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Abstract 

Tryptophan (Trp) metabolism involves three primary pathways: the kynurenine (Kyn) pathway (KP), the 5-hydroxy-
tryptamine (serotonin, 5-HT) pathway, and the indole pathway. Under normal physiological conditions, Trp metabo-
lism plays crucial roles in regulating inflammation, immunity, and neuronal function. Key rate-limiting enzymes such 
as indoleamine-2,3-dioxygenase (IDO), Trp-2,3-dioxygenase (TDO), and kynurenine monooxygenase (KMO) drive 
these metabolic processes. Imbalances in Trp metabolism are linked to various cancers and often correlate with poor 
prognosis and adverse clinical characteristics. Dysregulated Trp metabolism fosters tumor growth and immune 
evasion primarily by creating an immunosuppressive tumor microenvironment (TME). Activation of the KP results 
in the production of immunosuppressive metabolites like Kyn, which modulate immune responses and promote 
oncogenesis mainly through interaction with the aryl hydrocarbon receptor (AHR). Targeting Trp metabolism thera-
peutically has shown significant potential, especially with the development of small-molecule inhibitors for IDO1, 
TDO, and other key enzymes. These inhibitors disrupt the immunosuppressive signals within the TME, potentially 
restoring effective anti-tumor immune responses. Recently, IDO1 inhibitors have been tested in clinical trials, showing 
the potential to enhance the effects of existing cancer therapies. However, mixed results in later-stage trials under-
score the need for a deeper understanding of Trp metabolism and its complex role in cancer. Recent advancements 
have also explored combining Trp metabolism inhibitors with other treatments, such as immune checkpoint inhibi-
tors, chemotherapy, and radiotherapy, to enhance therapeutic efficacy and overcome resistance mechanisms. This 
review summarizes the current understanding of Trp metabolism and signaling in cancer, detailing the oncogenic 
mechanisms and clinical significance of dysregulated Trp metabolism. Additionally, it provides insights into the chal-
lenges in developing Trp-targeted therapies and future research directions aimed at optimizing these therapeutic 
strategies and improving patient outcomes.
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Introduction
Trp, an essential amino acid not synthesized by the 
human body, must be obtained through diet [1–5]. It 
is a fundamental component of protein synthesis and a 
precursor for many crucial biomolecules, influencing 
various metabolic pathways [6–10]. Although a small 
fraction of free Trp contributes to protein synthesis and 
the production of neurotransmitters like serotonin and 
neuromodulators such as tryptamine, over 95% is utilized 
in the kynurenine (Kyn) pathway (KP) of Trp degrada-
tion. This pathway generates several metabolites with 
distinct biological activities in immune responses and 
neurotransmission [11–14].

Trp and its metabolites are crucial in various physio-
logical processes, including biomass production, cellular 
energy, and cell growth [15–18]. They play a significant 
role in coordinating organismal responses to environ-
mental changes, acting as key elements in both metabolic 
and signaling pathways [19–21]. The primary metabolic 
pathways for Trp include the synthesis of serotonin 
and the KP. Serotonin significantly influences the cen-
tral nervous system and plays a critical role in regulat-
ing intestinal motility, emesis, vasoconstriction, platelet 
aggregation, and wound healing [22–26]. It also serves 
as a precursor to melatonin, which regulates sleep and 
circadian rhythms in diurnal animals. The KP produces 
a series of bioactive metabolites such as picolinic acid, 
quinolinic acid (QA), kynurenic acid (KynA), cinnabar-
inic acid (CA), xanthurenic acid (XA), and Kyn. These 
metabolites regulate the immune system by modulating 
the infiltration and activity of immune cells in the TME 
[27–29]. Another significant product of this pathway is 
nicotinamide adenine dinucleotide (NAD+), vital for 
cellular homeostasis [30–32]. Furthermore, Trp metab-
olites influence the gut microbiota’s composition and 
functionality, affecting the gut microbiome balance and 
the gut-brain axis, which can alter the immune response 
and inflammation levels within the gastrointestinal tract 
[33–37].

Trp enzymes and metabolites are widely distributed 
across various cells and tissues, with their expression 
finely regulated [38–40]. Disruptions in Trp and its 
metabolites’ levels have been linked to several disea-
sea, especially cancer [41–45]. Research indicates that 
key enzymes such as IDO1 and TDO2 are upregulated 
in various cancer types, including brain, digestive sys-
tem, breast, and lung cancers [46–49]. This upregulation 
enhances Trp catabolism in tumors, creating immuno-
suppression, impairing multiple barriers, and promoting 
tumor growth and metastasis [41, 50–53]. Consequently, 
IDO1 has become a focal point for cancer therapy, with 
inhibitors currently being tested in various clinical trials 
to restore immune surveillance and enhance the efficacy 

of treatments like chemotherapy and immunotherapy 
[35, 52, 54–56]. However, results from later-stage trials 
have been mixed, highlighting the complexity of target-
ing metabolic pathways within the TME.

This review offers a comprehensive overview of the 
main metabolic pathways, abnormal expression features, 
and primary roles of Trp metabolism and signaling in 
cancer. Emphasis is placed on the molecular mecha-
nisms by which dysregulated Trp metabolism and sign-
aling contribute to oncogenesis across various tumor 
types. Furthermore, the latest advancements in antican-
cer therapies targeting Trp metabolism and signaling are 
discussed, alongside the current challenges and future 
prospects of these therapeutic strategies. This review 
highlights the critical importance of Trp metabolism and 
signaling in cancer biology and therapy, emphasizing its 
potential as a significant area for ongoing research and 
clinical development.

Physiological Properties of Trp and Its Metabolites
Trp: Dietary Sources, Absorption, and Degradation
Trp, an essential amino acid, is vital for human health 
due to its complex metabolic pathways and physi-
ological effects. As humans cannot synthesize Trp, it 
must be obtained from dietary sources such as turkey, 
chicken, eggs, cheese, fish, and plant-based proteins 
like pumpkin seeds, soy products, and tofu [1, 57–59]. 
These sources provide the necessary intake to maintain 
adequate Trp levels essential for various biological func-
tions [60–62]. Upon ingestion, Trp is absorbed in the 
intestines and transported through the blood to various 
tissues [63–66]. Key transporters, such as solute carrier 
family 1 member 5 (SLC1A5) and solute carrier fam-
ily 7 member 5 (SLC7A5), facilitate the cellular uptake 
of Trp and its distribution to organs including the brain, 
heart, and muscles, where it undergoes further metabo-
lism [67–70]. Beyond its role in protein synthesis, Trp 
is a precursor to several bioactive compounds [71–73]. 
Trp metabolism is orchestrated through three princi-
pal pathways, facilitated by distinct enzymatic reactions 
within barrier organs such as the intestines, lungs, and 
skin, largely influenced by resident microbiota [74–77]. 
The gut microbiota, which outnumbers human cells 
significantly, profoundly influences Trp metabolism 
[78–81]. The interaction between dietary Trp intake, 
bacterial utilization, and local turnover in the gastro-
intestinal tract has crucial implications for maintain-
ing physiological balance and influencing disease states 
[82–84]. Recent evidence highlights the critical role of 
gut microbiota-mediated Trp metabolism in modulating 
immune responses and contributing to the pathogenesis 
of gastrointestinal cancers. Certain gut-resident microbes 
can metabolize Trp into bioactive compounds, such as 
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indole and its derivatives, including indole-3-propionic 
acid (IPA), indole-3-aldehyde (IAld), indole-3-carboxal-
dehyde (ICAld), and indole-3-acetaldehyde (IAAld) [43, 
85–87]. These metabolites serve as key signaling mol-
ecules that interact with the aryl hydrocarbon receptor 
(AHR), which regulates genes crucial for maintaining 
intestinal barrier integrity, modulating immune cell dif-
ferentiation, and promoting anti-inflammatory responses 
[88–91]. Notably, the gut-cancer axis has gained consid-
erable interest, as dysbiosis-an imbalance in gut micro-
biota composition-has been linked to the progression of 
gastrointestinal cancers [92–94]. Gut microbes capable 
of converting Trp into indole derivatives may influence 
tumor growth by modulating local immune environ-
ments and epithelial cell proliferation. For example, IPA 
has demonstrated anti-inflammatory, antioxidant, and 
immunoregulatory properties, potentially reducing the 
risk of carcinogenesis [95, 96]. Conversely, the accumu-
lation of certain metabolites, such as Kyn, through the 
KP, can promote immune escape mechanisms and tumor 
progression by activating immunosuppressive pathways 
such as AHR-mediated  CD8+ T-cell exhaustion [97, 98]. 
Besides gut microbes, Trp metabolism is also intricately 
affected by several factors, including genetic alterations, 
diet, stress, exercise, and aging, which further modulate 
enzymatic activity and determine the dominance of spe-
cific metabolic pathways [99–103].

The three primary metabolic pathways for Trp involve 
its conversion into serotonin, Kyn, and indole-3-pyru-
vate (I3P) and its derivatives (Fig.  1). Approximately 
1% of dietary Trp is converted into serotonin, a crucial 
neurotransmitter [6, 104, 105]. The conversion pro-
cess begins with Trp hydroxylase (TPH) converting 
Trp to 5-hydroxytryptophan (5-HTP), which is then 
decarboxylated by aromatic amino acid decarboxylase 
(AADC) to produce serotonin [106–109]. Serotonin 
is subsequently metabolized into several compounds, 
including 5-hydroxyindoleacetic acid (5-HIAA) by mon-
oamine oxidase (MAO), N-acetylserotonin (NAS) by 
arylalkylamine N-acetyltransferase (AANAT), and ulti-
mately melatonin by N-acetylserotonin O-methyltrans-
ferase (ASMT). The KP is the primary catabolic route for 
Trp, initiated by either IDO or TDO, which are pivotal 
in neuroprotection, neurotoxicity, immune modulation, 
and homeostatic balance within different cellular envi-
ronments [110–114]. These heme-containing enzymes 
convert Trp to N-formylkynurenine (NFK). NFK is 
then metabolized to Kyn by arylformamidase (AFMID), 
which serves as a precursor for several bioactive metab-
olites. KMO and kynureninase (KYNU) further process 
Kyn into 3-hydroxykynurenine (3-HK) and anthranilic 
acid (AA), respectively. Kynurenine aminotransferase 
(KAT) also transforms Kyn into KynA and 3-HK into 

XA. Subsequently, 3-hydroxyanthranilic acid (3-HAA), 
derived from 3-HK by KYNU, is converted into QA and 
ultimately contributes to the synthesis of nicotinamide 
and NAD + by quinolinate phosphoribosyl transferase 
(QPRT) [115, 116]. Notably, Kyn serves as an endogenous 
ligand for the AHR, part of a cytoplasmic complex that 
dissociates upon ligand binding [14, 80, 117]. This dis-
sociation allows AHR to bind with the aryl hydrocarbon 
receptor nuclear translocator (ARNT) and activate genes 
crucial for cytoprotection, including those encoding 
cytochrome P450 enzymes such as CYP1A1 and CYP1B1 
[84, 85, 118, 119]. Metabolites like KynA are known for 
their neuroprotective properties, whereas others like 
3-HK, 3-HAA, and QA have neurotoxic effects [120–
123]. As the end product of the KP, NAD + is a crucial 
cofactor in cellular reactions vital for energy metabolism, 
influencing pathways like glycolysis, β-oxidation, and oxi-
dative phosphorylation [118, 124–127].

Quantification Techniques of Trp Metabolism
Quantifying Trp and its metabolites in biological fluids 
such as plasma, urine, tissue samples, and cerebrospinal 
fluid is essential for identifying potential biomarkers for 
various diseases [128–132]. Trp’s natural fluorescence 
facilitates the development of fluorometric detection 
methods [133–136]. Conventional techniques like liquid 
chromatography and gas chromatography, paired with 
UV detection, fluorescence, or mass spectrometry (MS), 
enhance the sensitivity and specificity of Trp metabolite 
detection [137–141]. These methods are foundational 
for assessing Trp metabolic profiles, providing insights 
into their roles in both physiological and pathological 
states. Additionally, refined Enzyme-Linked Immuno-
sorbent Assay (ELISA) techniques quantify specific Trp 
metabolites within predefined detection limits, making 
them particularly useful for focused studies on individ-
ual metabolites, such as Kyn [142–145]. Immunohisto-
chemistry, utilizing antibodies specifically targeting Trp 
metabolites, enables visualization and quantification 
within tissue samples, linking metabolic alterations to 
pathological states (Fig. 2) [146–148].

An advanced detection method, liquid chromatogra-
phy-mass spectrometry (LC-MS), particularly ultra-high-
performance LC-electrospray ionization-tandem MS 
(UHPLC-ESI-MS/MS), is robust for quantifying Trp and 
its metabolites, including Kyn [149, 150]. This approach 
offers comprehensive coverage of the Trp metabolic 
pathway, mapping intricate relationships between Trp 
and its derivatives. It is highly sensitive and specific, ideal 
for analyzing complex biological samples like blood and 
peritoneal fluid. Moreover, capillary electrochromatog-
raphy-mass spectrometry (CEC-MS), using novel sta-
tionary phases like 4-vinylphenylboronic acid (4-VPBA) 
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columns, enables Trp and Kyn quantification in plasma 
[151, 152]. This method combines the high-resolution 
capabilities of capillary electrophoresis with the sensitiv-
ity of MS, offering a simple, fast, and repeatable approach 
for Trp metabolite analysis.

Advancements in high-technology methods have sig-
nificantly improved the accuracy and efficiency of analyz-
ing Trp and its metabolites, providing vital insights into 
the biological and pathological effects of Trp metabolism 
and supporting the development of therapeutic strategies 
targeting Trp metabolism in diseases [153–157].

Expression Changes of Trp Metabolism in Cancer
Increased Trp uptake and upregulation of Trp-metab-
olizing enzymes in various tumor types correlate with 
poor disease prognosis (Table 1) [158–162]. Among these 
enzymes, abnormal IDO1 levels are common in diverse 
cancers and are studied as a factor to enhance sensitiv-
ity to cancer therapy [51, 163, 164]. Conversely, TDO 
expression in cancers is less characterized due to the 
lack of validated bioassay systems for detecting TDO 
and identifying TDO-expressing cells [165, 166]. Recent 
advancements in TDO-specific monoclonal antibodies 

Fig. 1 Dietary Sources of Tryptophan and Main Pathways of Tryptophan Degradation (a) Tryptophan, an essential amino acid, is commonly 
acquired from dietary sources such as turkey, eggs, cheese, tofu, seeds, and fish. After ingestion, tryptophan is absorbed in the gut and enters 
the bloodstream for use in various metabolic processes. Besides protein synthesis, tryptophan undergoes three main catabolic pathways: 
the serotonin pathway, the kynurenine pathway, and the indole pathway. b In the kynurenine pathway, tryptophan is first converted 
into N-formyl-L-kynurenine by the enzymes indoleamine 2,3-dioxygenase (IDO) or tryptophan 2,3-dioxygenase (TDO), which is then broken 
down into several metabolites, including kynurenine, leading to the production of nicotinamide adenine dinucleotide (NAD+). c In the serotonin 
pathway, tryptophan is converted into serotonin via the enzyme tryptophan hydroxylase (TPH), followed by conversion to 5-hydroxytryptophan 
(5-HTP) and then to serotonin. Serotonin can further be converted into melatonin. d In the indole pathway, intestinal microbiota metabolizes 
tryptophan into various indole derivatives such as indole-3-acetic acid (IAA), indole-3-propionic acid (IPA), and indole-3-aldehyde (IAld)
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Fig. 2 Tryptophan Sample Collection, Detection Methods, and Biological Functions Samples for tryptophan detection are typically obtained 
from blood specimens, cancer tissues, and cancer cell lines. Detection methods for tryptophan and its metabolites include enzyme-linked 
immunosorbent assay (ELISA), liquid chromatography-tandem mass spectrometry (LC-MS/MS), and immunohistochemistry. Tryptophan plays 
crucial roles in various physiological processes. In the immune system, metabolites from the kynurenine pathway, such as kynurenine (Kyn), 
modulate immune responses by regulating immune cell development, activation, and infiltration, thereby contributing to immune suppression 
and tumor immune evasion. Additionally, indole derivatives significantly also impact the immune modulation and immune homeostasis, 
particularly through the activation of Aryl Hydrocarbon Receptor (AHR). In the central nervous system, it serves as a precursor for serotonin, which 
influences mood, depression, and circadian rhythms, while its derivative, melatonin, regulates sleep-wake cycles. In the gastrointestinal tract, 
tryptophan is metabolized by the gut microbiota into indole derivatives that help maintain gut health and microbial balance, promoting intestinal 
barrier integrity and mucosal immunity. Moreover, the kynurenine pathway also significantly impacts the gastrointestinal system, particularly 
in maintaining immune homeostasis, regulating inflammation, and shaping the gut microenvironment
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have shown prevalent TDO expression in many human 
cancers, including hepatocarcinoma (HCC), glioblas-
tomas, and kidney cancer. This understanding under-
scores the significance of Trp metabolism in cancer and 
highlights the potential of changes in Trp metabolism 
expression for prognosis prediction (Fig. 3). This section 
discusses the abnormal expression of Trp, key metabolic 
enzymes, and their products in various tumors, along 
with their potential clinical implications and prognostic 
value.

In glioma, analysis of TCGA data reveals that both IDO 
and complement factor H (CFH) mRNA levels increase 
with tumor grade, peaking in glioblastoma (GBM). IDO 
and CFH exhibit coordinated upregulation, with ele-
vated CFH expression being inversely correlated with 
patient survival across all tumor grades [167]. Addition-
ally, TCGA data highlights increased TPH-1 expression, 
which is associated with sustained glioma progression 
and poor overall survival [168]. Analysis of 343 glioma 
patients from the REpository of Molecular BRAin Neo-
plasia DaTa (REMBRANDT) confirms that upregulated 
IDO expression predicts significantly worse patient prog-
nosis [169]. Immunohistochemical staining of 75 surgical 
specimens shows that stronger IDO expression is more 
prevalent in high-grade and secondary gliomas than in 
low-grade gliomas. Kaplan-Meier survival analysis dem-
onstrated that patients with highly malignant gliomas 
and high IDO expression have worse prognoses com-
pared to those with low IDO expression [170]. Further-
more, a positive correlation exists between IDO1 and 
TDO expression and glioma pathological grades. Both 
IDO1 and TDO expression are positively associated with 
overall survival (OS), and their co-expression represents 
independent prognostic values for OS of glioma patients 
[171]. AMT-PET, based on increased uptake of α-[11 C]-
methyl-L-Trp (AMT) in glioma, shows high accuracy 
in distinguishing grade I from grade II/III gliomas. 
Additionally, TDO2 shows the highest immunostain-
ing scores, particularly in grade I gliomas, followed by 
IDO2 and IDO1 [172]. Data from the Therapeutically 
Applicable Research to Generate Effective Treatments 
(TARGET) database (phs000467), involving 249 pediatric 
patients, indicates that high expression of Trp transport-
ers SLC1A5 and SLC7A5 predicts worse prognosis for 
neuroblastoma patients (Fig. 4) [173].

In colorectal cancer (CRC), several studies have dem-
onstrated elevated levels of Trp transporters SLC7A5 
and SLC1A5, along with Kyn, AHR, and key KP enzymes 
(TDO2, IDO1, and AFMID) [174–176]. In patients with 
locally advanced rectal cancer (LARC) receiving pre-
operative chemoradiotherapy (CRT), IDO expression 
has been identified as a significant prognostic marker. 
Patients with IDO-positive tumors exhibit a markedly 

poorer 5-year OS compared to those with IDO-negative 
tumors, and multivariate analysis identifies IDO expres-
sion as an independent prognostic indicator, highlight-
ing its potential as a marker for individualizing treatment 
strategies in LARC [177]. In pancreatic cancer (PC), 
prevalent expression of IDO1 and TDO is negatively cor-
related with patient OS and relapse-free survival (RFS) 
[178, 179]. IDO1 expression is upregulated during tumor 
formation in immunocompetent settings, especially in 
the presence of IFN-γ or through JAK/STAT signal-
ing [178]. TCGA data confirms a negative correlation 
between high IDO1 expression and patient survival in 
PC [178]. The co-expression of IDO1 and TDO, rather 
than individual expression, offers independent prognos-
tic value for PC [179]. Interestingly, IDO1 expression 
increases in cells within PC ducts but decreases in PC 
cells, contributing to epithelial-mesenchymal transition 
(EMT) [180]. Additionally, an increase in microbiota-
derived 3-IAA is observed in the serum of both patients 
and mice with PC who are susceptible to chemother-
apy, correlating with improved progression-free sur-
vival (PFS) and OS in the PC Hamburg cohort [181]. In 
HCC, advanced-stage cancer tissues exhibit enhanced 
TDO2 expression, which is correlated with poor prog-
nosis, as validated by the TCGA database [182]. How-
ever, both KMO and its substrate 3-HAA are reduced 
in HCC cells and clinical HCC tissues, and patients with 
high KMO expression show longer disease-free survival 
(DFS) [183]. Dysbiosis of the gut flora in HCC reduces 
the levels of AhR ligands derived from Trp metabolism, 
such as 3-IAA, ICAld, and IPA [115]. In gastric cancer 
(GC), SGC-7901 cells exhibit significantly higher levels of 
Kyn compared to GES-1 and MGC-803 cells [184]. IDO 
is a powerful prognostic biomarker for GC following 
gastrectomy and is closely associated with the immuno-
suppressive GC TME [185–187]. Immunohistochemical 
staining analysis of 99 GC cancer tissues from patients 
who received radical resection reveals that larger tumors, 
advanced T stages, and poorer prognosis are more posi-
tively associated with IDO expression. Additionally, 
IDO-positive patients possess higher levels of  Foxp3+ 
Treg cells but lower levels of CD4/CD8+ T cells in the 
TME [185]. Another involving 357 GC patients shows 
that high intratumoral IDO expression is associated with 
poor OS, deeper tumor invasion, and increased lymph 
node metastasis [186].

Melanoma exhibits dysregulation in Trp metabo-
lism, characterized by high intratumoral expression of 
TPH1/2, IDO1, TDO2, and the transporter SLC7A5. 
Notably, higher SLC7A5 expression in melanoma cells 
is associated with worse OS, and baseline Trp levels 
strongly predict clinical benefits from the PD1 inhibi-
tor pembrolizumab [188]. The LCCC1531 trial in 
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melanoma demonstrated that high Trp PET imaging 
correlates with shorter clinical benefits from pembroli-
zumab in PD1 inhibitor-naïve stage IIIB-IV melanoma 
patients. Additionally, the theragnostic value of base-
line Trp metabolism effectively prolongs PFS, as shown 
by optimal cut-point post-hoc analysis [188]. In breast 
cancer (BC), analysis of single-cell transcriptome data 
indicates that elevated levels of Trp metabolic enzymes, 
such as IDO1, KMO, and KYNU, in macrophages are 
linked with a positive response to immunotherapy, sug-
gesting that Trp metabolism could be a predictive marker 
for BC treatment [189]. Furthermore, the evaluation of 4 
TMAs, containing 242 invasive primary BC and 39 met-
astatic BC cases, showed that IDO expression is preva-
lent in high-grade, triple-negative BC. Notably, 70% of 
PD-L1-positive BC cases also express IDO, contributing 
to poor outcomes with anti-PD-L1 treatment despite 
strong PD-L1 expression [190]. There is also a notable 
increase in indole-3-acetonitrile (IAN) levels over time 
in BC MCF-7 cells and melanoma A375 cells exposed 
to carbidopa, a DOPA decarboxylase inhibitor used in 
Parkinson’s disease (PD) treatment [191]. Moreover, 
the investigation based on 86 clinical canine mammary 
tumor (CMT) cases indicates the ability of KMO for dis-
criminating malignant from benign CMTs and the strong 
correlation of KOM expression with overall survival rates 
in patients with malignant CMTs [192]. In ovarian cancer 
(OC), IDO1, IDO2, TDO2, and IL4I1 exhibit high posi-
tive expression rates in cancer specimens, with IDO1-
positive patients being more resistant to platinum-based 
chemotherapy. Increased IDO1 expression is also associ-
ated with advanced cancer stages and lymph node metas-
tasis. In contrast, TDO2 expression negatively correlates 
with the presence of bilateral tumors and endometriosis, 
while negative IL4I1 expression is commonly observed in 
cases of cancer rupture [193]. Finally, radiotherapy (RT) 
in lung cancer (LC) patients impacts systemic IDO-medi-
ated anticancer immune activity, evidenced by changes 
in serum levels of IDO-mediated Kyn production and 
the Kyn(K) ratios before, during, and after RT. The Kra-
tio decreases during RT but returns to baseline levels 
post-RT. Notably, these changes in IDO-associated mol-
ecules correlate with clinical outcomes in RT-treated LC 
patients. Greater Kyn levels post-RT significantly indicate 
worse OS and PFS [194]. Additionally, an enriched dis-
tribution of cancer-associated fibroblasts (CAFs) with 
activated TDO and elevated secretion of Kyn is observed 
in epidermal growth factor receptor tyrosine kinase 
inhibitors (EGFR TKIs) resistant cancer tissues from LC 
patients [195].

Molecular Mechanisms of Tryptophan and Its 
Metabolites in Cancer
Involvement of KP in Carcinogenesis
Involvement of KP in Glioma
In glioma, cancer-derived IDO expression recruits 
immunosuppressive regulatory T cells (Tregs) and 
increases their glucocorticoid-induced TNFR-related 
protein (GITR) expression while decreasing  CD8+ T cell 
frequency. This immune imbalance triggers immuno-
suppression and tumor growth, relying on coordinated 
actions of  CD4+ and  CD8+ T cells [169]. Addition-
ally, IFN-γ robustly induces IDO expression, leading 
to increased Trp consumption and Kyn accumulation, 
creating a local immunosuppressive environment that 
inactivates T cells and promotes glioma cell prolifera-
tion [196]. As an oncolytic adenovirus, Delta-24-RGD, 
engineered to selectively replicate in and destroy cancer 
cells, shows promising anti-glioma effects by enhanc-
ing the anticancer immune response [197–199]. Delta-
24-RGD downregulates IDO expression in glioma cells 
and Foxp3 levels in Tregs, decreasing tumor-infiltrating 
 CD4+  Foxp3+ Tregs and increasing IFN-γ-producing 
 CD8+ T cells, significantly improving the TME and sys-
temic tumor-antigen-specific T cell therapy in GBM 
[200]. Additionally, tumor-propagating stem-like cells 
in glioblastoma (GSCs) contribute to the immunosup-
pressive TME, driven by reprogramming transcription 
factors OCT4 and SOX2. Co-expression of OCT4 and 
SOX2 in GSCs upregulates multiple immunosuppressive 
checkpoints, including TDO, and immunosuppressive 
cytokines and chemokines, inhibiting  CD8+ T cell func-
tion and infiltration while promoting the expansion of 
immunosuppressive M2 macrophages and  Foxp3+ Tregs 
[201]. Furthermore, recent findings indicate nonenzymic 
IDO in GBM U87 cells increases CFH and FHL-1 expres-
sion, independent of Trp metabolism, further enhancing 
immune suppression by raising intratumoral Tregs and 
myeloid-derived suppressor cells [202]. Recent studies 
have also shown that the IDO1/TDO/Kyn/AHR/AQP4 
signaling pathway is central to glioma progression, par-
ticularly in cell motility. IDO1 and TDO facilitate Kyn 
generation, which activates AHR and increases AQP4 
expression, enhancing the migratory and invasive capa-
bilities of U87MG glioma cells (Fig. 4) [203].

Involvement of KP in Digestive System Cancers
In CRC, IDO generates Kyn to activate CDC20 tran-
scription, maintaining HCT-116 and HT-29 cell pro-
liferation and resisting cell cycle arrest-mediated 
apoptosis (Fig. 5a) [204]. Additionally, KMO knockdown 
suppresses the expression of cancer stem cells markers 
including Nanog and CD44 in CRC, thereby repress-
ing CRC cell stemness, migration, and invasion [205]. 
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Fig. 3 Abnormal Expression of Tryptophan Metabolism in Cancers and Its Correlation with Clinicopathological Features and Prognosis 
Differentially abnormal expression of tryptophan metabolism and related molecules involved in cancer progression and patient outcomes. Critical 
enzymes in the tryptophan metabolism pathway, such as indoleamine 2,3-dioxygenase (IDO), tryptophan 2,3-dioxygenase (TDO), kynurenine 
3-monooxygenase (KMO), kynureninase (KYNU), tryptophan hydroxylase (TPH), play significant roles in regulating tryptophan breakdown. 
Transporters such as solute carrier family proteins (SLC1A5, SLC7A5) and the serotonin transporter (SERT) facilitate cellular uptake and signaling 
of tryptophan and its metabolites, while the aryl hydrocarbon receptor (AHR) mediates biological effects of tryptophan-derived metabolites. These 
enzymes, transporters, and receptors are frequently found to be upregulated or downregulated in various cancers such as glioma, melanoma, 
lymphoma, and cancers of the digestive system, breast, and lung. The altered expression levels of these molecules are closely associated 
with clinicopathological features, including tumor grade, stage, size, and lymph node metastasis. Elevated or reduced levels of tryptophan 
metabolism-related molecules reflect the imbalance in tryptophan metabolism that influence disease progression. Furthermore, abnormal 
tryptophan metabolism and its associated molecules are strongly correlated with patient prognosis, usually as demonstrated by Kaplan-Meier 
survival curves. These alterations in tryptophan metabolism show a significant relationship with key prognostic indicators such as overall survival, 
relapse-free survival, and progression-free survival, suggesting that dysregulated tryptophan metabolism could serve as a prognostic biomarker 
and therapeutic target in cancer
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In PC cancer with increased IDO1 expression, Trp 
serves as a viable one-carbon source for the tetrahydro-
folate (THF) cycle, supporting PC cell proliferation and 
tumor growth. Liquid chromatography-mass spectrom-
etry analysis confirms that Trp-derived one-carbon units 
integrate into serine and purine nucleotides in PC cells, 
offering an alternative to serine, particularly when ser-
ine availability is restricted. Pancreatic stellate cells also 
uptake and utilize Trp-derived formate released by PC 
cells for nucleotide biosynthesis in an IDO1-dependent 
manner [178]. However, recent studies show conflict-
ing roles for IDO1 in PC, with evidence suggesting both 
pro-tumorigenic and anti-metastatic effects, depending 

on the immune context. In immunocompetent mice, 
deleting IDO1 in PC KPIC cells reduces tumor-forming 
ability, cellular proliferation, and macropinocytic capa-
bility. Conversely, IFN-γ-induced IDO1 inhibition using 
INB24360 triggers liver metastasis of PC organoid can-
cer [180]. Additionally, Kyn-mediated AHR activation in 
PC further leads to the induction of Cyp1a1 transcrip-
tion, enhancing the migration and invasion capabilities of 
KPIC cells (Fig. 5b) [179]. In HCC, TDO2 overexpression 
significantly increases Kyn expression, leading to IL-6 
secretion and activation of the STAT3/NF-kB signaling 
pathway. This enhancement boosts colony formation and 
cell proliferation capabilities of HCC cells, demonstrating 

Fig. 4 Molecular Mechanisms and Therapeutic Strategies of Tryptophan Metabolism in Glioma In glioma, tryptophan metabolism plays a crucial 
role in tumor progression and immune evasion through the upregulation of key enzymes like indoleamine 2,3-dioxygenase (IDO) and tryptophan 
2,3-dioxygenase (TDO). These enzymes increase kynurenine production, activating the aryl hydrocarbon receptor (AHR), which promotes glioma 
cell proliferation, migration, and invasion while inducing immunosuppression by depleting tryptophan and accumulating immunosuppressive 
metabolites. Therapeutic strategies targeting tryptophan metabolism include IDO inhibitors such as 1-MT and indoximod, which reduce 
immunosuppression and enhance the efficacy of other anticancer drugs. The TDO inhibitor 680C91 and the dual IDO/TDO inhibitor RY103 
also lower kynurenine levels, mitigating its effects on AHR signaling. Additionally, combining oncolytic adenoviral treatments, such as Delta-24-RGD 
and Delta-24-RGDOX, with immunotherapy or IDO inhibitors enhances therapeutic outcomes by reducing the immunosuppressive environment 
within the glioma
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a key role for TDO in HCC pathogenesis [182]. Moreo-
ver, KMO knockdown has demonstrated a significantly 
inhibitory effect on HCC cancer progression, possibly 
through abnormal NAD concentration and subsequent 
destruction of NADH/NAD + redox homeostasis [183, 
206]. While KMO overexpression are also confirmed to 
increase 3-HAA concentration, accelerating apoptosis in 
HCC SMMC7721 and HepG2 cells and impairing can-
cer growth (Fig. 5c) [183]. In GC, restoring the number 
of NK cells in the TME is crucial for effective treatment 
[207–209]. Kyn from GC cells induces ferroptosis in NK 
cells via an AHR-independent mechanism, leading to NK 
cell depletion and an immunosuppressive TME. Engi-
neered NK cells with higher glutathione peroxidase 4 
(GPX4) expression show resistance to Kyn-induced fer-
roptosis and therapeutic benefits in humanized GC cell-
derived xenograft (CDX) cancer (Fig. 5d) [184].

Involvement of KP in Other Cancer
In BC, macrophages recruited to the TME via Fc gamma 
receptor (FcγR) signaling upregulate PD-L1, and IDO, 
leading to immunosuppression and cancer growth [210]. 
Furthermore, a novel population of podoplanin-positive 
(PDPN+) CAFs enriched in the BC TME secrete IDO1 
and TDO2, leading to resistance to trastuzumab therapy 
[174]. Thiosemicarbazide derivatives (1–3), acting as 
dual inhibitors of topoisomerase IIα and IDO1, induce 
apoptosis in BC MCF-7 and MDA-MB-231 cells through 
caspase-8 and caspase-9 pathways. These derivatives 
also increase the proportion of BC cells in the G2/M 
phase and enhance sensitivity to anticancer treatments 
by inhibiting major ATP-binding cassette (ABC) trans-
porters [211]. Overexpression of KMO functions as an 
oncogene in TNBC progression by preventing β-catenin 
degradation, upregulating pluripotent genes, leading to 
increased cell growth, colony and mammosphere forma-
tion, migration, invasion, and stemness in BC cells, and 
enhanced cancer metastasis and growth in  vivo [212] 
(Fig. 6).

In melanoma, IFN-γ induces IDO1-mediated Trp 
depletion, diversifying the peptidome landscape at Trp 
residues. This altered peptidome is presented on HLA-I 
molecules, triggering peptide-specific T-cell responses 
crucial for immune recognition and melanoma therapy 
[213]. Melanoma cells exhibit a greater capacity for Trp 
uptake and metabolism within the competitive TME, 
depriving adjacent TILs of Trp and impairing their pro-
liferation and survival. Additionally, Trp metabolism in 
melanoma cells produces Kyn and serotonin, which reg-
ulate TILs, leading to impaired T cell effector function 
[188]. TDO plays a crucial role in melanoma cancer stem 
cells (CSCs). Dexamethasone drives melanosphere for-
mation and stemness in melanoma SK-Mel-28 and A375 

cells in a TDO-dependent manner, resulting in a highly 
proliferative and metastatic phenotype [214]. In LC A549 
and Lewis cells, CAFs produce Kyn and upregulate AHR 
expression to activate AKT and ERK signals, facilitating 
cell proliferation and resistance to EGFR TKIs [195].

Other Trp Metabolic Pathways and Signaling Mechanisms 
in Cancer
The serotonin and indole pathways, along with trans-
port proteins and receptors involved in Trp signaling, 
play significant roles in carcinogenesis. Serotonin, as an 
important neurotransmitter, influences cancer growth 
and progression across various cancer types [215–219]. 
Previous research has shown that TPH1 overexpres-
sion increases serotonin production in prostate cancer, 
which activates the Axin 1/β-catenin signaling path-
way. β-catenin then interacts with the transcription 
factor zinc finger binding protein (ZBP)-89 to further  
upregulate TPH1, forming a positive feedback loop 
(TPH1/5-HT/β-catenin/ZBP-89/TPH1), ultimately driv-
ing enhanced cell proliferation and migration [220]. In 
glioma, overexpressed TPH-1 facilitates serotonin gener-
ation to upregulate L1-cell adhesion molecule (L1CAM) 
and NF-κB signaling activation, subsequently promot-
ing cell proliferative and migration ability [168]. Addi-
tionally, serotonin uptake via the serotonin transporter 
(SERT) is crucial for its recycling and degradation. In 
CRC, targeting SERT reduces mTORC1 serotonylation, 
leading to mTOR inactivation and increased Trp uptake. 
This process enhances Trp catabolism, boosting seroto-
nin biosynthesis and accelerating cell proliferation and 
cancer growth in HCT116 and SW480 cells [45]. The 
serotonin receptor (5-HT(1D)R) is also promoted the 
activation of Axis Inhibition Protein 1(Axin1)/β-catenin/
Matrix Metalloproteinase-7 (MMP-7) pathway, there-
fore enhancing cancer metastasis in an orthotopic CRC 
mouse model [221]. The intervention of a 5-HT(1D)R 
antagonist (GR127935) restrains CRC cancer invasion 
and migration activity. Furthermore, increased serotonin 
in BC interacts with 5-HTR2A/C to trigger ak1/STAT3 
and ERK1/2 pathway, contributing to the upregulation 
of pyruvate kinase M2 (PKM2) and BC cell glycolysis. 
Administration of 5-HTR2A/C antagonist, ketanserin, 
significantly suppresses the glucose metabolism and cell 
growth rate in BC MCF-7 cells [222, 223].

It has also been demonstrated that metabolites from 
the indole pathway, primarily produced by gut micro-
biota, significantly impact systemic metabolism and the 
local TME [224–228]. Elevated levels of 3-IAA in PC 
cells increase reactive oxygen species (ROS) accumu-
lation and reduce autophagic activity, contributing to 
cancer suppression [181]. Carbidopa, used to treat PD, 
alters Trp metabolism to increase production of the 
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pro-proliferative metabolite IAN in BC MCF-7 cells and 
melanoma A375 cells, enhancing cell viability and cancer 
incidence [191]. Upregulation of specific transport pro-
teins that facilitate Trp import into cancer cells is vital 
for maintaining the altered metabolism supporting can-
cer growth and immune evasion [67, 229–232]. Moreo-
ver, transporters like SLC1A5 and SLC7A5 maintain the 
influx of Trp, meeting the high metabolic demand of 
cancer cells. In CRC, the oncogene MYC overexpresses 
Trp transporters (SLC7A5 and SLC1A5) and KP enzymes 
(AFMID), leading to increased Trp uptake and Kyn gen-
eration. Elevated Kyn supports CRC cell proliferation 
through AHR activation, an effect reversed by IDO, 
TDO, and AHR inhibitors (Epacadostat, 680C91, and 
CH223191) [174]. Additionally, Trp signaling receptors, 
such as AHR, significantly influence cancer growth and 
immune evasion [60, 233–236]. Gut microbiota dysbiosis 
reduces levels of AHR ligands, including 3-IAA, ICAld, 
and IPA, impairing AHR activation and increasing sterol 
regulatory element-binding protein 2 (SREBP2) levels, 
promoting HCC initiation [237]. These pathways under-
score the multifaceted role of Trp metabolism in cancer 

and highlight the potential for targeted therapies to dis-
rupt these processes.

Targeting Trp Metabolism and Signaling in Cancers
Considering the multifaceted roles of Trp metabolism, a 
significant exploration into small-molecule inhibitors tar-
geting Trp metabolism, particularly IDO and TDO, has 
yielded promising advancements in cancer therapy [238]. 
Preclinical studies indicate that IDO1 and TDO inhibi-
tors can reduce cancer growth and enhance the efficacy 
of existing treatments, such as immune checkpoint inhib-
itors [47, 239]. Additionally, dual inhibitors targeting both 
IDO1 and TDO are being developed for a broader and 
more effective approach to cancer therapy [240]. Various 
combination strategies involving IDO1 and TDO inhibi-
tors with immune checkpoint inhibitors, chemotherapy, 
or radiotherapy are under investigation to maximize syn-
ergistic therapeutic efficacy (Table 2) [82, 241]. Moreover, 
increasing evidence supports the therapeutic potential of 
targeting other key enzymes in the tryptophan metabo-
lism pathway, such as KMO and TPH, which have shown 
promise in a range of disorders, including neurodegener-
ative diseases [242, 243]. This suggests that investigating 

Fig. 5 Molecular Mechanisms of Tryptophan Metabolism in Digestive System Cancers (a) Tryptophan metabolism plays dual roles in digestive 
system cancers, promoting or suppressing tumor growth. In colorectal cancer, altered metabolism enhances tumor cell proliferation and survival 
through upregulated transporters like SLC1A5 and SLC7A5, increasing tryptophan uptake and metabolism. Kynurenine, via AHR signaling, 
supports cancer growth and immune evasion. b In liver cancer, gut microbiota-produced metabolites such as indole-3-acetic acid (IAA) 
and indole-3-aldehyde (IAld) inhibit tumor initiation and progression. c Pancreatic cancer progression is driven by the JAK-STAT signaling pathway, 
which increases IDO expression to support tumor growth and immune evasion. Conversely, the myeloperoxidase (MPO) pathway suppresses 
tumors by inducing oxidative stress and promoting cancer cell apoptosis. d In gastric cancer, kynurenine fosters cancer cell proliferation, migration, 
and NK cell loss, creating an immunosuppressive environment that facilitates tumor growth
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these enzymes as potential therapeutic targets may also 
be crucial, broadening the scope of Trp metabolism as a 
therapeutic avenue.

Targeting Trp Metabolism in Glioma
In glioma, elevated IDO expression plays a significant 
role in promoting immunosuppression and cancer pro-
gression. Preclinical studies have shown that the IDO 
inhibitor 1-methyl-tryptophan (1-MT) significantly sup-
presses cancer growth in a subcutaneous glioma model, 
especially when used in combination with temozolo-
mide (TMZ), an established chemotherapeutic agent. 
Mice with intracranially inoculated IDO knockdown 
glioma cells exhibit longer survival compared to con-
trol mice [244]. The combination of 1-MT with other 
chemotherapeutic agents (e.g., TMZ, bischloroethylni-
trosourea, etoposide, cisplatin) in glioma cell lines has 
further demonstrated enhanced IDO inhibition, revers-
ing immune resistance and impairing glioma cell prolif-
eration [196]. Clinical trials are currently exploring the 
efficacy of IDO inhibitors in glioma treatment. A phase 
I trial (NCT02502708) of the oral IDO inhibitor indoxi-
mod in children with recurrent brain cancer, including 
diffuse intrinsic pontine glioma (DIPG), showed prom-
ising early results, such as reduced disease burden and 

extended periods of disease control [245]. Building on 
these findings, a phase II trial (NCT04049669) has been 
initiated, combining indoximod with chemo-immu-
notherapy, and a phase I salvage trial (NCT05106296) 
is testing its combination with ibrutinib to counteract 
immune evasion. Another promising approach involves 
oncolytic viruses, which have shown potent anti-immu-
nosuppressive effects in glioma by lysing cancer cells and 
stimulating a stronger immune response [246–250]. In a 
phase I study, the oncolytic virus Delta-24-RGD (DNX-
2401, AdCMVdelta24) led to complete cancer regression 
in 20% of patients with recurrent glioblastoma [251]. The 
third-generation adenovirus Delta-24-RGDOX (DNX-
2440) demonstrated even more effective T-cell-mediated 
anticancer responses in preclinical models. When com-
bined with IDO inhibitors, Delta-24-RGDOX increased 
 CD8+ T cells and decreased immunosuppressive cells 
like MDSCs and Tregs, leading to the complete eradi-
cation of glioma in murine models [202]. Clinical tri-
als for Delta-24-RGDOX are ongoing in patients with 
malignant gliomas (NCT03714334) and liver metastases 
(NCT04714983). Targeting both IDO1 and TDO simul-
taneously has emerged as a promising strategy for over-
coming the limitations of single-enzyme inhibition. The 
IDO1/TDO dual inhibitor RY103 demonstrated potent 

Fig. 6 Molecular Mechanisms of Tryptophan Metabolism and Signaling in Breast Cancer In breast cancer, key enzymes and metabolites 
in tryptophan metabolism, including indoleamine 2,3-dioxygenase (IDO), kynurenine 3-monooxygenase (KMO), and indole-3-acetonitrile (IAN), 
significantly contribute to creating an immunosuppressive tumor microenvironment. These factors promote cancer cell migration and invasion 
and maintain cancer stem cell (CSC) properties
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anti-glioma effects by disrupting the IDO1/TDO/Kyn/
AHR/AQP4 signaling axis, reducing tumor size and 
extending survival in orthotopic glioma models [171]. 
Additionally, novel therapeutic approaches targeting 
TDO have shown promise. The interaction between 
FKBP52 and the glucocorticoid receptor (GR) has been 
identified as a key regulator of TDO expression in glio-
mas. Treatment with FK506, an immunosuppressant that 
binds FKBP52, increases TDO expression and Kyn pro-
duction, suggesting that modulating GR signaling could 
be a potential avenue for controlling TDO expression in 
gliomas [252]. The TDO2 inhibitor 680C91, when com-
bined with chemotherapeutic agents such as retinoic acid 
or irinotecan, has demonstrated synergistic anticancer 
effects in neuroblastoma cells by inhibiting the Kyn/AHR 
pathway [173].

Targeting Trp Metabolism in Digestive System Cancers
In CRC therapy, combining the SERT inhibitor sertra-
line with dietary Trp restriction or the MEK inhibitor 
trametinib significantly weakens Trp uptake and deg-
radation, leading to decreased CRC cell viability and 
cancer growth [45]. Additionally, local photothermal 
therapy (PTT) further induces cancer cells to release 
antigens, activating immune responses against residual 
lesions and distant metastases [253–255]. However, the 
immunosuppressive microenvironment often limits anti-
cancer immunity by reducing the recognition efficiency 
of cancer antigens [256–260]. Recent advancements 
in in  situ vaccines, such as outer membrane vesicles 
(OMVs) loaded with the IDO inhibitor 1-MT (1-MT@
OMV-Mal), have shown promise in facilitating immune-
mediated cancer clearance after PTT. This approach 
enhances the recognition and capture of cancer antigens 
by dendritic cells, leading to improved cancer-specific 
cytotoxic T cell (CTL) activation. In  situ administration 
of 1-MT@OMV-Mal has demonstrated significant inhi-
bition of both primary and distant CRC tumors [203]. In 
addition to vaccines, IDO1 inhibitors such as 1-MT and 
Epacadostat have been shown to reduce CRC cell viabil-
ity by suppressing IDO expression and inhibiting Kyn-
induced CDC20 transcription. A 1-MT-supplemented 
diet al.so prevents the development of sporadic colon 
cancer in mice induced by azoxymethane (AOM) and 
dextran sodium sulfate (DSS), suggesting its potential 
use in chemoprevention for colitis-associated CRC [204]. 
Moreover, PEGylated kynureninase (PEG-KYNase), a 
pharmacologically optimized enzyme, degrades Kyn into 
immunologically inactive metabolites. This enhances 
 CD8+ T cell proliferation and infiltration in the TME, 
impairing tumor growth. Notably, PEG-KYNase has 
demonstrated enhanced therapeutic efficacy when com-
bined with checkpoint inhibitors or cancer vaccines, 

showing promising results in breast cancer, melanoma, 
and CRC treatment [261]. In PC, the IDO1 inhibitor 
Epacadostat, combined with serine starvation, effec-
tively reduces the proliferation of IDO1-expressing cells, 
thus inhibiting cancer growth [178]. However, the dual 
functions of IDO1 in both cancerogenesis and metasta-
sis complicate its application, contributing to setbacks 
in clinical trials [180]. In orthotopic PC mouse mod-
els, the dual IDO1/TDO inhibitor RY103 inhibits KPIC 
cell migration and invasion, reducing cancer metasta-
sis by blocking the Kyn/AHR signaling pathway. Addi-
tionally, RY103 improves the immunosuppressive state 
by decreasing PMN-MDSCs and M-MDSCs in Pan02 
cancer-bearing mice [179]. In a separate approach, a 
high-Trp diet in PC gnotobiotic mice elevates serum 
3-indoleacetic acid (3-IAA) levels, which resulted in 
reduced cancer weight and enhanced responsiveness to 
FIRINOX treatment. Repeated cycles of 3-IAA combined 
with FIRINOX extends survival times in these ortho-
topic PC models [181]. In HCC, administering Lacto-
bacillus reuteri, which produces Trp metabolites, or the 
AHR agonist 6-formylindolo(3,2-b) carbazole (Ficz), sup-
presses SREBP2 expression and inhibits cancer growth in 
mice with imbalanced gut flora [115]. Additionally, TDO-
targeted conjugates, which combine the TDO inhibitor 
PVI with irinotecan (Ir), improves  CD4+ and  CD8+ T cell 
proliferation by inhibiting TDO expression and block-
ing Kyn production in the HCC TME. These conjugates 
also induce cell cycle arrest in the G2 phase and trig-
gered apoptosis in HepG2 cells by releasing irinotecan, 
thus demonstrating the synergistic effects of combining 
immunotherapy and chemotherapy in HCC treatment 
[262]. Moreover, the combination of the AHR inhibitor 
PDM2 with chemotherapy agents such as Doxorubicin or 
5-Fluorouracil enhances cancer-suppressive effects and 
prolongs OS duration in TDO2 overexpressing SMC-
7721 bearing HCC mice by inhibiting AHR/IL-6/STAT3/
NF-kB signaling [182]. The TDO inhibitor PF06845102/
EOS200809 has also shown promise for treating TDO-
expressing cancer, including HCC, glioblastomas, PC, 
and CRC, especially when used in combination with 
checkpoint inhibitors. Notably, TDO inhibitors increases 
Trp levels and enhances the efficacy of immunotherapy 
by overcoming IDO1-mediated immunosuppression, 
even in cancers without TDO expression at the tumor 
site [163]. Furthermore, in various HCC mouse models, 
overexpression of KMO or treatment with its substrate 
3-HAA significantly enhances the efficacy of the IDO1 
inhibitor Epacadostat, resulting in reduced cancer num-
bers and prolonged survival [183].
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Targeting Trp Metabolism in BC
Antibody-dependent cellular cytotoxicity (ADCC) and 
antibody-dependent cellular phagocytosis (ADCP) are 
critical for the effectiveness of anticancer therapeutic 
antibodies. However, recent studies have highlighted 
the detrimental role of ADCP macrophages in cancer 
immunosuppression. In HER2 + BC patients receiving 
neoadjuvant trastuzumab therapy, cancer-associated 
macrophages (TAMs) significantly upregulate PD-L1 and 
IDO, creating an immunosuppressive TME and contrib-
uting to poor treatment responses to trastuzumab. Com-
bining anti-PD-L1 and IDO inhibitors with therapeutic 
antibodies, such as trastuzumab or rituximab for BC 
and lymphoma treatment, has been shown to synergisti-
cally enhance therapeutic efficacy by boosting antican-
cer immunity [210]. The dual inhibitor IDO/TDO-IN-3 
also restores NK cell-mediated cytotoxicity and enhances 
trastuzumab efficacy, effectively inhibiting cancer pro-
gression in orthotopic BC mouse models [263]. Thio-
semicarbazide derivatives (1–3), as double inhibitors of 
topoisomerase IIα and IDO1, induce apoptosis, cause cell 
cycle arrest, and increase drug sensitivity in BC MCF-7 
and MDA-MB-231 cells in a dose-dependent manner. 
Their pro-apoptotic efficacy is significantly higher than 
that of etoposide and they exhibit beneficial ADME-
Tox properties [211]. Additionally, the novel pan IDO1/
IDO2/TDO inhibitor F04 increases the accumulation 
and infiltration of T cells in the TME, suppressing can-
cer progression dose-dependently in immunocompetent 
C57BL6 mice and a lung metastasis model of Lewis cells. 
Notably, F04 demonstrates a more potent effect in reduc-
ing the Kyn/Trp ratio compared to Epacadostat, further 
emphasizing its therapeutic potential [264].

Targeting Trp Metabolism in Other Cancers
In metastatic melanoma, the phase I/II MM1636 trial 
(NCT03047928) involving thirty anti-PD1 therapy-naive 
patients showed encouraging results for an immune-
modulatory vaccine (IO102/IO103) targeting IDO/PD-L1 
combined with adjuvant Montanide and nivolumab. The 
trial achieved an objective response rate (ORR) of 80%, a 
complete response rate (CR) of 43%, and a median PFS 
(mPFS) of 26 months. Vaccine-specific T cells from vac-
cinated patients recognized cancer cells in a target- and 
HLA-restricted manner and polarized myeloid cells to a 
cancer-associated phenotype, enhancing vaccine-specific 
responses [265]. However, the phase III ECHO-301/
KEYNOTE-252 trial (NCT02752074) with 706 patients 
with unresectable or metastatic melanoma, who were 
randomly assigned to receive the IDO1 selective inhibi-
tor Epacadostat plus the PD-1 inhibitor pembrolizumab 
(n = 354) or placebo plus pembrolizumab (n = 352), 
did not show additional benefits in PFS or OS over the 

placebo group [266]. The AHR pathway exhibits selective 
activity in cancer overexpressing IDO/TDO and is asso-
ciated with resistance to immune checkpoint inhibitors. 
The AHR pathway drives T cell dysfunction by promot-
ing a suppressive axis between Tregs and macrophages 
within the melanoma TME. Selective AHR blockade 
with CH-223,191 reverses IDO-Kyn-AHR-mediated 
immunosuppression and delays melanoma progression. 
Additionally, using the AHR antagonist KYN-101 in 
IDO/TDO-expressing cancer improves the limitations 
of targeting IDO or TDO alone and sensitizes cancer to 
anti-PD-1 therapy in melanoma [267]. IFN-γ prompts 
endogenous frameshifting events at Trp residues, leading 
to their presentation on HLA-I molecules and triggering 
peptide-specific T-cell responses in melanoma MD55A3 
cells. This process diversifies the peptidome landscape, 
driving IDO1-mediated Trp depletion, and plays a crucial 
role in enhancing immune recognition in anti-melanoma 
treatments [213]. In LC xenograft mouse models, the 
combined administration of the AHR inhibitor DMF and 
TKIs also significantly inhibits cancer growth, reverses 
resistance to TKIs, and prolongs survival time [193]. 
Furthermore, a Phase I trial (NCT01219348) is currently 
underway to evaluate a novel immunotherapeutic strat-
egy for patients with locally advanced or metastatic LC. 
This strategy involves IDO peptide vaccination in com-
bination with the immune-stimulating agent Aldara 
and the adjuvant Montanide to enhance the immune 
response. Additionally, targeting the serotonin pathway 
in carcinogenesis has emerged as a promising approach 
in various cancers, showing anticancer effects in some 
preclinical trials. In prostate cancer, the TPH1 inhibitor 
4-chloro-dl-phenylalanine (PCPA) disrupts the TPH1/5-
HT/β-catenin/ZBP-89/TPH1 feedback loop, significantly 
enhancing the anticancer effects of paclitaxel and sup-
pressing lung metastasis in prostate cancer-bearing mice 
[220].

Current Status and Future Prospects of Trp 
Metabolism in Cancer
Trp metabolism plays a crucial role in cancer progression 
and immune modulation, with research primarily focus-
ing on the KP, which generates multiple bioactive com-
pounds with immunosuppressive properties. However, 
despite significant attention on KP, the serotonin and 
indole pathways are less frequently explored in cancer 
[53, 64, 268]. Recent insights suggest that a more nuanced 
understanding of these alternative pathways is necessary 
to broaden the scope of therapeutic applications target-
ing Trp metabolism.
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Current Status of IDO1 and TDO inhibitors
Early research efforts were largely concentrated on devel-
oping IDO1 inhibitors, as IDO1 is a key enzyme that sup-
presses anticancer immunity by driving the conversion of 
Trp into Kyn [269–273]. While preclinical studies yielded 
promising results, translating these findings into clini-
cal success has been more challenging. A notable exam-
ple is the ECHO-301 phase III trial, which evaluated the 
selective IDO1 inhibitor Epacadostat (INCB24360) in 
combination with pembrolizumab (anti-PD-1 antibody) 
in patients with advanced melanoma. Unfortunately, the 
trial did not show significant improvement in PFS or OS 
compared to the placebo group, prompting a reevalu-
ation of the therapeutic potential of IDO1 inhibition 
alone [274–277]. This result has shifted the focus toward 
understanding the broader role of Trp metabolism in 
cancer and exploring more effective combination thera-
pies. One key limitation of these trials is the absence of 
reliable biomarkers to assess IDO1 levels and activity 
before and during treatment. Given that the efficacy of 
IDO1 inhibitors hinges on the presence and functionality 
of the enzyme, the development of robust clinical tools to 
stratify patients based on IDO1 expression and to moni-
tor enzyme activity in real time is crucial [278]. Addi-
tionally, the lack of standardized methods for measuring 
metabolite and drug concentrations at target sites com-
plicates the evaluation of treatment efficacy [279, 280].

In response to these challenges, recent research has 
expanded beyond IDO1 to include dual inhibitors that 
target both IDO1 and TDO. Preclinical data suggest that 
dual IDO1/TDO inhibitors may offer a more comprehen-
sive blockade of Trp metabolism, potentially overcoming 
the limitations of selective IDO1 inhibition [51, 55, 281]. 
In addition, an open-label, Phase I multicenter study 
(NCT03208959) is currently underway to assess the pre-
liminary efficacy and safety of a novel orally administered 
small-molecule IDO1/TDO dual inhibitor, HTI-1090, in 
patients with advanced solid tumors.

Expanding the Scope: KMO and TPH Inhibitors
Since KMO is overexpressed in several cancer types and 
plays a role in cancer development, the development of 
KMO inhibitors represents a novel strategy for cancer 
treatment [282–284]. In recent years, research into KMO 
inhibitors has shown potential as a promising therapeutic 
approach for various diseases. However, the majority of 
KMO inhibitors currently under investigation are focused 
on neurodegenerative diseases [243, 285, 286]. Due to the 
relatively poor efficacy of these inhibitors and limited 
preclinical trials, few have successfully completed clinical 
trials in cancer treatment. Expanding the focus of KMO 
inhibitors to cancer may open new therapeutic avenues, 
particularly by targeting KMO’s immunosuppressive and 

pro-tumorigenic effects [242]. Similarly, the TPH-ser-
otonin signaling pathway has gained attention as a con-
tributor to cancer progression. Several TPH inhibitors 
and serotonin receptor antagonists have shown the anti-
cancer effects in animal models [287, 288]. Notably, TPH 
inhibitors have shown promising results in the treatment 
of diverse disorders, such as neuropsychiatric conditions, 
gastrointestinal dysfunction, osteoporosis, and bone 
homeostasis. Additionally, the excessive secretion of ser-
otonin by cancer cells can lead to the typical symptoms 
of carcinoid syndrome and in 2017, TPH inhibitors were 
approved by the United States Food and Drug Adminis-
tration (FDA) for managing gastrointestinal symptoms 
associated with this condition [289–291]. Additionally, 
excessive serotonin secretion by cancer cells can cause 
the typical symptoms of carcinoid syndrome. In 2017, 
TPH inhibitors were approved by the United States Food 
and Drug Administration (FDA) for managing gastroin-
testinal symptoms associated with this condition. A pilot 
clinical trial (NCT03453489) is also investigating TPH 
levels in neuroendocrine cancer to assess the efficacy of 
Etiprate treatment. Despite these findings concerning the 
secretion pathway, its specific role in cancer progression 
and the therapeutic efficacy of targeting serotonin, TPH, 
and its receptors in cancer treatment remains limited.

Overcoming Translational Challenges
Despite significant advancements, the development of 
selective, potent, and safe inhibitors for Trp-metabolizing 
enzymes remains a challenge. Inhibitors targeting IDO1, 
TDO, and other enzymes within the Trp metabolic path-
way must balance efficacy with safety, as Trp metabo-
lism is essential for normal physiological processes [292]. 
Off-target effects and toxicity continue to be concerns, 
underscoring the need for improved detection tools to 
monitor tissue-specific Trp concentrations and metabo-
lite levels throughout treatment.

Combination Therapies and Future Directions
Given the challenges encountered with IDO1 inhibitors, there 
is growing interest in combining Trp metabolism inhibitors 
with immune checkpoint inhibitors, chemotherapy, or radio-
therapy to enhance anticancer immune responses and improve 
clinical outcomes [293]. Recent clinical trials (NCT03291054, 
NCT01961115, NCT02785250, NCT03006302, NCT03516708, 
NCT03661320, NCT02077881 and NCT02835729) have 
tested novel combinations, such as combining IDO1 inhibi-
tors with immunotherapies, or with radiotherapy and/or 
chemotherapy [82]. While some trials have demonstrated 
improvements in PFS and OS for specific patient popula-
tions, broader success remains elusive. Understanding the 
optimal sequencing and timing of combination therapies is 
critical, as Trp metabolism modulation may need to occur 
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in specific stages of the immune response to maximize 
therapeutic benefit [294–296].

Furthermore, researchers are increasingly focused on 
uncovering downstream effector mechanisms in Trp 
metabolism that may be relevant to cancer progres-
sion [180, 297]. While the immunosuppressive effects of 
kynurenine are well-established, emerging studies sug-
gest that indole derivatives may also promote cancer 
through activation of the AHR [88–91]. AHR regulates 
genes involved in immune suppression, inflammation, 
and cell proliferation, making it a promising target for 
future therapies.

Addressing these challenges necessitates uncover-
ing additional oncogenic mechanisms of Trp metabo-
lism, identifying the relevance of Trp-related molecules, 
and evaluating the roles and therapeutic significance of 
other enzymes within Trp metabolism [298–300]. The 
integration of cutting-edge technologies such as multi-
omics, CRISPR gene editing, and single-cell sequencing 
could help identify new therapeutic targets within Trp 
metabolism [269, 294, 301–303]. Moreover, the strate-
gic combination of Trp metabolism inhibitors with other 
immunotherapies, guided by improved biomarker detec-
tion and patient stratification, represents a forward-look-
ing approach that could enhance treatment outcomes in 
cancer.

Conclusion
Trp, an essential amino acid, influences various physi-
ological and pathological processes through its metab-
olism into serotonin, Kyn, and indole derivatives. 
Dysregulated Trp metabolismis observed in many can-
cers and is strongly linked to clinical features such as 
tumor stage, size, and lymph node metastasis. Addition-
ally, Trp metabolite levels correlate with patient progno-
sis, serving as robust predictive markers. Aberrant Trp 
metabolism affects multiple malignant processes in can-
cer, including cell proliferation, migration, invasion, and 
immune evasion, primarily through interactions with 
various cancer-related molecules and signaling pathways. 
Consequently, targeting Trp metabolism has emerged 
as a promising avenue in cancer therapy. While numer-
ous preclinical trials have demonstrated the anticancer 
effects of inhibiting Trp metabolism, translating these 
findings into clinical success remains a challenge. The 
failure of IDO1 inhibitors in clinical trials highlights the 
complexity of the TME, the compensatory activation of 
alternative immune-suppressive pathways, and the heter-
ogeneity of Trp metabolism across different cancer types 
and patient populations. To overcome these clinical chal-
lenges, future research should prioritize a deeper explo-
ration of the underlying mechanisms driving resistance, 
as well as utilizing multi-omics approaches to identify 

novel biomarkers and therapeutic targets. Another criti-
cal area for future research is the design of combination 
therapies that address the limitations of current Trp 
metabolism inhibitors. Given the compensatory activa-
tion of alternative immune-suppressive pathways, com-
bining Trp-targeted therapies with immune checkpoint 
inhibitors, targeted therapies, or even next-generation 
cancer vaccines to simultaneously target multiple meta-
bolic pathways may enhance therapeutic efficacy while 
minimizing resistance.

In summary, although significant progress has been 
made in understanding the role of Trp metabolism in 
cancer, addressing these research gaps is essential for 
clinical translation. The continued investigation of Trp 
metabolism, coupled with advanced technologies and 
innovative combination strategies, holds substantial 
promise for advancing cancer therapy and ultimately 
improving patient outcomes.
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