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In recent years, the study of the neural basis of consciousness, particularly in the

context of patients recovering from severe brain injury, has greatly benefited from the

application of sophisticated network analysis techniques to functional brain data. Yet,

current graph theoretic approaches, as employed in the neuroimaging literature, suffer

from four important shortcomings. First, they require arbitrary fixing of the number of

connections (i.e., density) across networks which are likely to have different “natural”

(i.e., stable) density (e.g., patients vs. controls, vegetative state vs. minimally conscious

state patients). Second, when describing networks, they do not control for the fact

that many characteristics are interrelated, particularly some of the most popular metrics

employed (e.g., nodal degree, clustering coefficient)—which can lead to spurious results.

Third, in the clinical domain of disorders of consciousness, there currently are no

methods for incorporating structural connectivity in the characterization of functional

networks which clouds the interpretation of functional differences across groups with

different underlying pathology as well as in longitudinal approaches where structural

reorganization processes might be operating. Finally, current methods do not allow

assessing the dynamics of network change over time. We present a different framework

for network analysis, based on Exponential Random Graph Models, which overcomes

the above limitations and is thus particularly well suited for clinical populations with

disorders of consciousness. We demonstrate this approach in the context of the

longitudinal study of recovery from coma. First, our data show that throughout recovery

from coma, brain graphs vary in their natural level of connectivity (from 10.4 to 14.5%),

which conflicts with the standard approach of imposing arbitrary and equal density

thresholds across networks (e.g., time-points, subjects, groups). Second, we show that

failure to consider the interrelation between network measures does lead to spurious

characterization of both inter- and intra-regional brain connectivity. Finally, we show that

Separable Temporal ERGM can be employed to describe network dynamics over time

revealing the specific pattern of formation and dissolution of connectivity that accompany

recovery from coma.
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1. INTRODUCTION

In the past 15 years, in vivo studies of the healthy and diseased
brain have increasingly focused on approaches aimed at assessing
the spontaneous functional architecture of the brain, conceived
as a network of interacting regions (1). Network analyses have
been successfully employed in many fields, including sociology
(2), computer sciences (3), public health (4), epidemiology
(5), and transportation (6), among others, to capture salient
aspects of each phenomenon. Indeed, while different fields often
employ different approaches to assessing network properties,
they all share the common goal of characterizing important
aspects of complex network function into a limited number
of metrics, which can, jointly, capture both what is unique
and what is shared across systems. Network approaches have
also been extensively employed toward understanding specific
aspects of cognition [e.g., (7)], development (8) and aging
(9), and, perhaps most frequently, the pathological brain [e.g.,
Alzheimer’s disease (10), Parkinson disease; (11), severe brain
injury; (12)]. This approach has also found fruitful application in
the study of human consciousness [e.g., (13–15)]. Indeed, many
of the proposals of how human consciousness arises from neural
function often make reference to aspects of brain activity as a
network of interacting areas, such as the reverberation and spread
of neural activity across fronto-parietal association regions (16,
17), the presence of synchronized long-range activity in specific
frequency bands [e.g., (18, 19)] and specific neural circuits [e.g.,
cortico-thalamic loops; (20)], the dynamic competition between
assemblies of cells (21), or to the degree to which a network
possesses certain topological characteristics [e.g., integration and
differentiation; (22)].

In the context of disorders of consciousness [DOC; (23)],
network approaches to the study of functional connectivity have
given rise to a fertile body of literature (see 24, for a recent
review). Yet, there are a number of important methodological
challenges which might play into the interpretation of such
studies [cf., (25, 26)] and which might explain some of
the contrasting results reported [e.g., the exact role of
thalamo-cortical vs. cortico-cortical connectivity in recovery of
consciousness; see (27–34)]. [See also (35) for further discussion].

In what follows, we propose that it is best to have both seed
based and graph theoretic questions in a single model. In the
neuroimaging literature, there are a number of limitations of
current approaches which have hindered the ability to use a single
model for combining seed based and graph theoretic approaches,
but there are models that have been developed by other fields
(36–40).

1.1. Four Problems in Current Network
Analysis Approaches
Current graph theory methods as employed in neuroimaging
(41, 42) suffer from a number of important shortcomings which
are particularly relevant in the domain of DOC. (We note that
the following discussion is in the context of network analysis as
currently implemented for neuroimaging data, and is not meant
to imply that other fields have not found solutions to them. In
fact, as we will argue below, we are advocating for importing into

the field of neuroimaging methods that have successfully been
applied in other domains).

1.1.1. Problem #1: Arbitrary Enforcing of Network

Density
Conventional graph theoretic approaches in neuroimaging
require sparse networks. That is to say, they require networks
(i.e., connectivity matrices) to have some connections (i.e., edges)
with non-zero values (typically integer, in binary networks, or
fractional, in weighted networks) and some with zero values—
as opposed, for example, to fully connected networks in which
all edges have non-zero values (i.e., each node is connected to
all other nodes with non-zero edges). Yet, since brain networks
are typically derived from pairwise correlations across time-series
of regions of interest, the starting point for network analysis is
typically a fully connected network [in fact, a complex network,
which is both fully connected and has positive and negative edges;
(43)]. It is thus common procedure to make the connectivity
matrices sparse by fixing their density (i.e., the proportion of non-
zero edges to the total number of possible edges), which is done
by retaining the strongest d connections and setting all remaining
ones to zero. The resulting network is thus sparse, with density

d
N(N−1)/2 , whereN is the number of nodes in the network. On the
one hand, this procedure ensures that any uncovered difference
across networks (e.g., patients vs volunteers; time-point A vs
time-point B) reflects some systematic aspect of their topological
characteristics and not, more trivially, the fact that they have
different densities. On the other hand, however, because of the
lack of a principled approach to perform this procedure, it is
currently typical to iteratively re-calculate network characteristics
at several density levels, from a lower boundmeant to ensure that
networks are estimable [such that the average nodal degree is no
smaller than 2 × log(N); (44)] to an upper bound such that the
mean small-world characteristic of networks is no smaller than
1 or 1.5 [e.g., (13)]. While conventional, the idea of enforcing
graphs to have the same density across groups, time-points,
or conditions is in itself problematic, because it is not hard
to imagine that some graphs might be naturally denser than
others [see (45)]. This is particularly relevant in the context of
the typical comparisons of interest in DOC such as patients vs.
healthy volunteers, patients in a Vegetative State vs. patients
in a Minimally Conscious State (vs. patients in a Locked-in
Syndrome), or within-patient changes over time (e.g., acute-to-
chronic designs). Of course, similar problems are encountered in
many other contexts (e.g., adolescents vs. older adults) and might
even apply to normal, within-group, variability in the healthy
brain. Mandating equal density across graphs might obscure
important differences across conditions of interest, bias results,
and lead to spurious findings.

One solution to the problem of network iterative thresholding
is to analyze complex networks [i.e., fully connected and signed
matrices; (43, 46, 47)]. Yet, despite this problem having been
well documented, as shown in a recent review focused on the
use of graph-theoretic approaches in the clinical context, less
than 7% of 106 published papers (up to April 2016) employed
complex matrices (48). All remaining studies only considered
non-negative and/or sparse matrices. In addition, it is important
to note two potentially unwanted limitations of using complex
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matrices. First, the use of complex matrices assumes that the
probability of connectivity between two regions is spatially
stationary, but it is in fact well known to be inversely related to
distance at both the neuronal and region levels [see, (49–51)].
Second, the use of complex matrices affects the formulation
of some metrics [e.g., modularity; (43, 46)] because positive
and negative edges are treated as separate sparse networks, an
issue that is further complicated by the frequent use of mean-
centering preprocessing strategies which are known to shift the
distribution of positive and negative edges (52, 53). Furthermore,
the formulation and interpretation of other metrics [e.g., path
based metrics such as characteristic path length/local efficiency,
betweenness centrality, etc.; (46, 54)], are also affected since
the weights represent both the strength and probability of the
connections (i.e., density). Thus, analyzing fully connected
signed graphs does avoid the thresholding issue but at the cost
of clouding the interpretation of metrics such as density and
path-based graph statistics.

1.1.2. Problem #2: Network Measures Are Not

Independent of Each-Other
A standard network analysis, as currently implemented in
the field, typically assesses a number of different topological
measures in parallel, such as characteristic path length, average
clustering, efficiency, and small-world characteristic, among
others [c.f., (43)]. Many of these characteristics, however, are not
independent of each other. In fact, they are often interrelated
and can greatly influence each other (55–57). Consider two
metrics often employed in graph theoretic analysis of brain data:
clustering coefficient and density. Clustering coefficient can be
described as the level of segregated neural processing within a
network (42). Density, as explained above, is a measure of the
number of existing edges within a network (i.e., connection with
non-zero value), divided by the total number of possible edges.
These two network characteristics are strongly interrelated: It has
been shown that there is a clear relationship between a network’s
density and its clustering coefficient (57). Similarly, dependencies
between many other network measures frequently employed in
the neuroimaging literature (e.g., degree, clustering coefficient,
characteristic path length, and small world index) have also been
reported (55, 56), highlighting the need to control for these
relationships in order to minimize the potential for spurious
findings [see (42, 55)]. Conventionally, this problem is addressed
by arbitrarily fixing network density (see Problem #1). This
approach, however, suffers from two important shortcomings.
First, as explained above, different networks might well have
different levels of natural—or stable—density. Second, it is
a rather weak control. For example, it only addresses the
dependencies of network measures on density, but ignores the
many other known correlations among features of networks
that are often assessed [cf., (55)], which, to date, have gone
unaccounted for in virtually all of the extant literature in the field.

1.1.3. Problem #3: Failure to Account for Structural

Information in Shaping Functional Networks
In the clinical context of DOC, despite the fact that patients
are well known to have heterogeneous underlying pathology,
which introduces many concerns for proper diagnosis (58,

59), functional [e.g., (13, 15, 28, 34, 60–63)] and structural
connectivity (64–69) are typically investigated separately. This
narrow approach is very problematic because it has been shown,
in the rodent model (70) and in healthy humans (71, 72),
that structural data can predict the functional connectivity as
estimated by correlations in the fMRI signal, as well as EEG
phase coupling in healthy volunteers (73). Failing to include
both structural and functional data will have a similar effect on
the analysis of functional networks as omitting any other graph
metric (i.e., problem #2): it will result in improper estimation of
the terms in the model and potentially spurious results. This issue
is particularly important in the clinical context of DOC given
their highly heterogeneous pathology and the fact that this can
change over time, which affects longitudinal comparison of brain
networks over time.

Diffusion weighted imaging (DWI) and blood oxygenation
level dependent (BOLD) can be used in conjunction to estimate
connectivity matrices using joint independent component
analysis [jICA; (74)], Connectivity Independent Component
Analysis [connICA; (75)] or partial least squares [PLS; (76)]. In
general, all three methods produce multiple group connectivity
matrices based on the covariance of BOLD and DWI data
across all participants. Both jICA and connICA produce multiple
components that are maximally spatially independent [for a
complete explanation of jICA see (77–79) and for a complete
explanation of connICA see (33)]. PLS produce a linear
combination of latent variables that maximally covary with each
other based on weighted structural and functional connections
[for a complete explanation of PLS see (80–83)]. These methods
incorporate both structural and functional connectivity in
the estimation of the connectivity matrices, but they require
researchers to choose the number of components (in jICA and
connICA) or number of latent variables (in PLS). Changing these
parameters influences the results of the connectivity estimation
and the standards for these parameters are still being investigated
for both jICA and connICA (78, 84–86). We thus propose an
alternative to these methods that avoids the necessity to estimate
the functional and structural connectivity jointly. In the approach
we describe below, the structural and functional connectivity
matrices are estimated separately, and the former is used as a
variable in estimating graph statistics for the latter (see section
2.6 for a complete description).

1.1.4. Problem #4: Network Dynamics—Estimating

Network Change Over Time
Finally, contrary to the assumption underlying conventional
network analysis in neuroimaging, connectivity between areas is
unlikely to be stationary processes. Rather, brain activity might
best be viewed as a malleable and variable process over time
(87). Yet, even in the few cases where this limitation has been
addressed [e.g., (88)], these types of approaches do not quantify
dynamic change of connectivity across time (or states). Rather,
they just dissect a time-series into multiple static networks and
compare them over their respective topological properties. In
other words, even these approaches are static in nature and fail
to capture the dynamics of network connectivity over time. In
the context of DOC, for example, this means that longitudinal
analysis of brain data can be employed to reveal differences in
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topological properties of networks at two different time-points,
but do not allow saying anything of the process of interest, which
is the dynamics of how one network transitioned into another
(e.g., how a network transformed as consciousness was regained
over time).

1.2. Exponential Random Graph Models
In response to these four shortcomings of current network
analysis, we present and demonstrate a novel [in the context
of DOC, for other contexts within neuroimaging, cf.: (89–
91)] approach to graph analysis, referred to as Exponential
Random Graph Models [ERGM; (36)]. The core idea underlying
ERGM is that instead of considering graphs as fixed entities
which can be described in terms of topological properties (e.g.,
clustering, path length, small world property), it attempts to
generate hypotheses about the (unobserved) stochastic processes
that gave rise to an observed network (92). Contrary to the
prevalent approach in neuroimaging, then, the presence/absence
of an edge within a network is not considered to be a fixed
property of a graph, but rather a random variable generated
by a stochastic process. In other words, rather than assuming
the observed network as “given" and fix, and describing
its topological characteristics (e.g., characteristic path length,
clustering coefficient), it tries to characterize the processes that
have generated the observed network. One particularly appealing
aspect of this approach is that, so long as the total number of
nodes (i.e., ROIs) constituting a network remains unchanged,
it allows for comparing across networks with different density
levels, thereby solving problem #1. The ERGM framework uses
the following exponential model:

Pθ (Y = y) =
exp(θTg(y))

c(θ)
(1)

where θ is a parameter vector that is modeled by g(y)
(i.e., any statistic of the graph). The parameter c(θ) is a
normalizing constant representing the parameter estimate for
all possible graphs (38). This normalizing constant is not
able to be analytically solved due to the combinatorics of the
graph structure. We can nonetheless approximate the unknown
population mean using c(θs) (i.e., the sample mean):

c(θ)

c(θs)
= Eθs exp(θ − θs)

Tg(yi)

c(θ)

c(θs)
≈

1

M

M
∑

i=1

exp(θ − θs)
Tg(yi) (2)

for derivations [see (38)]. These equations allows for an
approximation of the population mean using sample mean.
A bootstrapping method using Markov Chain Monte Carlo
(MCMC) methods is used to sample and estimate the
population mean. These methods assume Markovian principles
of independent draws and the ability to reach equilibrium.
Equilibrium is the state in which any edge that is toggled on or
off results in an equally probable graph. The general method is to
take the ratio of the probabilities of Yij = 1 (i.e., adding a single

edge) and Yij = 0 (i.e., no edge) conditioned on YC
ij = yCij (i.e., all

other pair of nodes in the graph).

P(Yij = 1|YC
ij = yCij )

P(Yij = 0|YC
ij = yCij )

= exp θ∗(s(Yij = 1)− s(Yij = 0))

log
P(Yij = 1|YC

ij = yCij )

P(Yij = 0|YC
ij = yCij )

= θ∗1(s(Yij))

LPL(θ) =
∑

log[P(Yij = yij)|(Y
C
ij = yCij )](3)

where the LPL(θ) is the log-pseudolikelihood for θ , which is
maximized by taking the maximum pseudolikelihood for θ

(38). This estimation process is performed for the model with
all the parameters (i.e., θ). The estimates give the mean and
standard error. These estimates were tested for significance in
each functional data set. Due to the MCMC, a t-statistic can
be estimated and is reported in the model output along with a
p-value.

For interpretation purposes, Equation 1 can be represented as
follows [the full derivations can be found in (38)]:

logit(Pθ (Yij = 1|nactors,YC
ij )) =

K
∑

k=1

θkδZk(y) (4)

where k is the number of network statistics in the model and
θk is the parameter estimate for each statistic. The δZk(y) is the
change in network statistic if a edge were added between any
node i and j. Thus, the interpretation of the network statistics
involve the change in probability of an adding a edge with certain
network statistic. The significance of a parameter estimate is one
compared to the expected parameter estimate in a null model
with the probability of all edges equal to 0.5 [i.e., (93)].

In what follows, we first demonstrate the insidiousness
of problem #2 in the context of well characterized, freely-
available, data on the business ties of Florentine families in
the fifteenth century (94), and then we apply the powerful and
flexible ERGM approach to estimating network statistics for
characterizing (brain) networks in the longitudinal context of a
patient recovering after coma after severe traumatic brain injury
(TBI). To anticipate the key points that will follow, ERGM,
which has been successfully employed in other contexts (36–40),
offers a number of substantial advantages which are particularly
important in the clinical context of DOC. First, it does not
require imposing (and assuming) the same level of density across
graphs, thus allowing estimating characteristics of each graph at
its “natural” density level. Second, it allows for controlling the
dependencies between network characteristics. In this sense, in
contrast to the conventional approach, which can be viewed as a
series of univariate regressions (i.e., one per metric) assessing the
topological characteristics across groups of graphs (e.g., patient
groups and controls vs. patients), ERGM is making use of a
multiple regression framework (39), in which all features are
considered together, and thus returns the “unique” contribution
of each network measure. Third, the multiple regression
framework extends to graph theoretic measures characterizing
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the structural connectivity of a network, thus accounting and
“parceling out” the effect of cross-sectional differences [e.g.,
(69)] and longitudinal changes in structural connectivity [e.g.,
(95, 96)] across graphs. Finally, a temporal implementation of
this technique, Separable Temporal ERGM (STERGM), allows
assessing the dynamic changes of network properties occurring
over observations (e.g., time, clinical groups).

2. METHODS

2.1. Florentine Business Ties Data
We demonstrate the importance of problem #2 using freely
available data for social network analysis. The dataset, which
has been extensively characterized in previous work, describes
business connections between Florentine families in the fifteenth
century (94). We use this data analysis to demonstrate the
interrelationship between network measures and how failure to
include them in a single full model (FM) can lead to spurious
results. Specifically, the relationship between network measures
is manipulated by constructing two identical networks with one
unique difference between them—that is, whether the Barbadori
family belongs to the blue group (Figure 1, left) or the green
group (Figure 1, right). As we will discuss further below, this
example focuses on the relationship between node mixing terms
(i.e., a measure of within-group [blue vs. green] connectivity)
and a higher order term called geometrically weighted edge
shared partners (GWESP; a type of triangles term; see section
2.6 for full description of both terms). To demonstrate the
effects of relationships between measures, we estimate three
models per each network: two partial models (PMs) including
an edges term and either the higher order term (PMA) or the
mixing terms (PMB), and the FM containing all terms. As we
will show, for each network, PMs return spurious results with
respect to both significance and magnitude of the parameter
estimates.

2.2. Patient
We demonstrate the use of ERGM models using longitudinal
data from a patient recovering from a severe brain injury.

A 40 to 45 year old person suffered a severe TBI due to
a fall. The patient suffered pulmonary contusion and liver
laceration, and presented with a post-resuscitation Glasgow
Coma Scale [GCS; (97)] of 3. Computerized tomography (CT)
revealed skull fractures, traumatic subarachnoid hemorrhage,
extradural hematoma, subdural hematoma, and bilateral frontal
lobe contusions. At the 3 acute imaging sessions, which occurred
on the 11, 18, and 25th days post-injury, the patient presented
a total GCS of 6 (Eyes opening (E): 1, Verbal response (V): 1,
Motor response (M): 4), 7 (E:1, V:1, M:5), and 10 (E:3, V:1,
M:6), respectively. While DoC diagnoses are typically not made
at such an acute stage, the behavioral profile of the patient was
consistent with a vegetative state [VS; i.e., wakefulness in the
absence of any behavioral sign of awareness of the self or the
environment; (23)] at the first time-point, with a minimally
conscious state minus [MCS-; i.e., wakefulness with intermittent
but reproducible signs of low-level non-reflexive behaviors, such
as orientation to noxious stimuli; (98)] at the second time-point,
and a an minimally conscious state plus [MCS+; i.e., wakefulness
with intermittent but reproducible signs of high-level non-
reflexive behaviors, such as response to command, intelligible
verbalization, or gestural or verbal yes/no responses; (98)] at
the third. At 6-months follow-up the patient was assessed with
a Glasgow Outcome Scale—Extended [GOS-E; (99)] in-person
interview and scored as being in a lower moderate disability (i.e.,
GOS-E = 5).

2.3. Experimental Design
The patient underwent 4 imaging sessions over the span of 6
months. The first 3 sessions occurred within a month post injury
(see above), and the follow-up session took place 181 days post-
injury. At each session the patient underwent (among other
clinical and research sequences) anatomical (T1-weighted) and
functional (T2∗-weighted) data protocols. T1-weighted images
were acquired with a 3D MPRAGE sequence (repetition time
[TR] = 1,900 ms, echo time [TE] = 3.43, 1× 1× 1 mm). BOLD
functional data were acquired with a gradient-echo echo planar
image (TR= 2,000 ms; TE= 25 ms, 3.5×3.5×4 mm). Diffusion
Weighted data were acquired with an echo planar sequence (TR

FIGURE 1 | Florentine business ties networks. Florentine business ties data with additional grouping. Left: Network A. Right: Network B. We note that two networks

are identical except for the Barbadori family being allocated to the blue group in the left graph and to the green group in the right graph.
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= 9,000 ms, TE= 90 ms, 64 directions, 3× 3× 3) using a b-value
of 1,000 and acquiring an additional B0 image. Acute data were
acquired on the in-patient 3 Tesla Siemens TimTrio system at
the Ronald Reagan UniversityMedical Center, while chronic data
were acquired on the out-patient 3 Tesla Siemens Prisma system
also at the Ronald Reagan Medical Center at the University of
California Los Angeles. The study was approved by the UCLA
institutional review board (IRB). Informed consent was obtained
from the legal surrogate, as per state regulations.

2.4. Data Preprocessing
2.4.1. BOLD Data Preprocessing
The functional data underwent a number of conventional
preprocessing steps including brain extraction, slice timing
correction, motion correction, band-pass filtering (0.08 ≤ Hz ≤
0.1), and removal of linear and quadratic trends. A nuisance
regression was employed to parcel out signals of non-interest
including motion parameters, white matter, cerebral spinal fluid,
and full-brain mean signal [which has been shown to alleviate the
consequences of in-scanner motion; (100)]. Affine registration
of the functional data to the standard template (MNI) was
performed using Advanced Normalization Tools [ANTs; (101,
102)].

2.4.2. DWI Data Preprocessing
The diffusion data were preprocessed using the following
pipeline: DWI preprocessing, registrations, probabilistic
tractography with tractography thresholding. All of these
processes were run using a bash script in parallel using the GNU
Parallel package (103).

2.4.2.1. DWI preprocessing
All preprocessing procedures were visually checked for optimal
quality. The T1-weighted data were brain extracted [optiBET;
(104)] and bias field corrected [BrainSuite BFC; (105)]. The
diffusion-weighted data were prepared for tractography with the
following steps: (1) visual quality checking of raw images; (2)
artifact checking/removal and motion correction with vector
rotation [DTIprep; (106)]; (3) eddy current distortion correction
followed by tensor fitting (i.e., linear fitting using weighted least
squares) and estimation of diffusivity metrics [BrainSuite’s BDP;
(107, 108)]; (4) brain extraction of the b0 image [BET; (109)]; and
(5) GPU-enhanced Bayesian estimation of the diffusion profile
with up to two principal directions per voxel (i.e., allowing for
crossing/kissing streamlines) using FSL’s bedpostx (110, 111).

2.4.2.2. Registrations
All registrations were visually checked for optimal quality. The
following steps were conducted: (1) linear registration of the
native diffusion data (b0 image) to the native T1-weighted
data [ANTs IntermodalityIntrasubject; (102)]; (2) nonlinear
registration (ANTs) of the native T1-weighted data to the
Montreal Neurological Institute (MNI) standard space (MNI Avg
152 T1 2 × 2 × 2 mm standard brain); (3) forward or inverse
transform concatenations [ANTs; (102)] to move between native
diffusion, native T1, and the MNI template.

2.4.2.3. Probabilistic tractography
GPU-enhanced probabilistic tractography between all regions of
the whole-brain atlas (i.e., iteratively seeding from each region
to all other regions as targets) was conducted with the “matrix1”
option in FSL’s probtrackx2 (110, 112). A minimum distance
of 4.8 mm (i.e., 2 voxel widths) was set to prevent artificial
streamlines passing through contiguous regions. The output
matrix of streamline counts between all regions was thresholded
to remove spurious streamlines with an optimization procedure
that minimizes asymmetries between the seed/target assignments
for each ROI-ROI pair [MANIA; (113)].

2.5. Brain Network Construction
For each dataset (both the functional and diffusion data), a graph
was constructed to provide a mathematical description of the
brain as a functional network. Brain graphs were constructed
in two steps. First, these data sets were parceled into 148
ROIs spanning the cortex, sub-cortical nuclei, cerebellum and
brainstem (see Figure 2). This parcellation scheme, which was
defined independently of our data, is made freely available by
Craddock and colleagues (114). Additionally, we used the Oxford
thalamic connectivity atlas (115) to further refine the parcellation
of the thalamus from 6 to 14 for a total of 148 ROI (i.e., 134
Craddock ROIs and 14 Thalamic ROIs). While other parcellation
schemes are available (e.g., Harvard-Oxford atlas, AAL atlas),
the present one has two main advantages [cf., (13)]. First, being
functionally defined, it clusters spatially proximal voxels by
the homogeneity of their functional connections as opposed to
clustering voxels by anatomical position which, as exemplified
by the case of the precentral gyrus ROIs in both the AAL and
the Harvard-Oxford atlases, might cluster together functionally
distinct sub-regions. Second, at our chosen level of resolution,
the Craddock ROIs have almost 50% more granularity as either
structural atlas (i.e., 148 ROIs vs., 90 and 112 for the AAL and
Harvard-Oxford atlases, respectively). Following parcellation, the
average time-course of all voxel within each ROI were extracted
and correlated across each pair of regions.

FIGURE 2 | Parcellation for structural and functional connectivity. Cortical and

subcortical parcellation of the brain data (114). The imaging sessions’ data

sets were parcellated into 148 ROIs throughout the cortex, sub-cortical nuclei,

cerebellum and brainstem. Figure from (13).
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Functional connectivity was assessed with a partial correlation
method using the Markov Network Toolbox [MoNeT; (116)]
in MATLAB. This approach, referred to as R3 (as in
resampling, random penalization, and random effects), combines
a penalized maximum likelihood estimation—or graphical
lasso—procedure with a resampling-based (bootstrapped) model
selection procedure, on whitened BOLD timeseries, to infer fully-
data driven stable functional connectivity estimates at the single-
subject (or group) level. Under this approach, each fMRI time
series is repeatedly bootstrapped in order to estimate the within-
subject variability and matrices of penalty parameters which
reduce selection bias and variability. This method thus reduces
the spurious connections from indirect sources arising from the
high dimensionality of fMRI data often seen when using the
conventional Pearson’s r method. Using partial correlations with
regularization parameters, the indirect sources are eliminated
and the sparsity of each matrix is determined by the within
subject variability. Thus, each functional data set returns a
connectivity matrix that represents connectivity from direct
sources, rather than indirect ones, and that is sparse, as
determined on a single-subject basis through bootstrapping and
regulatization. This latter point side-steps entirely the need
for arbitrary and iterative thresholding approaches (42). It is
important to point out, however, another important difference
between the partial correlations approach described above and
the standard correlation approach to estimating brain networks
as performed by most previous work [e.g., (13, 117, 118)].
On the one hand, the conventional correlational approach has
the advantage of allowing straightforward interpretation of the
elements of adjacency matrices as strength of the functional
connectivity between nodes. On the other hand, the matrices
generated are fully connected and thus requiring application
of a non-linear transformation (e.g., thresholding) in order to
render them sparse – a condition necessary for application
of many common graph theory metrics (42). In contrast, the
partial correlation method employed here returns a sparse
matrix. However, it does so at the cost of losing interpretability
of graph weights which can now be seen as the functional
connectivity between two nodes i and j after controlling for
the correlations with other nodes in the neighborhood (i.e.,
connected with) – say – i. For this reason, matrices obtained with
this novel methodology are typically binarized, thus resulting in
a sparse matrix of ones and zeros indexing the presence/absence
of functional connectivity between each pair of nodes (i.e.,
ROIs).

2.6. Graph Statistics
All ERGM models we used to analyze the patient data included
the same graph statistics. The model used for all the data sets was
specified as follows:

Pθ (Y = y) =

exp(θ1edges+ θ2nodecov(degree)+ θ3nodecov(efficency)+ θ4nodecov(cluster)+ θ5nodemix(latent)
+θ6nodemix(resting)+ θ7gwesp(alpha = λ))

c(θ)
(5)

Edges refers to the total number of edges for each functional
connectivity graph. This term allows control for the density of

each graph. In this sense it is thus similar to the intercept in a
linear regression and is thus typically not interpreted or further
analyzed.

There are four nodal covariate terms for the diffusion
data—three nodal covariates (i.e., degree, efficiency and cluster)
and the nodemix (latent) term –and a nodal covariate for the
functional connectivity (i.e., nodemix for resting). Degree is
the number of edges for each structural node. Efficiency is the
local efficiency of each node. Cluster is the clustering coefficient
of each node. The nodecov term estimates the probability of
functional connectivity edge as a function of each distribution of
the structural terms (i.e., degree, local efficiency and clustering
coefficient). A positive coefficient indicates an increase in the
probability of a functional connectivity edge as structural term
increases in magnitude. On the other hand, a negative coefficient
indicates an increase in probability of a functional connectivity
edge as the structural term decreases.

As shown in Equation (5), there are two nodemix terms:
latent and resting. The nodemix (latent) is the within and
between module connectivity of the structural connectivity.
Thus, this mixing term represents the probability of a functional
connectivity edge given the modular membership based on the
structural connectivity. The number of modules and modular
membership of each node is determined by a position latent
cluster ERGM (119, 120). These models have shown to be
able to use a latent space model with an a priori determined
number of dimensions using the parameter d (3 dimensions).
The nodes are arranged in a euclidean system with proximity
equating to probability of an edge. The clusters are determined
by the parameter G (3, 4, 7, and 6 for Acute first, second, third
sessions and Chronic session, respectively). This parameter sets
the number of Gaussian spherical clusters that are introduced in
the latent space. The estimation of position latent cluster ERGM
is a two step Bayesian estimation, but the exact specification is
beyond the scope of this paper [see (119)].

The nodemix (resting) is our mixing term for determining
the inter- and intra-regional connectivity of the resting state
networks and sub-cortical regions of the functional data.
Multiple parameter estimates were produced for this term.
Additionally, these mixing terms used the exogenous node
labels for each node’s membership in the seven resting state
networks (121) and sub-cortical regions. Each node of the brain
network was labeled either: frontoparietal, visual, somato-motor,
limbic, dorsal attention, ventral attention, default, subcortex
and thalamus. Each combination of the inter- and intra-
regional connectivity produced a mixing term and parameter
estimate. For example, one inter-regional mixing term would
be frontoparietal and thalamic connectivity. This parameter
estimate would give the probability of an edge existing between
the frontoparietal network and thalamus. An example of intra-

regional mixing term would be frontoparietal to frontroparietal.
This term would express the probably of an edge within the
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frontoparietal network. These mixing terms were used to assess
the connectivity between the within the resting state networks,
between the resting state networks, within the sub-cortical
regions, between the sub-cortical regions, and between resting
state networks and sub-cortical regions. This term incorporates
questions that would be addressed using seed based connectivity
analyses.

The geometrically weighted edged shared partners (GWESP)
can be expressed by this equation (37):

θt = logλt

v(y; θt) = eθt
n−2
∑

i= 1

[

1− (1− e−θt )i
]

EPi(y) (6)

In this equation, v is the GWESP term and θt is the log of
the decay parameter that was fixed in all the data sets. The
EPi(y) is the edge shared partners term for the entire graph. It
accounts for the number of each type of edge shared partner.
An edged shared partner is triangle that shares a common base.
Edge shared partners is a metric used to quantify the amount of
clustering in the form of transitivity in a network. High positive
parameter estimates indicate that transitivity is present above
and beyond all the other statistics in the model. Transitivity is
a higher order relationship present in most graphs which are
the local and/or global communication and the amount of local
cohesion. Differences in transitivity between patients could be a
key change that occurs from injury. This would be a disruption
of the clustering found within the patient’s brain. This type of
disruption would hamper local and/or global communication
and additionally it would indicate a lack of local cohesion within
a network.

The analysis was performed using the ERGM package (40) in
R. There are two ERGMs used on the patient data. A FM and used
all the terms from Equation (5). The FM was fit multiple times
to get assess the proper λ (the decay parameter) for the GWESP
term. The range of λ began at 0.05 and increase by increments
of 0.05 up to 2.0. Each iteration was checked by inspecting the
diagnostics of the MCMC. The models that have the best fit for
the parameter estimate GWESP were chosen (i.e., λ = 0.45). A
second model, the PM was fit. The structural terms (i.e., the
three nodecov and the nodemix for latent) were omitted from
this model to demonstrate the effects on the rest of the parameter
estimates.

The FM’s graph statistics were chosen based on two reasons:
the type of functional data being analyzed (i.e., resting state
data) and the first three problems outlined above (see sections
1.1.1–1.1.3). The nodemix (resting) terms were chosen because
this patient’s functional connectivity matrices were estimated
from the BOLD correlations during the resting state scans.
Thus, the intra- and inter- regional connectivity would be best
characterized by putative resting state networks. The number of
resting networks were chosen based on a data driven approach
[i.e., (121)] that estimates a number of networks based on stability
of clusters [for details on the clustering algorithm see (122)]
estimated from 1,000 subjects’ functional data. A seven network
parcellation was chosen because it minimized the instability

(121) and matches what has been previously discussed in the
literature [e.g., (123–126)]. Additionally, the thalamus group
was added because of its possible involvement in DOC [e.g.,
(28, 29, 32, 127)] or anesthesia induced loss of consciousness
[e.g., (117, 118, 128, 129)]. Finally, the subcortical and cerebellum
groups were added to ensure every node fit a grouping label.

The edges term allows for networks with varying density
to be modeled and compared (cf., Problem #1, section 1.1.1).
The higher order term (i.e., GWESP) describes the local
and/or global communication which could be an important
aspect in the recovery from brain injury [e.g., (14, 32, 130)],
and because it alleviates the problem of interrelation among
graph theoretic measures (cf., Problem #2, section 1.1.2) by
accounting for the higher order term’s variance and thus
avoiding it being improperly allocated to lower order terms
(i.e., edges, node mixing, and structural terms). As shown
below, failing to include the higher order term can affect the
estimation of parameters in either magnitude or sign. Structural
connectivity is important because, as stated in third problem (cf.,
section 1.1.3), it can be severely affected by TBI, systematically
changing over time and/or patient cohorts, and because it is
interrelated with functional connectivity. Thus, we chose four
terms for the structural connectivity that would capture the
number of connections of each node (i.e., degree), a measure
of integration [i.e., local efficiency (42), and higher order
relationships (i.e., clustering and modularity). The two higher
order terms were chosen because they capture two different
higher order dynamics: local grouping of nodes [i.e., clustering
coefficient (42)] and community structure [i.e., modularity;
(42)].

The models were assessed by using goodness of fit (GOF)
plots (38). After the model was estimated, a thousand simulations
were run from the model statistics. These simulations were
compared to the original graph’s probabilities for each graph
statistic (e.g., the probability of nodes with a specific degree,
probability edge shared partners and the probability minimum
geodesic distances). This is to ensure that the model represents
a graph similar to the original data that it was modeled from.
The metrics chosen for this example is degree distribution, edge
wise shared partner, minimum geodesic distance (another form
of local path length) and the nodal covariates from Equation
5. These are the most commonly used graph metrics because
they capture important characteristics of graphs that capture
the central tendencies and clustering of graphs. The MCMC
diagnostics were assessed for each parameter estimate. The GOF
plots were used to assess the fit of the FM and all four GOF plots
was assessed for goodness of fit.

2.7. Separable Temporal Exponential
Random Graph Model
STERGM (131) is an extension of the original ERGM. It is used
to assess the dynamics of networks as they change over time .
The same underlying methods for estimating ERGM is used in
STERGM. A model with network statistics is used to estimate
the parameter estimates for a network that changes over time. To
achieve this, two separate networks are investigated. A formation
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network is generated conditional on forming edges,

P(Y+ = y+|Y t; θ+) =
exp(θ+g(y+,X))

c(θ+,X,Y+(Y t))
, y+ ∈ Y+(yt) (7)

where a formation network Y+ is characterized by formation
parameters θ+ (131). The formation network statistics are
g(y+,X) and the normalizing constant is c(θ+,X,Y+(Y t)).
The second network formed is a dissolution network that
is conditional on the edges that dissolve. This network is
represented by the same variables labeled with minus instead of a
plus,

P(Y− = y−|Y t; θ−) =
exp(θ−g(y−,X))

c(θ−,X,Y−(Y t))
, y− ∈ Y−(yt) (8)

where a dissolution network Y− is characterized by dissolution
parameters θ− (131). The dissolution network statistics are
g(y−,X) and the normalizing constant is c(θ−,X,Y − (Y t)).
These networks can form a new network at time t+1 by applying
formation and dissolution networks on yt . This can be expressed
as:

Y t+1 = Y t ∪ (Y+ − Y t)− (Y tY−) (9)

The formation and dissolution networks are independent of each
other across the t + 1 time points (131). STERGM has the
unique ability to model networks as they transform over time
enabling research questions about the dynamics of a network.
The same model in Equation 5 was used in both the formation
and dissolution models. The quantifications of these networks
are similar to ERGM, but these two models slightly change
the interpretation of the parameter estimates. In the formation
model, a positive parameter estimate indicates a tendency for
edges for a network statistic form at time point t + 1, and
a negative parameter estimate indicates a lack of formation of
edges for a particular network statistic at time point t + 1. The
dissolution model has two separate interpretations based on the
sign of the parameter estimate. A negative parameter estimates
are interpreted as edges are more likely to dissolve and positive
parameters indicate edges aremore likely to be preserved. Despite
these differences in interpretation, all the same procedures were
used in STERGM as were used in ERGM (PM, FM, quality
control using MCMC diagnostics, and assessing fit using GOF)
for both the formation and dissolution models.

3. RESULTS

3.1. Florentine Business Ties
Network A has both the mixing term and triangles term as
significant model statistics when modeling them separately (i.e.,
PMA and PMB see Table 1). When they are combined together
into the FM, the mixing term remains significant but the triangle
term is no longer significant. Thus, the FM for the Florentine
business ties properly attributes the variance of each graph theory
statistic and the selective mixing term remains significant. The
network B has just the triangles term significant in the PMA

and FM. The mixing term is neither significant in the PMB nor
the FM.

3.2. Patient Recovery
Consistent with the argument we made in the introduction, as
shown in Figure 3 (bottom row), the brain network construction
using MoNeT resulted in four graphs with different estimated
densities. Specifically, the three acute sessions returned graph
densities of 10.4, 13.5, 12.9%, for the first, second, and third time-
points, respectively, while the chronic session presented a graph
density of 14.5% . Overall, then, the density differential between
acute session 1 and chronic session was 4.1%, and the general
acute-to-chronic pattern appeared to be a trend toward greater
density. The structural connectivity (Figure 3, top row), on the
other hand, had less variability in the densities of the graphs over
time (i.e., 6.6, 6, 5.3, and 5.3%; a total difference of 1.3% between
acute session 1 and chronic session).

3.2.1. Integrating Functional and Structural

Connectivity
When we compared the properties of the network as estimated
relying exclusively on functional connectivity (i.e., PM) as
compared to when both functional and structural connectivity
were jointly considered (i.e., FM), the PM included two
significant positive inter-regional connectivity parameters (i.e.,
between thalamus and subcortex and between limbic network
and subcortex; see top of Figure 4) which were no longer
significant once structural connectivity was included (i.e., in the
PM), suggesting their spurious status. More broadly, the positive
parameter estimates became less positive and the negative
parameter estimates became more negative. The only structural
terms that were significant were the nodal covariate mixing term
for connectivity between latent clusters 2 and 3 and within latent
clusters 3 (see Table 2).

At the second acute time-point, the PM and the FM again
differed, with the latter showing an additional significant positive
parameter estimate for connections between dorsal attention
network and subcortex (see bottom Figure 4), three inter-
regional connectivity parameter estimates that became non-
significant (i.e., connections between cerebellum and subcortex,
default network and frontoparietal network and visual network
and dorsal attention; see bottom Figure 4) and two intra-regional
connectivity parameter estimates that became non-significant
(i.e., connections within the subcortex and ventral attention
network; see bottom Figure 4). Overall, the parameter estimates
both increased and decreased in magnitude with or without
changing significance. Similar to the first acute session, the
structural terms were only significant for the nodal covariate
mixing term (i.e., between latent clusters 1 and 3, and within
latent clusters 1, 2, 3, and 4; see Table 2).

In the third acute session, six inter-regional positive parameter
estimates (i.e., connections between cerebellum and dorsal
attention network, frontoparietal network and dorsal attention
network, frontal parietal network and ventral attention network,
dorsal attention network and somatomotor network, limbic
network and visual network and limbic network and subcortex;
see right Figure 5) and three intra-regional positive parameter
estimates (i.e., connections within the dorsal attention network,
somatomotor network and ventral attention network; see
Figure 5) became non-significant once structural connectivity
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TABLE 1 | Florentine business ties models.

ERGM Parameter Estimates

Network A Network B

PMA PMB FM PMA PMB FM

Edges −2.44∗∗∗ −3.42∗∗∗ −3.54∗∗∗ −2.46∗∗∗ −2.27∗∗∗ −2.75∗∗∗

(0.40) (0.72) (0.70) (0.39) (0.43) (0.49)

Nodal Covariate Mixing: Within Group 0 1.63 1.60 0.15 0.31

(0.95) (0.88) (0.75) (0.65)

Nodal Covariate Mixing: Within Group 1 2.60∗∗ 2.16∗∗ 1.17 0.91

(0.80) (0.82) (0.61) (0.48)

GWESP (Fixed 0.8) 0.53∗ 0.32 0.54∗ 0.50∗

(0.23) (0.28) (0.23) (0.23)

Three models are run on each network in Figure 4: PMA, PMB, FM. The PMA has just the edges and triangles term. The PMB has just the edges and mixing term. The FM has all three

terms. Each term has a parameter estimate, a standard error in parenthesis and a p-value indicated by asterisks. The LATEX code to create this table was produced by the R package

called texreg (132). ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

FIGURE 3 | Patient recovery: network densities. Top Four Graphs are the thresholded [MANIA; (113)] structural connectivity. The first acute imaging session, second

acute imaging session, third acute imaging session and chronic imaging sessions had 6.6, 6, 5.3, and 5.3% densities, respectively. Bottom Four Graphs are the

thresholded functional connectivity using partial correlations [MoNeT; (116)]. The first acute imaging session, second acute imaging session, third acute imaging

session and chronic imaging sessions had 10.4, 13.5, 12.9, and 14.5% densities, respectively.

was included in the model. Similar to the first acute session, the
parameter estimates generally decreased in magnitude. Finally,
consistent with the first two acute sessions, the only significant
structural feature was the nodal covariate mixing term (i.e.,
between latent clusters 2 and 3, latent clusters 1 and 4, latent
clusters 1 and 6, latent clusters 3 and 6 and latent clusters 5 and
7, and within latent clusters 1, 2, 3, 4, 5, 6, and 7; see Table 3).

In the chronic session, two inter-regional positive parameter
estimates became non-significant after inclusion of the
structural connectivity terms (i.e., between default network
and frontoparetial network and default network and visual
network; see right Figure 5). Conversely, unlike in the acute
sessions, we also observed the reverse effect, with the the visual

network and ventral attention network parameter estimate
became significant in the FM. Additionally, the structural terms
were only significant for the nodal covariate mixing term (i.e.,
between latent clusters 1 and 3, latent clusters 2 and 3, latent
clusters 1 and 4, latent clusters 3 and 5, latent clusters 4 and 5,
latent clusters 1 and 6 and latent clusters 2 and 6 and within
latent clusters 4; see Table 3).

Finally, across all imaging sessions the GWESP parameter
estimate was reduced in magnitude (see Tables 2, 3) by the
addition of the structural terms, with the largest difference seen
in third acute session (see Table 3). Additionally, the GOF (see
Figure 6) are fit for every statistic in all of the FM. All the GOF
terms fit well except for a portion of the edge shared partners, but
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FIGURE 4 | Patient recovery ERGM. Comparison of results for the FM and PM for acute sessions 1 and 2. The left figures display the FM mixing term results for the

Acute first and second sessions. The mixing term term accounts for the inter- and intra-regional connectivity. The legend displays tints of red for significant positive

parameter estimates. The right figures display the PM mixing term results for the Acute first and second sessions. The coloring scheme is the same as the FM. These

figures are symmetric within each model because the graphs are undirected.

in the model statistics (the far right in Figure 6) are well fit to the
original data.

As we will discuss below, the differences we are reporting
between the results obtained with the conventional model (i.e.,
PM), estimated form functional connectivity alone, and those
obtained with the (i.e., FM), estimated from both the functional
and structural connectivity, demonstrates the risk of drawing
spurious conclusions when relying on the PM.

3.3. STERGM
The STERGM allowed us to look at the temporal dynamics of
recovery post severe brain injury with two parallel models: a
formation model and a dissolution model. The formation model
produces parameter estimates describing how likely it is that
new connections (i.e., edges) form throughout the recovery from
coma, while the dissolution model produces parameter estimates

describing how likely it is that existing connections dissolve (or
persist) throughout recovery.

In our index patient, the formation model showed a
significant negative edges parameter estimate and a significant
positive GWESP parameter estimate, the latter implying a
tendency to form edges over time that close triangles (see
Table 4). Additionally, none of the structural nodal covariates
were found to be significant (see Table 4). There were,
however, four significantly positive parameter estimates for
intra-regional connectivity (i.e., default network, frontoparietal
network, thalamus, and visual network; see left Figure 7), three
significantly negative parameter estimates for inter-regional
connectivity (i.e., between default network and visual network,
somatomotor network and frontoparietal network, and ventral
attention network and visual network; see left Figure 7), and
two significantly positive parameter estimates for inter-regional
connectivity (i.e., between default network and thalamus,
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TABLE 2 | Patient recovery ERGM.

ERGM Parameter Estimates

First Acute Second Acute

PM FM PM FM

Edges −6.29∗∗∗ −6.34∗∗∗ −7.64∗∗∗ −7.71∗∗∗

(0.28) (0.56) (0.36) (0.59)

Nodal Covariate: Degree (Structural) 0.00 0.00

(0.00) (0.01)

Nodal Covariate: Local Efficiency

(Structural)

0.10 0.35

(0.44) (0.35)

Nodal Covariate: Cluster Coefficient

(Structural)

−0.08 −0.33

(0.34) (0.29)

Nodal Covariate Mixing: Latent

Cluster 1 to 1 (Structural)

0.03 1.01∗∗∗

(0.08) (0.15)

Nodal Covariate Mixing: Latent

Cluster 2 to 2 (Structural)

0.07 0.82∗∗∗

(0.17) (0.11)

Nodal Covariate Mixing: Latent

Cluster 1 to 3 (Structural)

−0.11 0.33∗∗

(0.08) (0.12)

Nodal Covariate Mixing: Latent

Cluster 2 to 3 (Structural)

−0.28∗ 0.16

(0.12) (0.11)

Nodal Covariate Mixing: Latent

Cluster 3 to 3 (Structural)

0.24∗ 0.91∗∗∗

(0.10) (0.12)

Nodal Covariate Mixing: Latent

Cluster 1 to 4 (Structural)

0.23

(0.13)

Nodal Covariate Mixing: Latent

Cluster 2 to 4 (Structural)

0.22

(0.12)

Nodal Covariate Mixing: Latent

Cluster 3 to 4 (Structural)

−0.09

(0.12)

Nodal Covariate Mixing: Latent

Cluster 4 to 4 (Structural)

0.86∗∗∗

(0.13)

GWESP (Fixed 0.45) 2.09∗∗∗ 2.07∗∗∗ 3.11∗∗∗ 2.94∗∗∗

(0.13) (0.13) (0.21) (0.20)

Parameter estimates for the FM and PM of the Acute first and second sessions. Themixing

term for resting state are excluded because they are in Figure 4. All of the structural

parameter estimates are listed in the FM columns. The edges and GWESP parameter

estimates are for the functional connectivity in the PMs and FMs. The LATEX code to

create this table was produced by the R package called texreg (132). ∗p < 0.05; ∗∗p <

0.01; ∗∗∗p < 0.001.

and somatomotor network and ventral attention network;
see left Figure 7). The dissolution model has a significantly
negative edges parameter estimate and significantly positive
GWESP parameter estimate (see Table 4). Also, none of the
structural terms were significant for the dissolution model.
Additionally, all ten parameter estimates for intra-regional
connectivity (i.e., cerebellum, default network, dorsal attention
network, frontoparietal network, limbic network, somatomotor
network, subcortex, thalamus, ventral attention network, and
visual network) significantly positive (see right Figure 7) and
11 significantly positive parameter estimates for inter-regional
connectivity (i.e., between cerebellum and visual network,
default network and frontoparietal network, dorsal attention
network and frontoparietal network, dorsal attention network
and somatomotor network, dorsal attention network and ventral
attention network, dorsal attention network and visual network,

frontoparietal network and thalamus, somatomotor network and
ventral attention network, subcortex and thalamus, and thalamus
and visual network; see right Figure 7). Finally, the GOF (see
Figure 8) were fit well for every statistic in both the formation
and dissolution model. Overall, the model was thus well fit for
both the formation and dissolution models. All the GOF terms fit
well except for a portion of the edge shared partners, but in the
model statistics are well fit to the original data.

4. DISCUSSION

In this work, we have addressed four issues which, while general
to the implementation of network theory in the field of functional
neuroimaging, are particularly relevant to studies in the clinical
context of DOC. In what follows we discuss how the approach
we have demonstrated above in a patient recovering from coma
resolves specifically each of the four problems outlined in the
introduction. The first three problems discussed were solved
using a single model which controls for (i) the density of the
functional connectivity, (ii) the effects of variance/change in
structural connectivity on the functional metrics, while (iii)
modeling the intra- and inter-connectivity of the resting state
networks and the effects of higher order terms (i.e., GWESP). The
final problem was resolved using STERGM to model the network
dynamics in recovering from coma.

4.1. Solution to Problem #1: Use Natural
Density, Not Arbitrarily Fixed Density (i.e.,
Use a Multiple Regression
Framework—Part I)
As our longitudinal data shows, consistent with results from
other domains of neuroscience [see (45, 133)], brain graphs
are susceptible to having different “natural” levels of density at
which they are the most stable and which might thus be ideal to
estimate network properties. In our data, over the progression
of 6 months post injury, as the patient recovered consciousness
and cognitive function, the natural brain graph density went
from 10.4 to 14.5%. These density differences were revealed
thanks to the use of MoNeT (116), a tool which combines a
penalized maximum likelihood estimation with a resampling-
based (bootstrapped) model selection procedure in order to
find the most stable level of sparse brain graph given a set of
time-dependent measurements (e.g., fMRI data). On the one
hand, as we will explain below, these differences might well
reflect important aspects of network dynamics in the recovery
of consciousness post severe brain injury. On the other hand,
regardless of the ultimate interpretation of the finding in of
itself, had we employed the standard approach and enforced
equal density across brain graphs in order to allow comparability
(42, 55), these differences would have been obscured and would
have introduced a bias in the direct comparison of topological
properties across graphs. Ultimately, an accurate estimation of
the connectivity is necessary to correctly model the connectivity.
ERGM and STERGM allow for controlling the density without
having to fix the density for all graphs. This allows for data driven
approaches to allow the density to vary based on the stability

Frontiers in Neurology | www.frontiersin.org 12 June 2018 | Volume 9 | Article 439

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Dell’Italia et al. Exponential Random Graphs in DOC

FIGURE 5 | Patient recovery ERGM. Comparison of results for the FM and PM for acute session 3 and chronic session. The left figures display the FM mixing term

results for the Acute third session and Chronic session. The mixing term term accounts for the inter- and intra-regional connectivity. The legend displays tints of red for

significant positive parameter estimates and the significant negative parameter estimates are colored in tints of blue. The right figures display the PM mixing term

results for the Acute third session and Chronic session. The coloring scheme is the same as the FM. These figures are symmetric within each model because the

graphs are undirected.

of the connectivity estimates. This natural variance could reveal
differences in graph statistics that would otherwise be masked
by fixing density. Overall, this result further demonstrates that,
when arbitrarily enforcing equal density across graphs, we are in
fact biasing our results toward the graphs with natural density
closest to the threshold employed. While we show this in the
context of time, it immediately translates to cross-sectional
analyses that are also typical of the field of DOC (e.g., healthy
controls vs. patients), with the prediction that the more different
the natural density across groups, the greater the bias in the
results.

4.2. Solution to Problem #2: Control for
Interrelations Across Network Metrics (i.e.,
Use a Multiple Regression
Framework—Part II)
As discussed above, ERGM can cope with comparing graphs
with different natural densities because it factors in density as

a variable in the model (in other words, it controls explicitly
for different densities). Similarly, ERGM can also control
for interrelations across the many metrics that are typically
estimated by explicitly including them all in a single model.
As mentioned in the introduction, this approach is akin to
performing a multiple regression model in which each network
feature is evaluated for its unique contribution to the graph, as
opposed to the current graph theoretic approach dominating
in neuroimaging, which is akin to running several single-
variable regressions, one per topological feature investigated.
The Florentine business networks were used to demonstrate the
effect of leaving out significant contributing factors to the model,
something that renders our ERGM vulnerable to correlations
between graph properties similar to the current conventional
approached (42). As shown in Table 1, using PMs can lead
to incorrectly estimating the magnitude or the significance of
network measures. For example, in network A (Figure 1, left),
the failure to include the mixing terms leads to a significant
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TABLE 3 | Patient Recovery ERGM.

ERGM Parameter Estimates

Third Acute Chronic

PM FM PM FM

Edges −7.97∗∗∗ −7.27∗∗∗ −8.05∗∗∗ −8.07∗∗∗

(0.36) (0.63) (0.42) (0.57)

Nodal Covariate: Degree (Structural) −0.01 0.01

(0.01) (0.01)

Nodal Covariate: Local Efficiency

(Structural)

0.02 −0.11

(0.12) (0.16)

Nodal Covariate: Cluster Coefficient

(Structural)

−0.22 0.33

(0.15) (0.17)

Nodal Covariate Mixing: Latent

Cluster 1 to 1 (Structural)

2.33∗∗∗ 0.34

(0.42) (0.24)

Nodal Covariate Mixing: Latent

Cluster 2 to 2 (Structural)

1.17∗∗∗ −0.06

(0.23) (0.24)

Nodal Covariate Mixing: Latent

Cluster 1 to 3 (Structural)

−0.48 −0.34∗

(0.44) (0.17)

Nodal Covariate Mixing: Latent

Cluster 2 to 3 (Structural)

0.47∗ −0.51∗∗

(0.23) (0.17)

Nodal Covariate Mixing: Latent

Cluster 3 to 3 (Structural)

1.24∗∗∗ 0.29

(0.24) (0.15)

Nodal Covariate Mixing: Latent

Cluster 1 to 4 (Structural)

1.25∗∗∗ −0.52∗∗

(0.26) (0.20)

Nodal Covariate Mixing: Latent

Cluster 2 to 4 (Structural)

0.35 −0.55∗∗

(0.24) (0.19)

Nodal Covariate Mixing: Latent

Cluster 3 to 4 (Structural)

0.35 −0.55∗∗∗

(0.23) (0.16)

Nodal Covariate Mixing: Latent

Cluster 4 to 4 (Structural)

1.11∗∗∗ 0.56∗∗

(0.23) (0.18)

Nodal Covariate Mixing: Latent

Cluster 1 to 5 (Structural)

−0.35 −0.20

(0.51) (0.20)

Nodal Covariate Mixing: Latent

Cluster 2 to 5 (Structural)

−0.01 −0.26

(0.26) (0.20)

Nodal Covariate Mixing: Latent

Cluster 3 to 5 (Structural)

0.27 −0.52∗∗

(0.26) (0.17)

Nodal Covariate Mixing: Latent

Cluster 4 to 5 (Structural)

0.16 −0.39∗

(0.26) (0.19)

Nodal Covariate Mixing: Latent

Cluster 5 to 5 (Structural)

2.09∗∗∗ 0.42

(0.31) (0.23)

Nodal Covariate Mixing: Latent

Cluster 1 to 6 (Structural)

1.20∗∗∗ −0.42∗

(0.30) (0.20)

Nodal Covariate Mixing: Latent

Cluster 2 to 6 (Structural)

0.60∗ −0.37∗

(0.24) (0.18)

Nodal Covariate Mixing: Latent

Cluster 3 to 6 (Structural)

−0.95∗ −0.23

(0.40) (0.16)

Nodal Covariate Mixing: Latent

Cluster 4 to 6 (Structural)

0.39 −0.22

(0.24) (0.17)

Nodal Covariate Mixing: Latent

Cluster 5 to 6 (Structural)

0.37 −0.03

(0.29) (0.18)

Nodal Covariate Mixing: Latent

Cluster 6 to 6 (Structural)

1.74∗∗∗ 0.30

(Continued)

TABLE 3 | Continued

ERGM Parameter Estimates

Third Acute Chronic

PM FM PM FM

(0.29) (0.19)

Nodal Covariate Mixing: Latent

Cluster 1 to 7 (Structural)

−0.54

(0.51)

Nodal Covariate Mixing: Latent

Cluster 2 to 7 (Structural)

0.42

(0.24)

Nodal Covariate Mixing: Latent

Cluster 3 to 7 (Structural)

0.28

(0.25)

Nodal Covariate Mixing: Latent

Cluster 4 to 7 (Structural)

−0.15

(0.27)

Nodal Covariate Mixing: Latent

Cluster 5 to 7 (Structural)

0.59∗

(0.26)

Nodal Covariate Mixing: Latent

Cluster 6 to 7 (Structural)

0.30

(0.27)

Nodal Covariate Mixing: Latent

Cluster 7 to 7 (Structural)

1.48∗∗∗

(0.26)

GWESP (Fixed 0.45) 3.23∗∗∗ 2.87∗∗∗ 3.48∗∗∗ 3.28∗∗∗

(0.20) (0.20) (0.24) (0.24)

Parameter estimates for the FM and PM of the Acute third session and Chronic session.

The mixing term for resting state are excluded because they are in Figure 5. All of the

structural parameter estimates are listed in the FM columns. The edges and GWESP

parameter estimates are for the functional connectivity in the PMs and FMs. The LATEX

code to create this table was produced by the R package called texreg (132). ∗p < 0.05;
∗∗p < 0.01; ∗∗∗p < 0.001.

GWESP term, however, it appears to be overestimated as
compared to the FM (where it is not significant). In other
words, on the basis of the PM results, one would be justified in
concluding that triadic closure (i.e., the tendency for edges to
appear where they complete triangles) is a key stochastic process
underlying the network. Yet, the FM shows that this result is
spurious and is in fact due to the mixing term— that is, to the
dynamics of within-group connectivity, and not triadic closure.
As shown in Table 1, changing group membership of one node
alone, preserving all other aspects of the network, affected both
qualitatively and quantitatively the network measures (compare
the FM columns for PMA and PMB in Table 1). Similarly
to Network A, Network B’s PMs returned different parameter
estimates than the FM. As we will discuss below, a similar effect
is at play in the neuroimaging data where, failure to include
structural information, could have lead to incorrectly attributing
to functional connectivity between the fronto-parietal and the
default mode networks a network characteristic that is in fact due
to structural connectivity (i.e., problem #3, cf., Figure 4, 5).

4.3. Solution to Problem #3: Adjust for the
Effects of Structural Connectivity on
Functional Connectivity (i.e., Use a Multiple
Regression Framework—Part III)
As shown in the results, ERGM is capable of addressing
the currently unresolved issue of integrating functional and
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FIGURE 6 | Patient recovery ERGM. Goodness of fit plots for the four FM (i.e., Acute Session 1, Acute Session 2, Acute Session 3 and Chronic Session). The black

line marks the respective networks; the box-and-wiskers indicate the model data obtained from the 1000 simulations of each model (see section 2.6).

structural connectivity in a unique framework (37, 38, 40).
Analogously to the two previous points, the solution employed
by ERGM is to include structural connectivity terms in the
model, thus explicitly adjusting for the relationship between the
structural and functional connectivity. In our data, inclusion
of structural terms in the model affected all other parameter
estimates, empirically demonstrating that, in the context of
recovery of consciousness after severe brain injury, failing to
include structural connectivity is tantamount to mis-specifying
the model [similarly to not including network density (i.e.,
problem #1)] or not modeling all estimated metrics in a single
model [(i.e., problem #2)]. While we recognize that this is likely
to be an issue in any field where structural connectivity might
differ across groups and/or individuals, there is also little doubt
that this is particularly problematic in the context of DOC where
the underlying structural architecture is likely to be substantially
different from healthy volunteers [e.g., (64, 134)], across different
clinical groups [e.g., (69)], and over time [e.g., (96, 135) as well as
in the data presented here].

Specifically, our results show that when structural data
are included (i.e., in the FMs), the probability of inter-
and intra-regional connectivity changes—as compared to the

PMs—including: parameter estimates with a higher magnitude
in the PM (e.g., connections between default network and ventral
attention network, limbic network to thalamus, and within limbic
network in the Acute First session), parameters with a lower
magnitude in PM (e.g., connections between visual network
and cerebellum, visual network and subcortex or visual network
and thalamus in the Acute Second session), and parameters
which went from non-significant in the PM to significant in
the FM (e.g., connections between dorsal attention network and
subcortex in the Acute Second session or connections between
visual network and ventral attention in the Chronic session)
and viceversa (e.g., connections between default network and
frontoparietal network in the Chronic session or connections
between thalamus and subcortex in the Acute First session).
These results have immediate theoretical implications for the
field of DOC in as much as the partial ERGM model in
our patient shows increased likelihood of connectivity between
the default mode and the fronto-parietal networks throughout
recovery from coma (see Figure 4, 5). This could be (mistakenly)
construed as bearing on the issue of the relationship between
the “external awareness” and “internal awareness” networks in
DOC (136, 137). For example, the relationship between these
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TABLE 4 | Patient Recovery STERGM.

STERGM Parameter Estimates

Formation Dissolution

Edges −10.03∗∗∗ −3.56∗

(1.04) (1.79)

Nodal Covariate: Degree (Structural) 0.01 0.03

(0.01) (0.02)

Nodal Covariate: Local Efficiency

(Structural)

−0.14 −1.27

(0.64) (1.64)

Nodal Covariate: Cluster Coefficient

(Structural)

0.34 1.33

(0.49) (1.25)

Nodal Covariate Mixing: Latent

Cluster 1 to 1 (Structural)

−0.04 −0.01

(0.09) (0.21)

Nodal Covariate Mixing: Latent

Cluster 2 to 2 (Structural)

0.04 0.30

(0.17) (0.41)

Nodal Covariate Mixing: Latent

Cluster 1 to 3 (Structural)

−0.12 −0.11

(0.09) (0.24)

Nodal Covariate Mixing: Latent

Cluster 2 to 3 (Structural)

−0.04 0.19

(0.11) (0.32)

Nodal Covariate Mixing: Latent

Cluster 3 to 3 (Structural)

−0.00 −0.13

(0.14) (0.32)

GWESP (Fixed 0.75) 3.26∗∗∗

(0.33)

GWESP (Fixed 0.25) 0.27∗∗∗

(0.08)

Parameter estimates for the formation and dissolution models. The mixing term for resting

state are excluded because they are in Figure 7. All of the structural parameter estimates

are listed in the FM columns. The edges and GWESP parameter estimates are for the

functional connectivity in the formation and dissolution models. The LATEX code to create

this table was produced by the R package called texreg (132). ∗p < 0.05; ∗∗p < 0.01;
∗∗∗p < 0.001.

two networks was no longer observed once structural data was
included in the FM exposing the initial finding as spurious and
likely reflecting improper attribution of variance due to leaving
out the structural terms from the model.

Finally, we note that ERGM has an important advantage
over other techniques in the context of integrating functional
and structural connectivity. Indeed, previous approaches only
made use of the structural connectivity in order to predict the
functional network (71, 72) or in order to jointly estimate the
functional and structural connectivity (74–76). ERGM, however,
allows estimating the influence of structural connectivity on the
properties of the functional networks, something which, even at
the level of one patient alone, has a large enough effect to change
the significance and/or magnitude of the network’s parameter
estimates.

4.4. Solution to Problem #4: Assess
Dynamics of Change Across Time-Points,
Not Static Differences Across Time-Points
Finally, an additional advantage of this new approach is the
ability to directly analyze network dynamics over time—an issue
that is very important in the context of loss and recovery
of consciousness after severe brain injury (28, 34). In our
example data, the two STERGM models uncovered a strong
positive parameter estimates for intra-regional connectivity in
all networks, for the dissolution model, indicating that in the
process of recovery there are strong tendencies to preserve
existing edges across time. Additionally, there are four positive
parameter estimates for the formation of new edges, implying
that as our patient recovered he was more likely to establish
new connectivity within and between networks. Taken together,
the tendency of our patient to maintain existing connections

FIGURE 7 | Patient Recovery STERGM. Results for the formation (left) and dissolution (right) models over 6 months. The mixing term accounts for the inter- and

intra-regional connectivity that form over 6 months. The legend displays tints of red for significant positive parameter estimates and the significant negative parameter

estimates are colored in tints of blue. The right figure displays the dissolution model STERGM mixing term results. The coloring scheme is the same as the formation

model, but the mixing term represents the connectivity that are dissolved or preserved over 6 months. These figures are symmetric within each model because the

graphs are undirected.
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FIGURE 8 | Patient recovery STERGM. Goodness of fit plots for the formation (top) and dissolution (bottom) models. The black line marks the formation and

dissolution networks observed over time in the patient’s graphs between the first Acute session and the Chronic session; the box-and-wiskers indicate the model data

obtained from the 1000 simulations of each model (see section 2.6).

and develop novel ones might well explain why we observed
a tendency over time for the “natural” density of networks to
increase throughout recovery. It should also be pointed out
that while we did not find any negative parameter estimate
in the dissolution model, a significant negative estimate could
be interpreted as evidence for neural reorganization, another
important advantage of ERGM in the context of DOC [e.g., (95)].

4.5. Limitations
It is important to consider two important limitations of the work
above. First, we have presented the use of ERGM in the context
of a single patient. On the one hand, ERGM was specifically
developed to allow meaningful analysis of single graphs. Indeed,
unlike neurosciences and other experimental biological and
behavioral sciences, some fields do not typically have multiple
graphs to compare (e.g., multiple subjects, multiple time-points),
but rather have a single graph from which meaningful inferences
are drawn [e.g., sociology; (2), transportation (6), and public
health (4)]. On the other hand, although—formally—inferences
could be legitimately drawn from a single case, in the context of
DoC and clinical work, brain-derived network analyses reflect

much of the heterogeneity of the underlying conditions, thus
making inferences drawn from individual cases questionable in
their generality and applicability to other patients. Furthermore,
at this initial stage, there are no baseline or control measurements
against which to compare one patients’ parameters derived from
the (ST)ERGM. Second, because of the pragmatics and reality
of clinical work, acute scans, which happened in an in-patient
setting, were performed on a 3 Tesla Siemens TimTrio system
while follow-up MR data were acquired in an out-patient setting,
on a 3 Tesla Siemens Prisma system. The impact of such a variable
on themodel parameters remains to be assessed in larger samples,
including in healthy volunteers. We thus leave it to future cohort
studies to interpret in detail the significance of the specific ERGM
and STERGM parameters with respect to the issue of loss and
recovery of consciousness after severe brain injury.

5. CONCLUSIONS AND FUTURE WORK

Network analyses are an attempt to synthesize complex processes
into a small number of metrics. In this paper we have introduced
a novel [in the context of DOC, for other contexts within
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neuroimaging, cf.: (89–91)] approach to estimating network
properties, ERGMs, which overcome four important challenges
faced by current graph theoretic approaches to brain data and
which are particularly consequential in the context of DOC.
The main advantage of ERGM over current approaches is the
fact that it adopts a multiple regression framework in lieu of
multiple parallel simple regressions (i.e., one per each metric).
Under this multiple regression framework, brain networks can
be compared across densities—since the density of each will be
controlled for within the model. This side-steps the issue of
having to impose the same arbitrary sparsity across networks
which are likely to have very different stable levels of density,
as is the case, for example, between severely brain injured
patients and controls or in longitudinal recovery. Similarly, by
including in a unified model structural and functional data,
it is possible to acknowledge and control for the fact that
patients surviving severe brain injury are likely to have very
heterogeneous brain pathology and thus profound differences
in structural substrate—a fact that is currently ignored in the
extant literature. Even in one patient alone, direct comparison of
the conventional PM with the FM demonstrated how failing to

consider structural information can lead to spurious results and
erroneous conclusions. Furthermore, ERGM can be extended to
assess dynamics of change thus allowing to discover the network
evolution that govern loss and recovery of consciousness over
time, as opposed to comparing static graphs at different time-
points.

Finally, we end this paper by pointing out that the reader
can implement (ST)ERGM as performed here using the freely
distributed ergm package (40) in R and the Markov Network
Toolbox [MoNeT; (116)] in MATLAB.
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