabolites such as picolinic acid,
quinolinic acid (QA), kynurenic acid (KynA), cinnabar-
inic acid (CA), xanthurenic acid (XA), and Kyn. These
metabolites regulate the immune system by modulating
the infiltration and activity of immune cells in the TME
[27-29]. Another significant product of this pathway is
nicotinamide adenine dinucleotide (NAD+), vital for
cellular homeostasis [30-32]. Furthermore, Trp metab-
olites influence the gut microbiota’s composition and
functionality, affecting the gut microbiome balance and
the gut-brain axis, which can alter the immune response
and inflammation levels within the gastrointestinal tract
[33-37].

Trp enzymes and metabolites are widely distributed
across various cells and tissues, with their expression
finely regulated [38-40]. Disruptions in Trp and its
metabolites’ levels have been linked to several disea-
sea, especially cancer [41-45]. Research indicates that
key enzymes such as IDO1 and TDO2 are upregulated
in various cancer types, including brain, digestive sys-
tem, breast, and lung cancers [46—49]. This upregulation
enhances Trp catabolism in tumors, creating immuno-
suppression, impairing multiple barriers, and promoting
tumor growth and metastasis [41, 50-53]. Consequently,
IDO1 has become a focal point for cancer therapy, with
inhibitors currently being tested in various clinical trials
to restore immune surveillance and enhance the efficacy
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of treatments like chemotherapy and immunotherapy
[35, 52, 54—56]. However, results from later-stage trials
have been mixed, highlighting the complexity of target-
ing metabolic pathways within the TME.

This review offers a comprehensive overview of the
main metabolic pathways, abnormal expression features,
and primary roles of Trp metabolism and signaling in
cancer. Emphasis is placed on the molecular mecha-
nisms by which dysregulated Trp metabolism and sign-
aling contribute to oncogenesis across various tumor
types. Furthermore, the latest advancements in antican-
cer therapies targeting Trp metabolism and signaling are
discussed, alongside the current challenges and future
prospects of these therapeutic strategies. This review
highlights the critical importance of Trp metabolism and
signaling in cancer biology and therapy, emphasizing its
potential as a significant area for ongoing research and
clinical development.

Physiological Properties of Trp and Its Metabolites
Trp: Dietary Sources, Absorption, and Degradation

Trp, an essential amino acid, is vital for human health
due to its complex metabolic pathways and physi-
ological effects. As humans cannot synthesize Trp, it
must be obtained from dietary sources such as turkey,
chicken, eggs, cheese, fish, and plant-based proteins
like pumpkin seeds, soy products, and tofu [1, 57-59].
These sources provide the necessary intake to maintain
adequate Trp levels essential for various biological func-
tions [60—62]. Upon ingestion, Trp is absorbed in the
intestines and transported through the blood to various
tissues [63—66]. Key transporters, such as solute carrier
family 1 member 5 (SLC1A5) and solute carrier fam-
ily 7 member 5 (SLC7AS5), facilitate the cellular uptake
of Trp and its distribution to organs including the brain,
heart, and muscles, where it undergoes further metabo-
lism [67-70]. Beyond its role in protein synthesis, Trp
is a precursor to several bioactive compounds [71-73].
Trp metabolism is orchestrated through three princi-
pal pathways, facilitated by distinct enzymatic reactions
within barrier organs such as the intestines, lungs, and
skin, largely influenced by resident microbiota [74-77].
The gut microbiota, which outnumbers human cells
significantly, profoundly influences Trp metabolism
[78-81]. The interaction between dietary Trp intake,
bacterial utilization, and local turnover in the gastro-
intestinal tract has crucial implications for maintain-
ing physiological balance and influencing disease states
[82-84]. Recent evidence highlights the critical role of
gut microbiota-mediated Trp metabolism in modulating
immune responses and contributing to the pathogenesis
of gastrointestinal cancers. Certain gut-resident microbes
can metabolize Trp into bioactive compounds, such as
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indole and its derivatives, including indole-3-propionic
acid (IPA), indole-3-aldehyde (IAld), indole-3-carboxal-
dehyde (ICAld), and indole-3-acetaldehyde (IAAld) [43,
85-87]. These metabolites serve as key signaling mol-
ecules that interact with the aryl hydrocarbon receptor
(AHR), which regulates genes crucial for maintaining
intestinal barrier integrity, modulating immune cell dif-
ferentiation, and promoting anti-inflammatory responses
[88-91]. Notably, the gut-cancer axis has gained consid-
erable interest, as dysbiosis-an imbalance in gut micro-
biota composition-has been linked to the progression of
gastrointestinal cancers [92-94]. Gut microbes capable
of converting Trp into indole derivatives may influence
tumor growth by modulating local immune environ-
ments and epithelial cell proliferation. For example, IPA
has demonstrated anti-inflammatory, antioxidant, and
immunoregulatory properties, potentially reducing the
risk of carcinogenesis [95, 96]. Conversely, the accumu-
lation of certain metabolites, such as Kyn, through the
KP, can promote immune escape mechanisms and tumor
progression by activating immunosuppressive pathways
such as AHR-mediated CD8" T-cell exhaustion [97, 98].
Besides gut microbes, Trp metabolism is also intricately
affected by several factors, including genetic alterations,
diet, stress, exercise, and aging, which further modulate
enzymatic activity and determine the dominance of spe-
cific metabolic pathways [99-103].

The three primary metabolic pathways for Trp involve
its conversion into serotonin, Kyn, and indole-3-pyru-
vate (I3P) and its derivatives (Fig. 1). Approximately
1% of dietary Trp is converted into serotonin, a crucial
neurotransmitter [6, 104, 105]. The conversion pro-
cess begins with Trp hydroxylase (TPH) converting
Trp to 5-hydroxytryptophan (5-HTP), which is then
decarboxylated by aromatic amino acid decarboxylase
(AADC) to produce serotonin [106—109]. Serotonin
is subsequently metabolized into several compounds,
including 5-hydroxyindoleacetic acid (5-HIAA) by mon-
oamine oxidase (MAO), N-acetylserotonin (NAS) by
arylalkylamine N-acetyltransferase (AANAT), and ulti-
mately melatonin by N-acetylserotonin O-methyltrans-
ferase (ASMT). The KP is the primary catabolic route for
Trp, initiated by either IDO or TDO, which are pivotal
in neuroprotection, neurotoxicity, immune modulation,
and homeostatic balance within different cellular envi-
ronments [110-114]. These heme-containing enzymes
convert Trp to N-formylkynurenine (NFK). NFK is
then metabolized to Kyn by arylformamidase (AFMID),
which serves as a precursor for several bioactive metab-
olites. KMO and kynureninase (KYNU) further process
Kyn into 3-hydroxykynurenine (3-HK) and anthranilic
acid (AA), respectively. Kynurenine aminotransferase
(KAT) also transforms Kyn into KynA and 3-HK into
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XA. Subsequently, 3-hydroxyanthranilic acid (3-HAA),
derived from 3-HK by KYNU, is converted into QA and
ultimately contributes to the synthesis of nicotinamide
and NAD+by quinolinate phosphoribosyl transferase
(QPRT) [115, 116]. Notably, Kyn serves as an endogenous
ligand for the AHR, part of a cytoplasmic complex that
dissociates upon ligand binding [14, 80, 117]. This dis-
sociation allows AHR to bind with the aryl hydrocarbon
receptor nuclear translocator (ARNT) and activate genes
crucial for cytoprotection, including those encoding
cytochrome P450 enzymes such as CYP1A1 and CYP1B1
[84, 85, 118, 119]. Metabolites like KynA are known for
their neuroprotective properties, whereas others like
3-HK, 3-HAA, and QA have neurotoxic effects [120—
123]. As the end product of the KP, NAD+is a crucial
cofactor in cellular reactions vital for energy metabolism,
influencing pathways like glycolysis, B-oxidation, and oxi-
dative phosphorylation [118, 124-127].

Quantification Techniques of Trp Metabolism

Quantifying Trp and its metabolites in biological fluids
such as plasma, urine, tissue samples, and cerebrospinal
fluid is essential for identifying potential biomarkers for
various diseases [128-132]. Trp’s natural fluorescence
facilitates the development of fluorometric detection
methods [133-136]. Conventional techniques like liquid
chromatography and gas chromatography, paired with
UV detection, fluorescence, or mass spectrometry (MS),
enhance the sensitivity and specificity of Trp metabolite
detection [137-141]. These methods are foundational
for assessing Trp metabolic profiles, providing insights
into their roles in both physiological and pathological
states. Additionally, refined Enzyme-Linked Immuno-
sorbent Assay (ELISA) techniques quantify specific Trp
metabolites within predefined detection limits, making
them particularly useful for focused studies on individ-
ual metabolites, such as Kyn [142-145]. Immunohisto-
chemistry, utilizing antibodies specifically targeting Trp
metabolites, enables visualization and quantification
within tissue samples, linking metabolic alterations to
pathological states (Fig. 2) [146—148].

An advanced detection method, liquid chromatogra-
phy-mass spectrometry (LC-MS), particularly ultra-high-
performance LC-electrospray ionization-tandem MS
(UHPLC-ESI-MS/MS), is robust for quantifying Trp and
its metabolites, including Kyn [149, 150]. This approach
offers comprehensive coverage of the Trp metabolic
pathway, mapping intricate relationships between Trp
and its derivatives. It is highly sensitive and specific, ideal
for analyzing complex biological samples like blood and
peritoneal fluid. Moreover, capillary electrochromatog-
raphy-mass spectrometry (CEC-MS), using novel sta-
tionary phases like 4-vinylphenylboronic acid (4-VPBA)
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Fig. 1 Dietary Sources of Tryptophan and Main Pathways of Tryptophan Degradation (a) Tryptophan, an essential amino acid, is commonly
acquired from dietary sources such as turkey, eggs, cheese, tofu, seeds, and fish. After ingestion, tryptophan is absorbed in the gut and enters
the bloodstream for use in various metabolic processes. Besides protein synthesis, tryptophan undergoes three main catabolic pathways:

the serotonin pathway, the kynurenine pathway, and the indole pathway. b In the kynurenine pathway, tryptophan is first converted

into N-formyl-L-kynurenine by the enzymes indoleamine 2,3-dioxygenase (IDO) or tryptophan 2,3-dioxygenase (TDO), which is then broken
down into several metabolites, including kynurenine, leading to the production of nicotinamide adenine dinucleotide (NAD+). ¢ In the serotonin
pathway, tryptophan is converted into serotonin via the enzyme tryptophan hydroxylase (TPH), followed by conversion to 5-hydroxytryptophan
(5-HTP) and then to serotonin. Serotonin can further be converted into melatonin. d In the indole pathway, intestinal microbiota metabolizes

tryptophan into various indole derivatives such as indole-3-acetic acid (IAA),

columns, enables Trp and Kyn quantification in plasma
[151, 152]. This method combines the high-resolution
capabilities of capillary electrophoresis with the sensitiv-
ity of MS, offering a simple, fast, and repeatable approach
for Trp metabolite analysis.

Advancements in high-technology methods have sig-
nificantly improved the accuracy and efficiency of analyz-
ing Trp and its metabolites, providing vital insights into
the biological and pathological effects of Trp metabolism
and supporting the development of therapeutic strategies
targeting Trp metabolism in diseases [153—-157].

indole-3-propionic acid (IPA), and indole-3-aldehyde (IAld)

Expression Changes of Trp Metabolism in Cancer

Increased Trp uptake and upregulation of Trp-metab-
olizing enzymes in various tumor types correlate with
poor disease prognosis (Table 1) [158—162]. Among these
enzymes, abnormal IDO1 levels are common in diverse
cancers and are studied as a factor to enhance sensitiv-
ity to cancer therapy [51, 163, 164]. Conversely, TDO
expression in cancers is less characterized due to the
lack of validated bioassay systems for detecting TDO
and identifying TDO-expressing cells [165, 166]. Recent
advancements in TDO-specific monoclonal antibodies
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Fig. 2 Tryptophan Sample Collection, Detection Methods, and Biological Functions Samples for tryptophan detection are typically obtained
from blood specimens, cancer tissues, and cancer cell lines. Detection methods for tryptophan and its metabolites include enzyme-linked
immunosorbent assay (ELISA), liquid chromatography-tandem mass spectrometry (LC-MS/MS), and immunohistochemistry. Tryptophan plays
crucial roles in various physiological processes. In the immune system, metabolites from the kynurenine pathway, such as kynurenine (Kyn),
modulate immune responses by regulating immune cell development, activation, and infiltration, thereby contributing to immune suppression
and tumor immune evasion. Additionally, indole derivatives significantly also impact the immune modulation and immune homeostasis,
particularly through the activation of Aryl Hydrocarbon Receptor (AHR). In the central nervous system, it serves as a precursor for serotonin, which
influences mood, depression, and circadian rhythms, while its derivative, melatonin, regulates sleep-wake cycles. In the gastrointestinal tract,

tryptophan is metabolized by the gut microbiota into indole derivatives that help maintain gut health and microbial balance, promoting intestinal

barrier integrity and mucosal immunity. Moreover, the kynurenine pathway also significantly impacts the gastrointestinal system, particularly
in maintaining immune homeostasis, regulating inflammation, and shaping the gut microenvironment
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have shown prevalent TDO expression in many human
cancers, including hepatocarcinoma (HCC), glioblas-
tomas, and kidney cancer. This understanding under-
scores the significance of Trp metabolism in cancer and
highlights the potential of changes in Trp metabolism
expression for prognosis prediction (Fig. 3). This section
discusses the abnormal expression of Trp, key metabolic
enzymes, and their products in various tumors, along
with their potential clinical implications and prognostic
value.

In glioma, analysis of TCGA data reveals that both IDO
and complement factor H (CFH) mRNA levels increase
with tumor grade, peaking in glioblastoma (GBM). IDO
and CFH exhibit coordinated upregulation, with ele-
vated CFH expression being inversely correlated with
patient survival across all tumor grades [167]. Addition-
ally, TCGA data highlights increased TPH-1 expression,
which is associated with sustained glioma progression
and poor overall survival [168]. Analysis of 343 glioma
patients from the REpository of Molecular BRAin Neo-
plasia DaTa (REMBRANDT) confirms that upregulated
IDO expression predicts significantly worse patient prog-
nosis [169]. Immunohistochemical staining of 75 surgical
specimens shows that stronger IDO expression is more
prevalent in high-grade and secondary gliomas than in
low-grade gliomas. Kaplan-Meier survival analysis dem-
onstrated that patients with highly malignant gliomas
and high IDO expression have worse prognoses com-
pared to those with low IDO expression [170]. Further-
more, a positive correlation exists between IDO1 and
TDO expression and glioma pathological grades. Both
IDO1 and TDO expression are positively associated with
overall survival (OS), and their co-expression represents
independent prognostic values for OS of glioma patients
[171]. AMT-PET, based on increased uptake of a-[11 C]-
methyl-L-Trp (AMT) in glioma, shows high accuracy
in distinguishing grade I from grade II/III gliomas.
Additionally, TDO2 shows the highest immunostain-
ing scores, particularly in grade I gliomas, followed by
IDO2 and IDO1 [172]. Data from the Therapeutically
Applicable Research to Generate Effective Treatments
(TARGET) database (phs000467), involving 249 pediatric
patients, indicates that high expression of Trp transport-
ers SLC1A5 and SLC7A5 predicts worse prognosis for
neuroblastoma patients (Fig. 4) [173].

In colorectal cancer (CRC), several studies have dem-
onstrated elevated levels of Trp transporters SLC7A5
and SLC1AS5, along with Kyn, AHR, and key KP enzymes
(TDO2, IDO1, and AFMID) [174-176]. In patients with
locally advanced rectal cancer (LARC) receiving pre-
operative chemoradiotherapy (CRT), IDO expression
has been identified as a significant prognostic marker.
Patients with IDO-positive tumors exhibit a markedly
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poorer 5-year OS compared to those with IDO-negative
tumors, and multivariate analysis identifies IDO expres-
sion as an independent prognostic indicator, highlight-
ing its potential as a marker for individualizing treatment
strategies in LARC [177]. In pancreatic cancer (PC),
prevalent expression of IDO1 and TDO is negatively cor-
related with patient OS and relapse-free survival (RFS)
[178, 179]. IDO1 expression is upregulated during tumor
formation in immunocompetent settings, especially in
the presence of IFN-y or through JAK/STAT signal-
ing [178]. TCGA data confirms a negative correlation
between high IDO1 expression and patient survival in
PC [178]. The co-expression of IDO1 and TDO, rather
than individual expression, offers independent prognos-
tic value for PC [179]. Interestingly, IDO1 expression
increases in cells within PC ducts but decreases in PC
cells, contributing to epithelial-mesenchymal transition
(EMT) [180]. Additionally, an increase in microbiota-
derived 3-IAA is observed in the serum of both patients
and mice with PC who are susceptible to chemother-
apy, correlating with improved progression-free sur-
vival (PES) and OS in the PC Hamburg cohort [181]. In
HCC, advanced-stage cancer tissues exhibit enhanced
TDO2 expression, which is correlated with poor prog-
nosis, as validated by the TCGA database [182]. How-
ever, both KMO and its substrate 3-HAA are reduced
in HCC cells and clinical HCC tissues, and patients with
high KMO expression show longer disease-free survival
(DES) [183]. Dysbiosis of the gut flora in HCC reduces
the levels of AhR ligands derived from Trp metabolism,
such as 3-IAA, ICAld, and IPA [115]. In gastric cancer
(GC), SGC-7901 cells exhibit significantly higher levels of
Kyn compared to GES-1 and MGC-803 cells [184]. IDO
is a powerful prognostic biomarker for GC following
gastrectomy and is closely associated with the immuno-
suppressive GC TME [185-187]. Immunohistochemical
staining analysis of 99 GC cancer tissues from patients
who received radical resection reveals that larger tumors,
advanced T stages, and poorer prognosis are more posi-
tively associated with IDO expression. Additionally,
IDO-positive patients possess higher levels of Foxp3*
Treg cells but lower levels of CD4/CD8* T cells in the
TME [185]. Another involving 357 GC patients shows
that high intratumoral IDO expression is associated with
poor OS, deeper tumor invasion, and increased lymph
node metastasis [186].

Melanoma exhibits dysregulation in Trp metabo-
lism, characterized by high intratumoral expression of
TPH1/2, IDO1, TDO2, and the transporter SLC7AS5.
Notably, higher SLC7A5 expression in melanoma cells
is associated with worse OS, and baseline Trp levels
strongly predict clinical benefits from the PD1 inhibi-
tor pembrolizumab [188]. The LCCC1531 trial in



Yan et al. Molecular Cancer (2024) 23:241

melanoma demonstrated that high Trp PET imaging
correlates with shorter clinical benefits from pembroli-
zumab in PD1 inhibitor-naive stage IIIB-IV melanoma
patients. Additionally, the theragnostic value of base-
line Trp metabolism effectively prolongs PFS, as shown
by optimal cut-point post-hoc analysis [188]. In breast
cancer (BC), analysis of single-cell transcriptome data
indicates that elevated levels of Trp metabolic enzymes,
such as IDO1, KMO, and KYNU, in macrophages are
linked with a positive response to immunotherapy, sug-
gesting that Trp metabolism could be a predictive marker
for BC treatment [189]. Furthermore, the evaluation of 4
TMAs, containing 242 invasive primary BC and 39 met-
astatic BC cases, showed that IDO expression is preva-
lent in high-grade, triple-negative BC. Notably, 70% of
PD-L1-positive BC cases also express IDO, contributing
to poor outcomes with anti-PD-L1 treatment despite
strong PD-L1 expression [190]. There is also a notable
increase in indole-3-acetonitrile (IAN) levels over time
in BC MCEF-7 cells and melanoma A375 cells exposed
to carbidopa, a DOPA decarboxylase inhibitor used in
Parkinson’s disease (PD) treatment [191]. Moreover,
the investigation based on 86 clinical canine mammary
tumor (CMT) cases indicates the ability of KMO for dis-
criminating malignant from benign CMTs and the strong
correlation of KOM expression with overall survival rates
in patients with malignant CMTs [192]. In ovarian cancer
(OC), IDO1, IDO2, TDO2, and IL411 exhibit high posi-
tive expression rates in cancer specimens, with IDO1-
positive patients being more resistant to platinum-based
chemotherapy. Increased IDO1 expression is also associ-
ated with advanced cancer stages and lymph node metas-
tasis. In contrast, TDO2 expression negatively correlates
with the presence of bilateral tumors and endometriosis,
while negative IL411 expression is commonly observed in
cases of cancer rupture [193]. Finally, radiotherapy (RT)
in lung cancer (LC) patients impacts systemic IDO-medi-
ated anticancer immune activity, evidenced by changes
in serum levels of IDO-mediated Kyn production and
the Kyn(K) ratios before, during, and after RT. The Kra-
tio decreases during RT but returns to baseline levels
post-RT. Notably, these changes in IDO-associated mol-
ecules correlate with clinical outcomes in RT-treated LC
patients. Greater Kyn levels post-RT significantly indicate
worse OS and PFS [194]. Additionally, an enriched dis-
tribution of cancer-associated fibroblasts (CAFs) with
activated TDO and elevated secretion of Kyn is observed
in epidermal growth factor receptor tyrosine kinase
inhibitors (EGFR TKIs) resistant cancer tissues from LC
patients [195].
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Molecular Mechanisms of Tryptophan and Its
Metabolites in Cancer

Involvement of KP in Carcinogenesis

Involvement of KP in Glioma

In glioma, cancer-derived IDO expression recruits
immunosuppressive regulatory T cells (Tregs) and
increases their glucocorticoid-induced TNFR-related
protein (GITR) expression while decreasing CD8" T cell
frequency. This immune imbalance triggers immuno-
suppression and tumor growth, relying on coordinated
actions of CD4" and CD8' T cells [169]. Addition-
ally, IFN-y robustly induces IDO expression, leading
to increased Trp consumption and Kyn accumulation,
creating a local immunosuppressive environment that
inactivates T cells and promotes glioma cell prolifera-
tion [196]. As an oncolytic adenovirus, Delta-24-RGD,
engineered to selectively replicate in and destroy cancer
cells, shows promising anti-glioma effects by enhanc-
ing the anticancer immune response [197-199]. Delta-
24-RGD downregulates IDO expression in glioma cells
and Foxp3 levels in Tregs, decreasing tumor-infiltrating
CD4" Foxp3* Tregs and increasing IFN-y-producing
CD8* T cells, significantly improving the TME and sys-
temic tumor-antigen-specific T cell therapy in GBM
[200]. Additionally, tumor-propagating stem-like cells
in glioblastoma (GSCs) contribute to the immunosup-
pressive TME, driven by reprogramming transcription
factors OCT4 and SOX2. Co-expression of OCT4 and
SOX2 in GSCs upregulates multiple immunosuppressive
checkpoints, including TDO, and immunosuppressive
cytokines and chemokines, inhibiting CD8* T cell func-
tion and infiltration while promoting the expansion of
immunosuppressive M2 macrophages and Foxp3*t Tregs
[201]. Furthermore, recent findings indicate nonenzymic
IDO in GBM U87 cells increases CFH and FHL-1 expres-
sion, independent of Trp metabolism, further enhancing
immune suppression by raising intratumoral Tregs and
myeloid-derived suppressor cells [202]. Recent studies
have also shown that the IDO1/TDO/Kyn/AHR/AQP4
signaling pathway is central to glioma progression, par-
ticularly in cell motility. IDO1 and TDO facilitate Kyn
generation, which activates AHR and increases AQP4
expression, enhancing the migratory and invasive capa-
bilities of U87MG glioma cells (Fig. 4) [203].

Involvement of KP in Digestive System Cancers

In CRC, IDO generates Kyn to activate CDC20 tran-
scription, maintaining HCT-116 and HT-29 cell pro-
liferation and resisting cell cycle arrest-mediated
apoptosis (Fig. 5a) [204]. Additionally, KMO knockdown
suppresses the expression of cancer stem cells markers
including Nanog and CD44 in CRC, thereby repress-
ing CRC cell stemness, migration, and invasion [205].
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Fig. 3 Abnormal Expression of Tryptophan Metabolism in Cancers and Its Correlation with Clinicopathological Features and Prognosis
Differentially abnormal expression of tryptophan metabolism and related molecules involved in cancer progression and patient outcomes. Critical
enzymes in the tryptophan metabolism pathway, such as indoleamine 2,3-dioxygenase (IDO), tryptophan 2,3-dioxygenase (TDO), kynurenine
3-monooxygenase (KMO), kynureninase (KYNU), tryptophan hydroxylase (TPH), play significant roles in regulating tryptophan breakdown.
Transporters such as solute carrier family proteins (SLCTA5, SLC7A5) and the serotonin transporter (SERT) facilitate cellular uptake and signaling

of tryptophan and its metabolites, while the aryl hydrocarbon receptor (AHR) mediates biological effects of tryptophan-derived metabolites. These
enzymes, transporters, and receptors are frequently found to be upregulated or downregulated in various cancers such as glioma, melanoma,
lymphoma, and cancers of the digestive system, breast, and lung. The altered expression levels of these molecules are closely associated

with clinicopathological features, including tumor grade, stage, size, and lymph node metastasis. Elevated or reduced levels of tryptophan
metabolism-related molecules reflect the imbalance in tryptophan metabolism that influence disease progression. Furthermore, abnormal
tryptophan metabolism and its associated molecules are strongly correlated with patient prognosis, usually as demonstrated by Kaplan-Meier
survival curves. These alterations in tryptophan metabolism show a significant relationship with key prognostic indicators such as overall survival,

relapse-free survival, and progression-free survival, suggesting that dysregulated tryptophan metabolism could serve as a prognostic biomarker
and therapeutic target in cancer
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Tryptophan Metabolism and Signaling in Glioma

Treatment strategies targeting Tryptophan Metabolism
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Fig. 4 Molecular Mechanisms and Therapeutic Strategies of Tryptophan Metabolism in Glioma In glioma, tryptophan metabolism plays a crucial
role in tumor progression and immune evasion through the upregulation of key enzymes like indoleamine 2,3-dioxygenase (IDO) and tryptophan
2,3-dioxygenase (TDO). These enzymes increase kynurenine production, activating the aryl hydrocarbon receptor (AHR), which promotes glioma
cell proliferation, migration, and invasion while inducing immunosuppression by depleting tryptophan and accumulating immunosuppressive
metabolites. Therapeutic strategies targeting tryptophan metabolism include IDO inhibitors such as 1-MT and indoximod, which reduce
immunosuppression and enhance the efficacy of other anticancer drugs. The TDO inhibitor 680C91 and the dual IDO/TDO inhibitor RY103

also lower kynurenine levels, mitigating its effects on AHR signaling. Additionally, combining oncolytic adenoviral treatments, such as Delta-24-RGD
and Delta-24-RGDOX, with immunotherapy or IDO inhibitors enhances therapeutic outcomes by reducing the immunosuppressive environment

within the glioma

In PC cancer with increased IDO1 expression, Trp
serves as a viable one-carbon source for the tetrahydro-
folate (THF) cycle, supporting PC cell proliferation and
tumor growth. Liquid chromatography-mass spectrom-
etry analysis confirms that Trp-derived one-carbon units
integrate into serine and purine nucleotides in PC cells,
offering an alternative to serine, particularly when ser-
ine availability is restricted. Pancreatic stellate cells also
uptake and utilize Trp-derived formate released by PC
cells for nucleotide biosynthesis in an IDO1-dependent
manner [178]. However, recent studies show conflict-
ing roles for IDO1 in PC, with evidence suggesting both
pro-tumorigenic and anti-metastatic effects, depending

on the immune context. In immunocompetent mice,
deleting IDO1 in PC KPIC cells reduces tumor-forming
ability, cellular proliferation, and macropinocytic capa-
bility. Conversely, IFN-y-induced IDO1 inhibition using
INB24360 triggers liver metastasis of PC organoid can-
cer [180]. Additionally, Kyn-mediated AHR activation in
PC further leads to the induction of Cyplal transcrip-
tion, enhancing the migration and invasion capabilities of
KPIC cells (Fig. 5b) [179]. In HCC, TDO2 overexpression
significantly increases Kyn expression, leading to IL-6
secretion and activation of the STAT3/NF-kB signaling
pathway. This enhancement boosts colony formation and
cell proliferation capabilities of HCC cells, demonstrating
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a key role for TDO in HCC pathogenesis [182]. Moreo-
ver, KMO knockdown has demonstrated a significantly
inhibitory effect on HCC cancer progression, possibly
through abnormal NAD concentration and subsequent
destruction of NADH/NAD +redox homeostasis [183,
206]. While KMO overexpression are also confirmed to
increase 3-HAA concentration, accelerating apoptosis in
HCC SMMC7721 and HepG2 cells and impairing can-
cer growth (Fig. 5¢) [183]. In GC, restoring the number
of NK cells in the TME is crucial for effective treatment
[207-209]. Kyn from GC cells induces ferroptosis in NK
cells via an AHR-independent mechanism, leading to NK
cell depletion and an immunosuppressive TME. Engi-
neered NK cells with higher glutathione peroxidase 4
(GPX4) expression show resistance to Kyn-induced fer-
roptosis and therapeutic benefits in humanized GC cell-
derived xenograft (CDX) cancer (Fig. 5d) [184].

Involvement of KP in Other Cancer

In BC, macrophages recruited to the TME via Fc gamma
receptor (FcyR) signaling upregulate PD-L1, and IDO,
leading to immunosuppression and cancer growth [210].
Furthermore, a novel population of podoplanin-positive
(PDPN+) CAFs enriched in the BC TME secrete IDO1
and TDO?2, leading to resistance to trastuzumab therapy
[174]. Thiosemicarbazide derivatives (1-3), acting as
dual inhibitors of topoisomerase Ila and IDO1, induce
apoptosis in BC MCF-7 and MDA-MB-231 cells through
caspase-8 and caspase-9 pathways. These derivatives
also increase the proportion of BC cells in the G2/M
phase and enhance sensitivity to anticancer treatments
by inhibiting major ATP-binding cassette (ABC) trans-
porters [211]. Overexpression of KMO functions as an
oncogene in TNBC progression by preventing -catenin
degradation, upregulating pluripotent genes, leading to
increased cell growth, colony and mammosphere forma-
tion, migration, invasion, and stemness in BC cells, and
enhanced cancer metastasis and growth in vivo [212]
(Fig. 6).

In melanoma, IFN-y induces IDOI1-mediated Trp
depletion, diversifying the peptidome landscape at Trp
residues. This altered peptidome is presented on HLA-I
molecules, triggering peptide-specific T-cell responses
crucial for immune recognition and melanoma therapy
[213]. Melanoma cells exhibit a greater capacity for Trp
uptake and metabolism within the competitive TME,
depriving adjacent TILs of Trp and impairing their pro-
liferation and survival. Additionally, Trp metabolism in
melanoma cells produces Kyn and serotonin, which reg-
ulate TILs, leading to impaired T cell effector function
[188]. TDO plays a crucial role in melanoma cancer stem
cells (CSCs). Dexamethasone drives melanosphere for-
mation and stemness in melanoma SK-Mel-28 and A375
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cells in a TDO-dependent manner, resulting in a highly
proliferative and metastatic phenotype [214]. In LC A549
and Lewis cells, CAFs produce Kyn and upregulate AHR
expression to activate AKT and ERK signals, facilitating
cell proliferation and resistance to EGFR TKIs [195].

Other Trp Metabolic Pathways and Signaling Mechanisms
in Cancer

The serotonin and indole pathways, along with trans-
port proteins and receptors involved in Trp signaling,
play significant roles in carcinogenesis. Serotonin, as an
important neurotransmitter, influences cancer growth
and progression across various cancer types [215-219].
Previous research has shown that TPH1 overexpres-
sion increases serotonin production in prostate cancer,
which activates the Axin 1/B-catenin signaling path-
way. [-catenin then interacts with the transcription
factor zinc finger binding protein (ZBP)-89 to further
upregulate TPH1, forming a positive feedback loop
(TPH1/5-HT/B-catenin/ZBP-89/TPH1), ultimately driv-
ing enhanced cell proliferation and migration [220]. In
glioma, overexpressed TPH-1 facilitates serotonin gener-
ation to upregulate L1-cell adhesion molecule (L1CAM)
and NF-kB signaling activation, subsequently promot-
ing cell proliferative and migration ability [168]. Addi-
tionally, serotonin uptake via the serotonin transporter
(SERT) is crucial for its recycling and degradation. In
CRC, targeting SERT reduces mTORCI1 serotonylation,
leading to mTOR inactivation and increased Trp uptake.
This process enhances Trp catabolism, boosting seroto-
nin biosynthesis and accelerating cell proliferation and
cancer growth in HCT116 and SW480 cells [45]. The
serotonin receptor (5-HT(1D)R) is also promoted the
activation of Axis Inhibition Protein 1(Axin1)/B-catenin/
Matrix Metalloproteinase-7 (MMP-7) pathway, there-
fore enhancing cancer metastasis in an orthotopic CRC
mouse model [221]. The intervention of a 5-HT(1D)R
antagonist (GR127935) restrains CRC cancer invasion
and migration activity. Furthermore, increased serotonin
in BC interacts with 5-HTR2A/C to trigger akl/STAT3
and ERK1/2 pathway, contributing to the upregulation
of pyruvate kinase M2 (PKM2) and BC cell glycolysis.
Administration of 5-HTR2A/C antagonist, ketanserin,
significantly suppresses the glucose metabolism and cell
growth rate in BC MCF-7 cells [222, 223].

It has also been demonstrated that metabolites from
the indole pathway, primarily produced by gut micro-
biota, significantly impact systemic metabolism and the
local TME [224-228]. Elevated levels of 3-IAA in PC
cells increase reactive oxygen species (ROS) accumu-
lation and reduce autophagic activity, contributing to
cancer suppression [181]. Carbidopa, used to treat PD,
alters Trp metabolism to increase production of the
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which increases IDO expression to support tumor growth and immune evasion. Conversely, the myeloperoxidase (MPO) pathway suppresses
tumors by inducing oxidative stress and promoting cancer cell apoptosis. d In gastric cancer, kynurenine fosters cancer cell proliferation, migration,
and NK cell loss, creating an immunosuppressive environment that facilitates tumor growth

pro-proliferative metabolite IAN in BC MCE-7 cells and
melanoma A375 cells, enhancing cell viability and cancer
incidence [191]. Upregulation of specific transport pro-
teins that facilitate Trp import into cancer cells is vital
for maintaining the altered metabolism supporting can-
cer growth and immune evasion [67, 229-232]. Moreo-
ver, transporters like SLC1A5 and SLC7A5 maintain the
influx of Trp, meeting the high metabolic demand of
cancer cells. In CRC, the oncogene MYC overexpresses
Trp transporters (SLC7A5 and SLC1A5) and KP enzymes
(AFMID), leading to increased Trp uptake and Kyn gen-
eration. Elevated Kyn supports CRC cell proliferation
through AHR activation, an effect reversed by IDO,
TDO, and AHR inhibitors (Epacadostat, 680C91, and
CH223191) [174]. Additionally, Trp signaling receptors,
such as AHR, significantly influence cancer growth and
immune evasion [60, 233—236]. Gut microbiota dysbiosis
reduces levels of AHR ligands, including 3-IAA, ICAld,
and IPA, impairing AHR activation and increasing sterol
regulatory element-binding protein 2 (SREBP2) levels,
promoting HCC initiation [237]. These pathways under-
score the multifaceted role of Trp metabolism in cancer

and highlight the potential for targeted therapies to dis-
rupt these processes.

Targeting Trp Metabolism and Signaling in Cancers
Considering the multifaceted roles of Trp metabolism, a
significant exploration into small-molecule inhibitors tar-
geting Trp metabolism, particularly IDO and TDO, has
yielded promising advancements in cancer therapy [238].
Preclinical studies indicate that IDO1 and TDO inhibi-
tors can reduce cancer growth and enhance the efficacy
of existing treatments, such as immune checkpoint inhib-
itors [47, 239]. Additionally, dual inhibitors targeting both
IDO1 and TDO are being developed for a broader and
more effective approach to cancer therapy [240]. Various
combination strategies involving IDO1 and TDO inhibi-
tors with immune checkpoint inhibitors, chemotherapy,
or radiotherapy are under investigation to maximize syn-
ergistic therapeutic efficacy (Table 2) [82, 241]. Moreover,
increasing evidence supports the therapeutic potential of
targeting other key enzymes in the tryptophan metabo-
lism pathway, such as KMO and TPH, which have shown
promise in a range of disorders, including neurodegener-
ative diseases [242, 243]. This suggests that investigating
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Molecular Mechanisms of Tryptophan
Metabolism and Signaling in Breast Cancer
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Fig. 6 Molecular Mechanisms of Tryptophan Metabolism and Signaling in Breast Cancer In breast cancer, key enzymes and metabolites
in tryptophan metabolism, including indoleamine 2,3-dioxygenase (IDO), kynurenine 3-monooxygenase (KMO), and indole-3-acetonitrile (IAN),
significantly contribute to creating an immunosuppressive tumor microenvironment. These factors promote cancer cell migration and invasion

and maintain cancer stem cell (CSC) properties

these enzymes as potential therapeutic targets may also
be crucial, broadening the scope of Trp metabolism as a
therapeutic avenue.

Targeting Trp Metabolism in Glioma

In glioma, elevated IDO expression plays a significant
role in promoting immunosuppression and cancer pro-
gression. Preclinical studies have shown that the IDO
inhibitor 1-methyl-tryptophan (1-MT) significantly sup-
presses cancer growth in a subcutaneous glioma model,
especially when used in combination with temozolo-
mide (TMZ), an established chemotherapeutic agent.
Mice with intracranially inoculated IDO knockdown
glioma cells exhibit longer survival compared to con-
trol mice [244]. The combination of 1-MT with other
chemotherapeutic agents (e.g,, TMZ, bischloroethylni-
trosourea, etoposide, cisplatin) in glioma cell lines has
further demonstrated enhanced IDO inhibition, revers-
ing immune resistance and impairing glioma cell prolif-
eration [196]. Clinical trials are currently exploring the
efficacy of IDO inhibitors in glioma treatment. A phase
I trial (NCT02502708) of the oral IDO inhibitor indoxi-
mod in children with recurrent brain cancer, including
diffuse intrinsic pontine glioma (DIPG), showed prom-
ising early results, such as reduced disease burden and

extended periods of disease control [245]. Building on
these findings, a phase II trial (NCT04049669) has been
initiated, combining indoximod with chemo-immu-
notherapy, and a phase I salvage trial (NCT05106296)
is testing its combination with ibrutinib to counteract
immune evasion. Another promising approach involves
oncolytic viruses, which have shown potent anti-immu-
nosuppressive effects in glioma by lysing cancer cells and
stimulating a stronger immune response [246-250]. In a
phase I study, the oncolytic virus Delta-24-RGD (DNX-
2401, AdCMVdelta24) led to complete cancer regression
in 20% of patients with recurrent glioblastoma [251]. The
third-generation adenovirus Delta-24-RGDOX (DNX-
2440) demonstrated even more effective T-cell-mediated
anticancer responses in preclinical models. When com-
bined with IDO inhibitors, Delta-24-RGDOX increased
CD8* T cells and decreased immunosuppressive cells
like MDSCs and Tregs, leading to the complete eradi-
cation of glioma in murine models [202]. Clinical tri-
als for Delta-24-RGDOX are ongoing in patients with
malignant gliomas (NCT03714334) and liver metastases
(NCT04714983). Targeting both IDO1 and TDO simul-
taneously has emerged as a promising strategy for over-
coming the limitations of single-enzyme inhibition. The
IDO1/TDO dual inhibitor RY103 demonstrated potent
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anti-glioma effects by disrupting the IDO1/TDO/Kyn/
AHR/AQP4 signaling axis, reducing tumor size and
extending survival in orthotopic glioma models [171].
Additionally, novel therapeutic approaches targeting
TDO have shown promise. The interaction between
FKBP52 and the glucocorticoid receptor (GR) has been
identified as a key regulator of TDO expression in glio-
mas. Treatment with FK506, an immunosuppressant that
binds FKBP52, increases TDO expression and Kyn pro-
duction, suggesting that modulating GR signaling could
be a potential avenue for controlling TDO expression in
gliomas [252]. The TDO2 inhibitor 680C91, when com-
bined with chemotherapeutic agents such as retinoic acid
or irinotecan, has demonstrated synergistic anticancer
effects in neuroblastoma cells by inhibiting the Kyn/AHR
pathway [173].

Targeting Trp Metabolism in Digestive System Cancers

In CRC therapy, combining the SERT inhibitor sertra-
line with dietary Trp restriction or the MEK inhibitor
trametinib significantly weakens Trp uptake and deg-
radation, leading to decreased CRC cell viability and
cancer growth [45]. Additionally, local photothermal
therapy (PTT) further induces cancer cells to release
antigens, activating immune responses against residual
lesions and distant metastases [253—255]. However, the
immunosuppressive microenvironment often limits anti-
cancer immunity by reducing the recognition efficiency
of cancer antigens [256-260]. Recent advancements
in in situ vaccines, such as outer membrane vesicles
(OMVs) loaded with the IDO inhibitor 1-MT (1-MT@
OMV-Mal), have shown promise in facilitating immune-
mediated cancer clearance after PTT. This approach
enhances the recognition and capture of cancer antigens
by dendritic cells, leading to improved cancer-specific
cytotoxic T cell (CTL) activation. In situ administration
of I-MT@OMV-Mal has demonstrated significant inhi-
bition of both primary and distant CRC tumors [203]. In
addition to vaccines, IDO1 inhibitors such as 1-MT and
Epacadostat have been shown to reduce CRC cell viabil-
ity by suppressing IDO expression and inhibiting Kyn-
induced CDC20 transcription. A 1-MT-supplemented
diet al.so prevents the development of sporadic colon
cancer in mice induced by azoxymethane (AOM) and
dextran sodium sulfate (DSS), suggesting its potential
use in chemoprevention for colitis-associated CRC [204].
Moreover, PEGylated kynureninase (PEG-KYNase), a
pharmacologically optimized enzyme, degrades Kyn into
immunologically inactive metabolites. This enhances
CD8"' T cell proliferation and infiltration in the TME,
impairing tumor growth. Notably, PEG-KYNase has
demonstrated enhanced therapeutic efficacy when com-
bined with checkpoint inhibitors or cancer vaccines,
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showing promising results in breast cancer, melanoma,
and CRC treatment [261]. In PC, the IDO1 inhibitor
Epacadostat, combined with serine starvation, effec-
tively reduces the proliferation of IDO1-expressing cells,
thus inhibiting cancer growth [178]. However, the dual
functions of IDOL1 in both cancerogenesis and metasta-
sis complicate its application, contributing to setbacks
in clinical trials [180]. In orthotopic PC mouse mod-
els, the dual IDO1/TDO inhibitor RY103 inhibits KPIC
cell migration and invasion, reducing cancer metasta-
sis by blocking the Kyn/AHR signaling pathway. Addi-
tionally, RY103 improves the immunosuppressive state
by decreasing PMN-MDSCs and M-MDSCs in Pan02
cancer-bearing mice [179]. In a separate approach, a
high-Trp diet in PC gnotobiotic mice elevates serum
3-indoleacetic acid (3-IAA) levels, which resulted in
reduced cancer weight and enhanced responsiveness to
FIRINOX treatment. Repeated cycles of 3-IAA combined
with FIRINOX extends survival times in these ortho-
topic PC models [181]. In HCC, administering Lacto-
bacillus reuteri, which produces Trp metabolites, or the
AHR agonist 6-formylindolo(3,2-b) carbazole (Ficz), sup-
presses SREBP2 expression and inhibits cancer growth in
mice with imbalanced gut flora [115]. Additionally, TDO-
targeted conjugates, which combine the TDO inhibitor
PVI with irinotecan (Ir), improves CD4" and CD8" T cell
proliferation by inhibiting TDO expression and block-
ing Kyn production in the HCC TME. These conjugates
also induce cell cycle arrest in the G2 phase and trig-
gered apoptosis in HepG2 cells by releasing irinotecan,
thus demonstrating the synergistic effects of combining
immunotherapy and chemotherapy in HCC treatment
[262]. Moreover, the combination of the AHR inhibitor
PDM2 with chemotherapy agents such as Doxorubicin or
5-Fluorouracil enhances cancer-suppressive effects and
prolongs OS duration in TDO2 overexpressing SMC-
7721 bearing HCC mice by inhibiting AHR/IL-6/STAT3/
NE-kB signaling [182]. The TDO inhibitor PF06845102/
EOS200809 has also shown promise for treating TDO-
expressing cancer, including HCC, glioblastomas, PC,
and CRC, especially when used in combination with
checkpoint inhibitors. Notably, TDO inhibitors increases
Trp levels and enhances the efficacy of immunotherapy
by overcoming IDOIl-mediated immunosuppression,
even in cancers without TDO expression at the tumor
site [163]. Furthermore, in various HCC mouse models,
overexpression of KMO or treatment with its substrate
3-HAA significantly enhances the efficacy of the IDO1
inhibitor Epacadostat, resulting in reduced cancer num-
bers and prolonged survival [183].
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Targeting Trp Metabolism in BC

Antibody-dependent cellular cytotoxicity (ADCC) and
antibody-dependent cellular phagocytosis (ADCP) are
critical for the effectiveness of anticancer therapeutic
antibodies. However, recent studies have highlighted
the detrimental role of ADCP macrophages in cancer
immunosuppression. In HER2+BC patients receiving
neoadjuvant trastuzumab therapy, cancer-associated
macrophages (TAMs) significantly upregulate PD-L1 and
IDO, creating an immunosuppressive TME and contrib-
uting to poor treatment responses to trastuzumab. Com-
bining anti-PD-L1 and IDO inhibitors with therapeutic
antibodies, such as trastuzumab or rituximab for BC
and lymphoma treatment, has been shown to synergisti-
cally enhance therapeutic efficacy by boosting antican-
cer immunity [210]. The dual inhibitor IDO/TDO-IN-3
also restores NK cell-mediated cytotoxicity and enhances
trastuzumab efficacy, effectively inhibiting cancer pro-
gression in orthotopic BC mouse models [263]. Thio-
semicarbazide derivatives (1-3), as double inhibitors of
topoisomerase Ila and IDO1, induce apoptosis, cause cell
cycle arrest, and increase drug sensitivity in BC MCEF-7
and MDA-MB-231 cells in a dose-dependent manner.
Their pro-apoptotic efficacy is significantly higher than
that of etoposide and they exhibit beneficial ADME-
Tox properties [211]. Additionally, the novel pan IDO1/
IDO2/TDO inhibitor FO4 increases the accumulation
and infiltration of T cells in the TME, suppressing can-
cer progression dose-dependently in immunocompetent
C57BL6 mice and a lung metastasis model of Lewis cells.
Notably, FO4 demonstrates a more potent effect in reduc-
ing the Kyn/Trp ratio compared to Epacadostat, further
emphasizing its therapeutic potential [264].

Targeting Trp Metabolism in Other Cancers

In metastatic melanoma, the phase I/II MM1636 trial
(NCT03047928) involving thirty anti-PD1 therapy-naive
patients showed encouraging results for an immune-
modulatory vaccine (10102/10103) targeting IDO/PD-L1
combined with adjuvant Montanide and nivolumab. The
trial achieved an objective response rate (ORR) of 80%, a
complete response rate (CR) of 43%, and a median PFS
(mPFS) of 26 months. Vaccine-specific T cells from vac-
cinated patients recognized cancer cells in a target- and
HLA-restricted manner and polarized myeloid cells to a
cancer-associated phenotype, enhancing vaccine-specific
responses [265]. However, the phase III ECHO-301/
KEYNOTE-252 trial (NCT02752074) with 706 patients
with unresectable or metastatic melanoma, who were
randomly assigned to receive the IDO1 selective inhibi-
tor Epacadostat plus the PD-1 inhibitor pembrolizumab
(n=354) or placebo plus pembrolizumab (n=352),
did not show additional benefits in PFS or OS over the
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placebo group [266]. The AHR pathway exhibits selective
activity in cancer overexpressing IDO/TDO and is asso-
ciated with resistance to immune checkpoint inhibitors.
The AHR pathway drives T cell dysfunction by promot-
ing a suppressive axis between Tregs and macrophages
within the melanoma TME. Selective AHR blockade
with CH-223,191 reverses IDO-Kyn-AHR-mediated
immunosuppression and delays melanoma progression.
Additionally, using the AHR antagonist KYN-101 in
IDO/TDO-expressing cancer improves the limitations
of targeting IDO or TDO alone and sensitizes cancer to
anti-PD-1 therapy in melanoma [267]. IFN-y prompts
endogenous frameshifting events at Trp residues, leading
to their presentation on HLA-I molecules and triggering
peptide-specific T-cell responses in melanoma MD55A3
cells. This process diversifies the peptidome landscape,
driving IDO1-mediated Trp depletion, and plays a crucial
role in enhancing immune recognition in anti-melanoma
treatments [213]. In LC xenograft mouse models, the
combined administration of the AHR inhibitor DMF and
TKIs also significantly inhibits cancer growth, reverses
resistance to TKIs, and prolongs survival time [193].
Furthermore, a Phase I trial (NCT01219348) is currently
underway to evaluate a novel immunotherapeutic strat-
egy for patients with locally advanced or metastatic LC.
This strategy involves IDO peptide vaccination in com-
bination with the immune-stimulating agent Aldara
and the adjuvant Montanide to enhance the immune
response. Additionally, targeting the serotonin pathway
in carcinogenesis has emerged as a promising approach
in various cancers, showing anticancer effects in some
preclinical trials. In prostate cancer, the TPH1 inhibitor
4-chloro-dl-phenylalanine (PCPA) disrupts the TPH1/5-
HT/B-catenin/ZBP-89/TPH1 feedback loop, significantly
enhancing the anticancer effects of paclitaxel and sup-
pressing lung metastasis in prostate cancer-bearing mice
[220].

Current Status and Future Prospects of Trp
Metabolism in Cancer

Trp metabolism plays a crucial role in cancer progression
and immune modulation, with research primarily focus-
ing on the KP, which generates multiple bioactive com-
pounds with immunosuppressive properties. However,
despite significant attention on KP, the serotonin and
indole pathways are less frequently explored in cancer
[53, 64, 268]. Recent insights suggest that a more nuanced
understanding of these alternative pathways is necessary
to broaden the scope of therapeutic applications target-
ing Trp metabolism.
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Current Status of IDO1 and TDO inhibitors

Early research efforts were largely concentrated on devel-
oping IDOL1 inhibitors, as IDOL1 is a key enzyme that sup-
presses anticancer immunity by driving the conversion of
Trp into Kyn [269-273]. While preclinical studies yielded
promising results, translating these findings into clini-
cal success has been more challenging. A notable exam-
ple is the ECHO-301 phase III trial, which evaluated the
selective IDO1 inhibitor Epacadostat (INCB24360) in
combination with pembrolizumab (anti-PD-1 antibody)
in patients with advanced melanoma. Unfortunately, the
trial did not show significant improvement in PFS or OS
compared to the placebo group, prompting a reevalu-
ation of the therapeutic potential of IDO1 inhibition
alone [274—277]. This result has shifted the focus toward
understanding the broader role of Trp metabolism in
cancer and exploring more effective combination thera-
pies. One key limitation of these trials is the absence of
reliable biomarkers to assess IDO1 levels and activity
before and during treatment. Given that the efficacy of
IDOL1 inhibitors hinges on the presence and functionality
of the enzyme, the development of robust clinical tools to
stratify patients based on IDO1 expression and to moni-
tor enzyme activity in real time is crucial [278]. Addi-
tionally, the lack of standardized methods for measuring
metabolite and drug concentrations at target sites com-
plicates the evaluation of treatment efficacy [279, 280].

In response to these challenges, recent research has
expanded beyond IDOL1 to include dual inhibitors that
target both IDO1 and TDO. Preclinical data suggest that
dual IDO1/TDO inhibitors may offer a more comprehen-
sive blockade of Trp metabolism, potentially overcoming
the limitations of selective IDO1 inhibition [51, 55, 281].
In addition, an open-label, Phase I multicenter study
(NCT03208959) is currently underway to assess the pre-
liminary efficacy and safety of a novel orally administered
small-molecule IDO1/TDO dual inhibitor, HTI-1090, in
patients with advanced solid tumors.

Expanding the Scope: KMO and TPH Inhibitors

Since KMO is overexpressed in several cancer types and
plays a role in cancer development, the development of
KMO inhibitors represents a novel strategy for cancer
treatment [282—-284]. In recent years, research into KMO
inhibitors has shown potential as a promising therapeutic
approach for various diseases. However, the majority of
KMO inhibitors currently under investigation are focused
on neurodegenerative diseases [243, 285, 286]. Due to the
relatively poor efficacy of these inhibitors and limited
preclinical trials, few have successfully completed clinical
trials in cancer treatment. Expanding the focus of KMO
inhibitors to cancer may open new therapeutic avenues,
particularly by targeting KMO’s immunosuppressive and
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pro-tumorigenic effects [242]. Similarly, the TPH-ser-
otonin signaling pathway has gained attention as a con-
tributor to cancer progression. Several TPH inhibitors
and serotonin receptor antagonists have shown the anti-
cancer effects in animal models [287, 288]. Notably, TPH
inhibitors have shown promising results in the treatment
of diverse disorders, such as neuropsychiatric conditions,
gastrointestinal dysfunction, osteoporosis, and bone
homeostasis. Additionally, the excessive secretion of ser-
otonin by cancer cells can lead to the typical symptoms
of carcinoid syndrome and in 2017, TPH inhibitors were
approved by the United States Food and Drug Adminis-
tration (FDA) for managing gastrointestinal symptoms
associated with this condition [289-291]. Additionally,
excessive serotonin secretion by cancer cells can cause
the typical symptoms of carcinoid syndrome. In 2017,
TPH inhibitors were approved by the United States Food
and Drug Administration (FDA) for managing gastroin-
testinal symptoms associated with this condition. A pilot
clinical trial (NCT03453489) is also investigating TPH
levels in neuroendocrine cancer to assess the efficacy of
Etiprate treatment. Despite these findings concerning the
secretion pathway, its specific role in cancer progression
and the therapeutic efficacy of targeting serotonin, TPH,
and its receptors in cancer treatment remains limited.

Overcoming Translational Challenges

Despite significant advancements, the development of
selective, potent, and safe inhibitors for Trp-metabolizing
enzymes remains a challenge. Inhibitors targeting IDO1,
TDO, and other enzymes within the Trp metabolic path-
way must balance efficacy with safety, as Trp metabo-
lism is essential for normal physiological processes [292].
Off-target effects and toxicity continue to be concerns,
underscoring the need for improved detection tools to
monitor tissue-specific Trp concentrations and metabo-
lite levels throughout treatment.

Combination Therapies and Future Directions

Given the challenges encountered with IDO1 inhibitors, there
is growing interest in combining Trp metabolism inhibitors
with immune checkpoint inhibitors, chemotherapy, or radio-
therapy to enhance anticancer immune responses and improve
clinical outcomes [293]. Recent clinical trials (NCT03291054,
NCT01961115, NCT02785250, NCT03006302, NCT03516708,
NCT03661320, NCT02077881 and NCT02835729) have
tested novel combinations, such as combining IDO1 inhibi-
tors with immunotherapies, or with radiotherapy and/or
chemotherapy [82]. While some trials have demonstrated
improvements in PFS and OS for specific patient popula-
tions, broader success remains elusive. Understanding the
optimal sequencing and timing of combination therapies is
critical, as Trp metabolism modulation may need to occur
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in specific stages of the immune response to maximize
therapeutic benefit [294—-296].

Furthermore, researchers are increasingly focused on
uncovering downstream effector mechanisms in Trp
metabolism that may be relevant to cancer progres-
sion [180, 297]. While the immunosuppressive effects of
kynurenine are well-established, emerging studies sug-
gest that indole derivatives may also promote cancer
through activation of the AHR [88-91]. AHR regulates
genes involved in immune suppression, inflammation,
and cell proliferation, making it a promising target for
future therapies.

Addressing these challenges necessitates uncover-
ing additional oncogenic mechanisms of Trp metabo-
lism, identifying the relevance of Trp-related molecules,
and evaluating the roles and therapeutic significance of
other enzymes within Trp metabolism [298-300]. The
integration of cutting-edge technologies such as multi-
omics, CRISPR gene editing, and single-cell sequencing
could help identify new therapeutic targets within Trp
metabolism [269, 294, 301-303]. Moreover, the strate-
gic combination of Trp metabolism inhibitors with other
immunotherapies, guided by improved biomarker detec-
tion and patient stratification, represents a forward-look-
ing approach that could enhance treatment outcomes in
cancer.

Conclusion

Trp, an essential amino acid, influences various physi-
ological and pathological processes through its metab-
olism into serotonin, Kyn, and indole derivatives.
Dysregulated Trp metabolismis observed in many can-
cers and is strongly linked to clinical features such as
tumor stage, size, and lymph node metastasis. Addition-
ally, Trp metabolite levels correlate with patient progno-
sis, serving as robust predictive markers. Aberrant Trp
metabolism affects multiple malignant processes in can-
cer, including cell proliferation, migration, invasion, and
immune evasion, primarily through interactions with
various cancer-related molecules and signaling pathways.
Consequently, targeting Trp metabolism has emerged
as a promising avenue in cancer therapy. While numer-
ous preclinical trials have demonstrated the anticancer
effects of inhibiting Trp metabolism, translating these
findings into clinical success remains a challenge. The
failure of IDO1 inhibitors in clinical trials highlights the
complexity of the TME, the compensatory activation of
alternative immune-suppressive pathways, and the heter-
ogeneity of Trp metabolism across different cancer types
and patient populations. To overcome these clinical chal-
lenges, future research should prioritize a deeper explo-
ration of the underlying mechanisms driving resistance,
as well as utilizing multi-omics approaches to identify
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novel biomarkers and therapeutic targets. Another criti-
cal area for future research is the design of combination
therapies that address the limitations of current Trp
metabolism inhibitors. Given the compensatory activa-
tion of alternative immune-suppressive pathways, com-
bining Trp-targeted therapies with immune checkpoint
inhibitors, targeted therapies, or even next-generation
cancer vaccines to simultaneously target multiple meta-
bolic pathways may enhance therapeutic efficacy while
minimizing resistance.

In summary, although significant progress has been
made in understanding the role of Trp metabolism in
cancer, addressing these research gaps is essential for
clinical translation. The continued investigation of Trp
metabolism, coupled with advanced technologies and
innovative combination strategies, holds substantial
promise for advancing cancer therapy and ultimately
improving patient outcomes.
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