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Pathogen-host protein interactions are fundamental for pathogens to manipulate host signaling path-
ways and subvert host immune defense. For most pathogens, very few or no experimental studies have
been conducted to investigate their signaling cross-talks with host. In this study, we propose a compu-
tational framework to validate the biological assumption that human protein–protein interaction (PPI)
networks alone are sufficient to infer pathogen-host PPIs via pathogen functional mimicry. Pathogen
functional mimicry assumes that a pathogen functionally mimics and substitutes host counterpart pro-
teins in order for the pathogen to get involved in or hijack the host cellular processes. Through pathogen
functional mimicry defined via gene ontology (GO) semantic similarity, we first use the known human
PPIs as templates to infer pathogen-host PPIs, and the PPIs are further used as training data to build
an l2-regularized logistic regression model for novel pathogen-host PPI prediction. Independent tests
on the experimental data from human immunodeficiency virus and Francisella tularensis validate the effec-
tiveness of the proposed pathogen functional mimicry technique. Performance comparisons also show
that the proposed technique y excels the existing pathogen sequence mimicry approaches and transfer
learning methods. The proposed framework provides a new avenue to study the experimentally
less-studied pathogens in the worst scenarios that very few or no experimental pathogen-host PPIs are
available. As two case studies, we apply the proposed framework to Salmonella typhimurium and
Human respiratory syncytial virus to reconstruct the pathogen-host PPI networks and further investigate
the interference of these two pathogens with human immune signaling and transcription regulatory
system.

� 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction purification coupled to mass spectrometry (IP-MS), bacterial
Pathogens are the major etiological agents of human infectious
diseases and in some cases are highly associated with human
tumorigenesis. For instances, oncogenic virus hepatitis B virus
(HBV) is a major cause of hepatocellular carcinoma [1], and onco-
genic bacterium Helicobacter pylori results in persistent chronic
inflammation and increases the risk of gastric cancer [2]. Protein
interactions between pathogen and host are complex and dynamic
biological processes that spatiotemporally regulate pathogen
infection and host response. Genome-scale reconstruction of
pathogen-host protein interaction networks is significant to under-
stand microbe- and virus-associated pathogenesis and to develop
therapeutic drugs [3,4]. At present, pathogen-host PPI networks
are built mainly via experimental techniques, e.g. immunoaffinity
two-hybrid, yeast two-hybrid (Y2H), liquid chromatography mass
spectrometry (LC-MS) and cross-linking coupled with mass spec-
trometry [3]. To rapidly obtain the global landscape of pathogen-
host PPI networks, we need resort to computational modeling.

Recent years have witnessed much progress in computational
reconstruction of pathogen-host PPI networks [5–8]. From data
point of view, existing methods are divided into two categories,
namely direct and indirect methods. Direct methods [9–17] are
directly built on experimentally verified pathogen-host PPI data
of the pathogens themselves, while indirect methods [18–22] are
built on experimental data or interlogs from other species. Direct
methods are potentially more credible than indirect methods, but
their performance is heavily restricted by the scale of available
experimental data. For instance, HIV-1 [11–13] has accumulated
much more experimental data than EBV [16] and HCV [17]. For
the vast majority of pathogens, very few or no experimental data
are available to computational modeling. In such cases, direct
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methods are not applicable and indirect methods are often used as
alternative solutions [18–22]. Existing indirect methods are further
divided into two subcategories, namely interlog methods [18–21]
and transfer learning methods [22]. Interlog methods are based
on the biological assumption that two interacting proteins co-
evolve across species to retain interactions between their ortho-
logs. Zhou et al. [18,19] infer interlogs between M. Tuberculosis
H37Rv and Homo sapiens via the known PPIs of other eukaryotic
species. Schleker et al. [20] infer protein interactions between Sal-
monella and human via the experimental PPIs between Salmonella
and Arabidopsis. These methods [16–20] do not build predictive
models but infer interlogs via sequence similarities. Mei et al.
[21] restrict the interlog inference within the co-evolving pathogen
and host, based on which to train a noise-resistance supervised
learning model for novel interaction prediction. Comparatively,
transfer learning methods use experimental pathogen-host PPIs
as training data, but differently to direct methods, the experimen-
tal data come from other pathogens. For instance, Kshirsagar et al.
[22] use the pathogen-host PPIs from source species as training
data to predict pathogen-host PPIs of the target species, e.g. source
Salmonella-human PPIs for target Salmonella-mouse PPIs and
source Francisella-human PPIs for target Salmonella-human PPIs.
However, a potentially large genome gap between species (e.g.
Francisella tularensis versus Salmonella typhimurium) may yield a
less credible transfer learning model.

Pathogen mimicry of host proteins is a basic strategy for patho-
gens to subvert host immune pathways and to manipulate host
cellular processes [23–27]. As reviewed in [23], pathogens mimic
host proteins at the levels of sequence, structure, motif and inter-
face. Sequence mimicry yields pathogen orthologous proteins
mainly through long-term evolution via horizontal gene transfer
(HGT). Structure mimicry enables pathogens to take over the host
counterparts wherein the pathogen and host proteins do not
demonstrate sequence homology. As an economic strategy, inter-
face mimicry only bears local resemblance through mimicry of a
surface recognition motif that does not require overall sequence
or global structure conservation. Doxey et al. [25] predict
virulence-associated mimicries of pathogen via sequence similar-
ity. Guven-Maiorov et al. [26] predict protein interactions between
Helicobacter pylori and Homo sapiens via interface mimicry. The
existing interlog methods [18–21] are actually based on the biolog-
ical evidence of sequence mimicry. However, rapid evolution of
pathogen and long co-evolution with host potentially makes
sequence mimicry only capture a small percentage of pathogen-
host PPIs. Structure or interface mimicry promises to predict more
credible pathogen-host PPIs, but is more restrictive in applications
because the spatiotemporally dynamic structure or interface infor-
mation is not easily available. Furthermore, regardless of sequence,
structure or interface mimicry, most pathogen mimicries bear only
a faint resemblance to the host factors [27]. For this reason, it is
necessary to develop a more general strategy of pathogen mimicry
for computational modeling to enlarge the coverage of pathogen-
host PPIs.

In this study, we propose a computational framework to unra-
vel pathogen-host signaling cross-talks via pathogen functional
mimicry and human protein–protein interaction networks. In this
framework, a pathogen functionally mimics host counterparts to
hijack the corresponding human PPIs into pathogen-host PPIs.
The functional mimicry is measured via gene ontology (GO)
semantic similarity between pathogen and host proteins. The
pathogen-host PPIs inferred via pathogen functional mimicry are
used as training data to train an l2-regularized logistic regression
model for novel pathogen-host PPI prediction. We use the experi-
mental pathogen-host PPIs of human immunodeficiency virus and
Francisella tularensis to validate the effectiveness of pathogen func-
tional mimicry. As two case studies, we apply the proposed frame-
work to Salmonella typhimurium and human respiratory syncytial
virus to investigate how the two pathogens interfere with human
immune signaling and transcription regulatory system.
2. Methods

2.1. Data preparation

2.1.1. Human physical protein–protein interaction networks
In this study, we assume that human protein–protein interac-

tion (PPI) networks alone are sufficient to infer interactions
between pathogen and human host proteins. Behind this assump-
tion is the biological evidence that a pathogen mimics its host
counterparts to hijack host PPIs and to manipulate host cellular
signaling networks [25,27]. As reviewed in [27], pathogen and host
co-evolve to mutually counteract each other, i.e. a pathogen
evolves and mimics host counterparts to subvert host cellular pro-
cesses, while host counterparts being mimicked might adapt them-
selves or sometimes adopt reverse mimicry to disfavour the
mimicry. In this study, we focus on pathogen mimicry that per-
turbs host functions.

To date, there are several major databases that have curated a
large number of experimentally verified PPIs for the well-studied
species Homo sapiens, e.g. HPRD [28], BioGrid [29], IntAct [30],
HitPredict [31], etc. From these databases [28–31], we totally
obtain 56,104 physical PPIs, which are associated with 10,839
well-studied human proteins. Here a well-studied gene or gene
product is defined as the one that has been annotated with at least
one specific GO term of molecular functions or biological pro-
cesses. The generic GO terms GO:0005575, GO:0008150 and
GO:0003674 correspond to the root nodes of cellular component,
biological process and molecular function in the GO directed acyc-
lic graph (DAG), respectively. These GO terms provide no specific
useful information and thus are removed. According to the criteria,
we totally obtain 20,081 well-studied human genes that corre-
spond to 60,126 gene products/proteins from human genome
space. All the host counterparts that pathogen mimics are chosen
from these well-studied genes and proteins, and non-interacting
pathogen-host protein pairs are also sampled from these proteins
to construct negative training or independent test data. The rea-
sons that we focus on well-studied human genes are due to the
three concerns. First, the proposed pathogen functional mimicry
is defined via GO semantic similarity; Second, the proposed frame-
work and its predictions could be biologically well-interpreted;
and lastly, since all protein pairs are represented by GO feature
vector, well-studied genes do not yield null vectors.
2.1.2. Experimental pathogen-host PPIs as independent test data
In consideration of data size, we choose the pathogen human

immunodeficiency virus (HIV) and Francisella tularensis (F. tularensis)
to validate the feasibility and effectiveness of inferring pathogen-
host PPIs from human PPI networks via pathogen functional mimi-
cry. VirHostNet 2.0 has curated a large number of pathogen-host
PPIs from experiments [32], from which we obtain 5018 PPIs
between human immunodeficiency virus-1/2 (HIV-1/2) and Homo
sapiens. In [33], 1383 PPIs between Francisella tularensis and Homo
sapiens are derived via high-throughput yeast two-hybrid (Y2H)
assay. Although Y2H technique yields a certain level of false inter-
actions, we use the F. tularensis-human PPIs [33] as independent
test data because there is no other source of experimental data
available. According to the criteria of well-studied genes and pro-
teins, we totally obtain 3188 PPIs between HIV-1/2 and human
from VirHostNet 2.0 [33]. The PPIs are associated with 6 HIV pro-
teins and 2061 human target proteins. From the study [33], we
obtain 1382 experimental PPIs between F. tularensis and human,
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which are associated with 349F. tularensis proteins and 996 human
target proteins. These data are used as the positive independent
test data. To estimate the risk of model bias, we randomly sample
HIV-human and F. tularensis-human protein pairs as the negative
independent test data, which is equal in size to and disjoint with
the positive independent test data.

As two case studies, we choose Salmonella typhimurium (S. ty-
phimurium) and human respiratory syncytial virus (HRSV) to inves-
tigate how they interfere with human signaling and
transcriptional activities. Both pathogens are experimentally less-
studied in terms of the available pathogen-host PPIs. Based on
the criteria of well-studied genes and proteins, we obtain 62 S. ty-
phimurium-human PPIs from [34] involving 25 S. typhimurium pro-
teins and 51 human proteins, and obtain 29 HRSV-human PPIs
from [35] involving 4 HRSV proteins and 27 human proteins. The
two datasets are used as the positive independent test data and
meanwhile are used to co-determine model hyperparameters
(e.g. the regularizer C, see the section of ‘‘Supervised learning via
l2-regularized logistic regression”) with cross validation. Exhaus-
tive hyperparameter tuning via cross validation is prone to lead
to model overtraining and performance overestimation. If there
is other source of experimental data, independent test is recom-
mended to be used to co-determine the hyperparameters with
cross validation. As such, a balance could be achieved between
learning and generalization ability. In this study, we use the
pathogen-host PPIs inferred via pathogen functional mimicry as
the training data and the available experimental data are used as
the independent test data. The hyperparameters are co-
determined by cross validation and independent test. For the
pathogens that have no experimental pathogen-host PPI data, cross
validation is the only approach to determine the hyperparameters.

Based on the criteria of well-studied genes and proteins, we
totally obtain {490; 2123; 47; 1828} well-studied proteins for
HIV, F. tularensis, HRSV and S. typhimurium respectively, from
which the negative independent test data are sampled.

2.2. Construction of training data via pathogen mimicry

Different from the study [21] that infers pathogen-host PPIs
from the pathogen (e.g. Mycobacterium tuberculosis) PPI networks
via pathogen sequence mimicry, this study infers pathogen-host
PPIs from human PPI networks via pathogen functional mimicry.

Let Gh ¼ Vh; Eh
D E

denote human physical PPI networks, where Vh

denotes the set of vertexes representing human proteins and Eh

denotes the set of edges representing pairs of interacting proteins.

Given a pathogen protein p 2 Vp and a human protein h 2 Vh, p is
assumed to functionally mimic h, denoted as p#h, if the following
criteria is satisfied.

SimBP p; hð Þ P d1 ^ SimMF p;hð Þ P d2 ^ SimCC p; hð Þ ¼ 1 ð1Þ
where SimBP , SimMF and SimCC denote protein functional similar-
ity scores in terms of biological processes (BP), molecular func-
tions (MF) and cellular components (CC), respectively. The
thresholds d1 and d2 are used to determine the number of
pathogen-host PPIs inferred via pathogen functional mimicry.
The functional similarity scores between proteins (SimBP , SimMF

and SimCC) are calculated via GO semantic similarity scores
between the proteins’ GO terms.

Assume that the sets of GO terms for pathogen protein p and

human protein h are GOBP
p ;GOMF

p ;GOCC
p

n o
and

GOBP
h ;GOMF

h ;GOCC
h

n o
, respectively. Let subscript i and j denote the

element of GO term set, protein functional similarity is defined
as follows.
SimBP p;hð Þ ¼ max
8i;j

SGO GOBP
p;i ;GO

BP
h;j

� �

SimMF p;hð Þ ¼ max
8i;j

SGO GOMF
p;i ;GO

MF
h;j

� �

SimCC p; hð Þ ¼ 1; GOCC
p ^ GOCC

h –/

0; otherwise

(
ð2Þ

At present, several methods have been proposed to combine
semantic similarities of GO terms into gene semantic similarity,
e.g. maximal GO semantic similarities (MAX), averaging GO
semantic similarities (AVG), cosine similarity of GO term vectors
and Jaccard index between GO term sets [36]. Which of the seman-
tic similarities to choose depends on particular applications. In this
study, we choose the MAX strategy to define gene semantic simi-
larity because we give priority to the cases that two genes are
involved in identical cellular processes. Because of incompleteness
and skewed distribution of annotations between genes, the other
methods, i.e. AVG, cosine similarity and Jaccard index, will
decrease gene similarity scores even though two genes are anno-
tated with identical GO terms of biological processes. It is noted
that the MAX strategy defines gene semantic similarity by the
maximal GO semantic similarities and does not require vector rep-
resentation of GO terms. Now we describe how to calculate the
semantic similarity between two GO terms.

For simplicity, the two GO terms of SGO in equation (2) are
denoted using A and B, then SGO A;Bð Þ denotes the semantic simi-
larity between GO terms A and B. If p and h possess some common
specific GO terms of cellular components except the generic root
GO term GO:0005575, they are assumed to be subcellularly co-
localized. The semantic similarity between biological processes
and molecular functions GO terms, exclusive of GO:0008150 and
GO:0003674, is calculated according to [37,38]. In [36], the seman-
tic value of a GO term is defined as the aggregate contribution
(measured via S-value) of itself and its ancestor GO terms. Given
a GO term A and its DAGA ¼ A; TA; EAð Þ, where TA denotes the GO
term set that includes A and its ancestor GO terms in GO DAG,
and EA denotes the set of edges. The S-value of any GO term
t 2 DAGA is defined as follows.

SA tð Þ ¼ 1; t ¼ A

maxfwe � SA t0ð Þjt0 2 children of tð Þg; t–A

�
ð3Þ

where we denotes the weight of the edge linking term t to its child
term t0, assuming 0.8 and 0.6 for the ‘‘is-a” and ‘‘part-of” relations,
respectively. The semantic value of GO term A is defined as follows.

SV Að Þ ¼
X
t2A

SA tð Þ ð4Þ

Based on Formula (3) and (4), the semantic similarity between
GO term A and B is defined as follows.

SGO A;Bð Þ ¼
P

t2TA\T
B
SA tð Þ þ SB tð Þð Þ

SV Að Þ þ SV Bð Þ ð5Þ

Formula (5) shows that the semantic similarity between two
GO terms is determined by their locations in DAG and the semantic
relations with their ancestor terms. Substituting Formula (5) into
Formula (2), we can obtain protein functional similarity
SimBP p;hð Þ and SimMF p;hð Þ. Based on pathogen functional mimicry
p#h as defined by Formula (2)–(5), the pathogen-host PPI net-
works are derived as follows.

G p;hh i ¼ V p;hh i; E p;hh i
D E

V p;hh i ¼ f p; hh ijp#h ^ p 2 Vp ^ h 2 Vhg
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E p;hh i ¼ f pi; hkh ijpi#hj ^ hj; hk
� � 2 Eh ^ pi 2 Vp ^ hj 2 Vh ^ hk 2 Vhg

ð6Þ
where the superscript p;hh i denotes pathogen-host associations,
pi denotes well-studied pathogen proteins, hj and hk denote
well-studied host proteins. Formula (6) indicates that for any
human PPI hj;hk

� �
, if pathogen protein pi functionally mimics

one protein, e.g. hj, i.e.pi#hj, then pi interacts with its partner hk.
To reconstruct genome-scale pathogen-host PPI networks, we

further use the networks E p;hh i to build a predictive model. To
reduce computational complexity, we only sample a specific num-

ber of pathogen-host PPIs from the networks E p;hh i as the positive

training data (E p;hh i
rnd ) with the constraint E p;hh i

rnd

��� ��� 6 n. From the pairs

of well-studied pathogen and host proteins, we randomly sample
the same number of negative training data that are disjoint with
the positive training data.

2.3. GO feature construction

Recent studied have shown that gene ontology (GO) is one of
the most discriminative features to predict protein-protein interac-
tions [39,40]. However, GO terms are highly unevenly distributed.
For the less-studied or novel genes, sparsity of GO terms will
become more serious and in the worst case there are no annota-
tions available for the gene. To tackle this problem, Maetschke
et al. [40] aggregate ancestor GO terms into the feature represen-
tation. This method enriches the feature information but mean-
while increases the correlations between features. In this
framework, we do not incorporate the semantic correlation of
ancestor terms in GO DAG, but use the GO terms of homologs to
enrich the feature information of the concerned gene. Every pair
of proteins is depicted with two instances, namely target instance
and homolog instance. The target instance represents the GO terms
of the gene/protein concerned, and the homolog instance repre-
sents the GO terms of the homologs. Homologs are obtained from
SwissProt [41] via PSI-BLAST [42] against all species. To obtain
more homologs, we use default E-value = 10. We explicitly con-
sider counteracting the noise introduced from homolog knowledge
transfer (see the section of ‘‘Supervised learning via l2-regularized
logistic regression”). GO terms are retrieved from GOA [43].

For each protein i in the training set U, we obtain the homolog

set of GO terms SiH and the target set of GO terms SiT . Accordingly,
the whole set of GO terms of the training set is defined as follows.

S ¼ [i2U SiT [ SiH
� �

ð7Þ

For each protein pair i1; i2ð Þ, the feature vectors for the target
and homolog instances are formally defined as follows.

V i1 ;i2ð Þ
T g½ � ¼

0; g R Si1T
V
g R Si2T

2; g 2 Si1T
V
g 2 Si2T

1; otherwise

8><
>:

V i1 ;i2ð Þ
H g½ � ¼

0; g R Si1H
V
g R Si2H

2; g 2 Si1H
V
g 2 Si2H

1; otherwise

8><
>: ð8Þ

For GO term g 2 S, V i1 ;i2ð Þ
T g½ � and V i1 ;i2ð Þ

H g½ � denote the feature

vector component g of target instance V i1 ;i2ð Þ
T and homolog instance

V i1 ;i2ð Þ
H , respectively. The GO termsg R Sare discarded. Formula (8)

indicates that the component corresponding to GO term g in both

feature vectors (V i1 ;i2ð Þ
T and V i1 ;i2ð Þ

H ) is set as 2, if both the proteins
are annotated with the common GO term g; the value is set as 0,
if neither protein is annotated with the GO term g; otherwise,
the value is set as 1. If any protein is not annotated with GO terms
as defined in S and no homologs are found for it or its homologs are
also not annotated with GO terms within S, all the protein pairs
associated with the protein will be discarded because of null vector
representation.
2.4. Supervised learning via l2-regularized logistic regression

Noise resistance and computational complexity are two critical
factors for us to choose a proper base learner. In this framework,
pathogen functional mimicry and homolog knowledge transfer
potentially introduce a certain level of noise. Pathogen functional
mimicry may yield functionally associated host counterparts that
pathogen does not mimic and hijack. Homologs potentially
develop novel molecular functions and thus homolog knowledge
transfer may introduce noise into the homolog instances. Mean-
while, the homolog instances double the size of the sampled posi-

tive training data (E p;hh i
rnd ), which initially are very large. In machine

learning field, regularization technique could well resist noise and
outlier, and regression method could fast fit large training data in a
linear time. In this study, we adopt l2-regularized logistic regres-
sion [44] that has been implemented in the toolbox LIBLINEAR
[45] as the base learner.

Given training data x and labels y that consist of a set of
instance-label pairs xi; yið Þ; i ¼ 1;2; :::; l; xi 2 Rn; yi 2 �1;þ1f g, the
decision function of logistic regression is defined as
f xð Þ ¼ 1

1þexpð�yxT xÞ. L2-regularized logistic regression derives weight

vector x via solving the prime optimization problem.

min
x

1
2
xTxþ C

Xl

i¼1

log 1þ e�yi xT xi þ bð Þ� �
ð9Þ

where C denotes the penalty parameter/regularizer. The second
term penalizes potential noise/outliers. The prime optimization
problem is solved via its dual form.

min
a

1
2a

TQaþ Pl
i:ai>0

ailogai þ
P

i:ai<C
ðC � aiÞlogðC � aiÞ �

Pl
i
ClogC

subject to0 6 ai 6 C; i ¼ 1; :::; l
ð10Þ

where ai denotes Lagrangian operator and Qij ¼ yiyjx
T
i xj.

For each protein pair i1; i2ð Þ, the decision function f xð Þ yields the
outputs f V i1 ;i2ð Þ

T

� �
and f V i1 ;i2ð Þ

H

� �
for the target instance and the

homolog instance, respectively. The two outputs are then com-
bined into one final decision.

F V i1 ;i2ð Þ
T ;V i1 ;i2ð Þ

H

� �
¼

f V i1 ;i2ð Þ
T

� �
; if f V i1 ;i2ð Þ

T

� ���� ��� > f V i1 ;i2ð Þ
H

� ���� ���
f V i1 ;i2ð Þ

H

� �
; otherwise

8><
>: ð11Þ

where �j j denotes absolute valueD. The final label for protein
pair i1; i2ð Þ is defined as follows.

L i1; i2ð Þ ¼
1; if V i1 ;i2ð Þ

T ;V i1 ;i2ð Þ
H

� �
> f

�1; if � F V i1 ;i2ð Þ
T ;V i1 ;i2ð Þ

H

� �
> f

/; otherwise

8>>><
>>>:

ð12Þ

where f is used to filter out weak positive predictions and /
denotes undetermined predictions.
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2.5. Experimental setting and model evaluation

Three experimental settings namely combined-instance,
homolog-instance and target-instance are designed to validate that
homolog knowledge transfer via homolog instance is effective to
tackle GO sparsity. The target-instance setting yields the baseline
performance. If the homolog-instance setting achieves equivalent
or better performance, homolog knowledge transfer is validated to
be effective. To simplify the parameter tuning, the regularizer C is

chosen from the set f2ij � 16 6 i 6 16; i 2 Ig, where I denotes the
integer set. The threshold as defined in Formula (12) is set f ¼ 0:5.

Five performance metrics are used to evaluate the model
performance including Receiver Operating Characteristic AUC
(ROC-AUC), sensitivity (SE), precision (PR), Matthews correlation
coefficient (MCC), Accuracy and F1 score. ROC-AUC is calculated
from the decision values as defined in Formula (11). The other met-
rics are calculated from a confusion matrix M, in which each ele-
ment Mi;j records the counts that class i are classified to class j.
From M, we define several intermediate variables as Formula
(13), based on which label-specific PRl, SEl and MCCl for each label
are further defined in Formula (14). The overall accuracy and MCC
are defined by Formula (15).

pl ¼ Ml;l; ql ¼
XL

i¼1;i–l

XL

j¼1;j–l

Mi;j; rl ¼
XL

i¼1;i–l

Mi;l; sl ¼
XL

j¼1;j–l

Ml;j

p ¼
XL

l¼1

pl; q ¼
XL

l¼1

ql; r ¼
XL

l¼1

rl; s ¼
XL

l¼1

sl ð13Þ

PRl ¼ pl

pl þ rl
; l ¼ 1;2:::; L

SEl ¼ pl

pl þ sl
; l ¼ 1;2:::; L

MCCl ¼ plql � rlslð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pl þ rlð Þ pl þ slð Þ ql þ rlð Þ ql þ slð Þp ; l ¼ 1;2:::; L ð14Þ

Acc ¼
PL

l¼1Ml;lPL
i¼1

PL
j¼1Mi;j

MCC ¼ pq� rsð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ rð Þ pþ sð Þ qþ rð Þ qþ sð Þp ð15Þ

where L denotes the number of labels and assumes 2 in this
study. F1 score is defined as follows.

F1 score ¼ 2� PRl � SEl

PRl þ SEl
; l ¼ 1denotes the positive class ð16Þ
3. Results

3.1. Validating the effectiveness of inferring pathogen-host PPIs from
human PPI networks via pathogen mimicry

We choose the virus human immunodeficiency virus (HIV) and
the bacterium Francisella tularensis (F. tularensis) to validate the
effectiveness of inferring pathogen-host PPIs from human PPI net-
works via pathogen functional mimicry. The two pathogens are
well studied in terms of pathogen-host protein interactions. The
training data are constructed as described in Formula (1)–(6) and
the independent test data come from experimental data.

3.1.1. Validation against human immunodeficiency virus
The threshold d1 and d2 as defined in Formula (1) are used to

achieve a trade-off between data size and data quality. A higher
threshold increases the data quality but decreases the scale of
the pathogen-host PPI networks as defined by Formula (6), and
vice versa a lower threshold decreases the data quality but
increases the scale of networks. The number of human counter-
parts that pathogen mimics directly determines the scale of the
pathogen-host PPI networks defined by Formula (6), so that the
two thresholds vary with pathogens. How large the networks scale
should be is hard to determine and it is hard to design an objective
function to optimize the two thresholds, because it is unknown
howmany pathogen-host PPIs actually exist. We empirically deter-
mine these two thresholds so that the pathogen-host PPI networks
defined by Formula (6) are not too large (e.g. exceeding 55,000
PPIs) or too small (e.g. fewer than 1000 PPIs) and the computa-
tional cost is acceptable. For human immunodeficiency virus, the
thresholds are set as d1 ¼ 0:6; d2 ¼ 0:6 and we totally obtain
50,060 positive and 50,060 negative training data (see Supplemen-
tary file S1–S2). The positive training data contain 35 HIV proteins
and 2757 human proteins, while the negative training data contain
490 HIV proteins and 34,159 human proteins. The ROC curves of 5-
fold cross validation on the training data are illustrated in Fig. 1(A).
In the three experimental settings, the ROC curves nearly coincide
and validate the effectiveness of homolog knowledge transfer via
homolog instances. The ROC-AUC scores show that the binary lear-
ner of l2-regularized logistic regression well separates the
pathogen-host PPIs inferred via pathogen functional mimicry from
the randomly sampled pathogen-host protein pairs. The other met-
rics provided in Table 1, e.g. PR, SE and MCC, further show that the
proposed framework is less biased on the training data. It is noted
that the model performance varies widely and heavily depends on
the regularizer hyperparameter C as defined in Formula (9), so that
no error deviation or error bars are provided. In addition, pathogen
functional mimicry yields different training data with varying
thresholds (d1; d2) and is time-consuming for multiple-round
model evaluation. If a training set is fixed, multiple rounds of 5-
fold cross validation show little variation. In the case that several
factors co-determine the model stability, we report the optimum
performance only.

However, the performance of 5-fold cross validation is achieved
on the training data generated via pathogen functional mimicry
instead of experimental data. We have to validate the learned
model against experimental pathogen-host PPI data. The perfor-
mance of independent test on 3188 experimentally verified HIV-
human PPIs and 3188 randomly sampled negative independent
test data is illustrated in Fig. 1(B) and the details are provided in
Table 1. The proposed framework correctly recognizes 73.09% of
the experimentally verified HIV-human PPIs and predicts 91.67%
of the randomly sampled HIV-human protein pairs as negative.
The results show that the model encouragingly well generalizes
to unseen experimental data even though it learns from data
inferred via pathogen functional mimicry.. The performance of
independent test on experimental HIV-human PPIs validates the
feasibility of inferring pathogen-host PPIs from human PPI net-
works via pathogen functional mimicry.

3.1.2. Validation against Francisella tularensis
As a bacterial case, we choose the bacterium Francisella tularensis

to test whether the proposed framework is applicable to bacterial
pathogens. The thresholds as defined in Formula (1) are also set as
d1 ¼ 0:6; d2 ¼ 0:6 and we totally obtain 41,796 positive and 41,796
negative training data (see Supplementary file S3–S4). The positive
training data contain 125 F. tularensisproteins and 4025 humanpro-
teins,while the negative training data contain 2123 F. tularensispro-
teins and 30,556 human proteins. Similarly, the ROC curves in the
three experimental settings as illustrated in Fig. 1(C) also nearly
coincide and validate the effectiveness of homolog knowledge
transfer on Francisella tularensis. The ROC-AUC scores are also fairly



Table 1
Performance estimation of 5-fold cross validation and independent test on HIV and F. tularensis.

HIV Size Combined-instance Homolog-instance Target-instance

PR SE MCC PR SE MCC PR SE MCC

Positive 50,060 0.935 0.9452 0.8856 0.9353 0.9452 0.8854 0.9352 0.9454 0.8812
Negative 50,060 0.9441 0.9336 0.8854 0.9436 0.9333 0.8851 0.9387 0.9273 0.8797
[Acc; MCC] [93.95%; 0.8854] [93.93%; 0.8852] [93.68%; 0.8808]
[ROC-AUC] [0.9819] [0.9818] [0.9805]
F1 Score 0.9401 0.9402 0.9403

F. tularensis size Combined-instance Homolog-instance Target-instance

PR SE MCC PR SE MCC PR SE MCC

Positive 41,796 0.7083 0.9683 0.684 0.708 0.972 0.687 0.7323 0.9683 0.6972
Negative 41,796 0.9499 0.6012 0.6493 0.9558 0.6013 0.6531 0.9459 0.6103 0.6587
[Acc; MCC] [78.47%; 0.6343] [78.61%; 0.6363] [79.79%; 0.6540]
[ROC-AUC] [0.9510] [0.9541] [0.9504]
F1 Score 0.8181 0.8193 0.834

Independent test HIV F. tularensis

(Recognition rate) Positive Negative Positive Negative

73.09% 91.67% 66.47% 60.78%

Fig. 1. ROC curves for 5-fold cross validation performance on human immunodeficiency virus and Francisella tularensis.
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encouraging. However, the metrics such as PR, SE and MCC show a
large bias towards the positive class, e.g. SE 0.9683 positive class
versus 0.6012 negative class for the combined-instance setting
(see Table 1). These results indicate that the proposed framework
potentially take a certain risk of false positive predictions. Neverthe-
less, the learnedmodel still correctly recognizes 66.47% of the 1382
experimentally verified F. tularensis-human PPIs. Meanwhile, the
learned model recognizes 60.78% of the negative independent test
data (see Table 1), indicating that bias exists on Francisella tularensis
but is still under control. The risk of false positive predictions could
be reduced by increasing the threshold f as defined in Formula (12).
Here we assume f ¼ 0:5.

3.2. Applications to human respiratory syncytial virus and Salmonella
typhimurium

As two case studies, we apply the proposed framework to hu-
man respiratory syncytial virus and Salmonella typhimurium. In this
section, we study the model performance on the two pathogens.
In the next section, we further investigate their interference with
human signaling and transcriptional activities.

3.2.1. Performance on human respiratory syncytial virus
Comparatively, the protein functional similarities between

HRSV and human proteins as defined by Formula (1)–(5) are much
lower. To obtain a sufficient number of pathogen-host PPIs, we
choose lower thresholds d1 ¼ 0:15; d2 ¼ 0:4. As a result, we only
obtain 1310 HRSV-human PPIs as the positive training data. The
positive training data contain 3 HRSV proteins and 1036 human
proteins, while the negative training data contain 47 HRSV pro-
teins and 1301 human proteins. The coincident ROC curves in the
three experimental settings as illustrated in Fig. 2(A) reaffirm the
effectiveness of homolog knowledge transfer. The other metrics
are provided in Table 2. It is evident that the proposed framework
is less biased on human respiratory syncytial virus, e.g. SE 0.9908
versus 0.9473 in the combined-instance setting. These results,



Table 2
Performance estimation of 5-fold cross validation and independent test on HRSV and S. typhimurium.

HRSV Size Combined-instance Homolog-instance Target-instance

PR SE MCC PR SE MCC PR SE MCC

Positive 1,310 0.9495 0.9908 0.9409 0.9495 0.9908 0.9408 0.9516 0.9908 0.9403
Negative 1,310 0.9904 0.9473 0.9407 0.9904 0.9472 0.9407 0.9895 0.9447 0.9399
[Acc; MCC] [96.91%; 0.9400] [96.90%; 0.9399] [96.88%; 0.9395]
[ROC-AUC] [0.9952] [0.9952] [0.9948]
F1 Score 0.9697 0.9697 0.9708

S. typhimurium Size Combined-instance Homolog-instance Target-instance

PR SE MCC PR SE MCC PR SE MCC

Positive 50,000 0.8428 0.943 0.796 0.8433 0.9431 0.796 0.8578 0.9434 0.8032
Negative 50,000 0.9353 0.824 0.7914 0.935 0.8236 0.7912 0.9301 0.828 0.796
[Acc; MCC] [88.36%; 0.7891] [88.36%; 0.7891] [88.84%; 0.7972]
[ROC-AUC] [0.9545] [0.9545] [0.9543]
F1 Score 0.8901 0.8904 0.8986

Independent test
(Recognition rate)

HRSV S. typhimurium

Positive Negative Positive Negative

79.31% 96.55% 75.81%

Fig. 2. ROC curves for 5-fold cross validation performance on human respiratory syncytial virus and Salmonella typhimurium.
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along with the results shown in Fig. 2(B), show that the proposed
framework achieves sound and unbiased performance of cross val-
idation and independent test.

As shown in Table 2, the proposed framework correctly recog-
nizes 79.31% of the experimentally verified 29 HRSV-human PPIs
and 96.55% of negative independent test data. These results show
that the proposed framework is applicable to human respiratory
syncytial virus, though the protein functional similarities between
HRSV and human proteins are relatively low.

3.2.2. Performance on Salmonella typhimurium
Although the thresholds set as high as d1 ¼ 0:6; d2 ¼ 0:6, the

inferred pathogen-host PPIs as defined by Formula (6) still are very
large. To reduce computational complexity, we randomly sample
50,000 Salmonella-human PPIs as the positive training data. The
positive training data contain 882 Salmonella proteins and 6319
human proteins, while the negative training data contain 1828 Sal-
monella proteins and 34,280 human proteins. The ROC curves of 5-
fold cross validation are illustrated in Fig. 2(C) and the other per-
formance metrics are provided in Table 2. The results still are fairly
encouraging, except for a little bias towards the positive class, e.g.
SE 0.9430 versus 0.8240 in the combined-instance setting. Inde-
pendent test shows that the proposed framework correctly recog-
nizes 75.81% of the 62 experimentally verified Salmonella-human
PPIs and 66.13% of the negative independent test data.

The computational results also show that the proposed frame-
work achieves much better performance and less bias on viruses
(HIV and HRSV) than on bacteria (F. tularensis and S. typhimurium).
The larger bias on bacteria is potentially due to the complex bacte-
rial cell wall that forms a strong permeability barrier to the mutual
access of bacterial and host genome [46]. Bactria have to resort to a
complex secrete system to transport bacterial proteins to the sur-
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face or membrane of bacterial cell or directly inject bacterial pro-
teins into the host cell [23]. As such, random sampling is prone
to sample pathogen-host protein pairs that are located in two dif-
ferent cells and are mutually inaccessible to, so as to limit the cov-
erage of negative data. The experimentally verified pathogen-host
PPIs take place in between physically accessible pathogen and host
proteins, while the negative data are sampled in two isolate cell
spaces, which is potentially a factor contributing to the model bias.

3.3. Biological insights into pathogen interference with human
immune signaling and transcriptional activities

3.3.1. Genome-scale predictions
Theoretically, the prediction space contains m� n pathogen-

host protein pairs for m pathogen proteins and n host proteins.
To reduce computational complexity, we only predict 50,000 ran-
domly sampled pathogen-host protein pairs. For human respiratory
syncytial virus, the proposed framework predicts 7.15% of the pro-
tein pairs as interactions. For Salmonella typhimurium, the predic-
tion set consists of two parts of equal size. One part is sampled
from the Salmonella-human PPIs inferred via pathogen functional
mimicry, and the other part is randomly sampled from Salmonella-
human protein pairs. Both parts contain 25,000 protein pairs. The
proposed framework predicts 95.43% of the first part and 25.02%
of the second part as interactions. For the convenience of analysis,
the positive training data, the positive independent test data and
the predicted positive data are merged into 3161 HRSV-human
PPIs and 75,062 Salmonella-human PPIs, respectively (see Supple-
mentary file S5–S6).

3.3.2. GO enrichment analyses
In the prediction set, HRSV and S. typhimurium are predicted to

target 2739 and 6402 novel human proteins, respectively. For clar-
ity purpose, only 15 top biological processes are illustrated in Fig. 3
(A)–(B). As shown in Fig. 3, the two pathogens interfere with some
common human cellular processes, e.g. transport (GO:0006810),
regulation of transcription, DNA-templated (GO:0006355, protein
phosphorylation (GO:0006468), apoptotic process (GO:0006915),
positive regulation of transcription by RNA polymerase II
(GO:0045944). The overall GO enrichment analyses for the two
pathogens are provided in Supplementary file S7–S8. We further
take the HRSV protein SH|P69360 and the S. typhimurium protein
Fig. 3. Fifteen top biological processes interfered with by hum
dnaQ|P0A1G9 for example to analyse their interference with
human cellular processes.

SH|P69360. As illustrated in Fig. 4(A), the HRSV protein SH|
P69360 is predicted to target 88 human proteins. GO enrichment
analyses show that the human genes targeted by SH|P69360 get
involved in the cellular processes of ion transport (GO:0006811),
iron ion homeostasis (GO:0055072), secretory granule lumen
(GO:0034774), inflammatory response (GO:0006954), negative
regulation of apoptotic process (GO:0043066), etc. According to
Uniprot (https://www.uniprot.org/uniprot/P69360), the HRSV pro-
tein SH|P69360 is a viroporin that forms a homopentameric ion
channel with low ion selectivity. SH|P69360 potentially enhances
host membrane permeability, disrupts host cellular ion homeosta-
sis and triggers host inflammatory immune response. Meanwhile,
SH|P69360 inhibits the host TNFA-mediated signaling pathway
and results in delay of apoptosis. We can see that SH|P69360 is
involved in some important common cellular processes with its
predicted targets. The GO terms are unevenly distributed among
SH|P69360 and its host counterparts or target proteins. If we use
AVG strategy, cosine similarity or Jaccard index [36], the semantic
scores between proteins would be decreased to ignore the identical
celluar processes of ion homeostasis and inflammatory response.
The MAX strategy we adopt gives priority to the critical cellular
processes that pathogen and host counterparts both are involved
in.

dnaQ|P0A1G9. As illustrated in Fig. 4(B), the S. typhimurium pro-
tein dnaQ|P0A1G9 is predicted to target 90 human proteins. dnaQ|
P0A1G9, named DNA polymerase III subunit epsilon, is a complex
of multichain enzyme responsible for most of the replicative syn-
thesis in bacteria, in which the epsilon subunit is a proofreading
30-50 exonuclease that performs editing function (https://www.
uniprot.org/uniprot/P0A1G9). GO enrichment analyses show that
the human genes targeted by dnaQ|P0A1G9 get involved in the cel-
lular processes of DNA replication (GO:0006260), G2/M transition
of mitotic cell cycle (GO:0000086), regulation of DNA biosynthetic
process (GO:2000278), RNA phosphodiester bond hydrolysis,
endonucleolytic (GO:0090502). We can see that the S. typhimurium
protein dnaQ|P0A1G9 and its predicted targets participate in some
similar and associated cellular processes. These results show that
pathogen mimics and substitutes its host counterpart proteins to
hijack normal host PPIs. The number of target human proteins
seems to be large. Actually, the pathogen-host PPIs inferred via
an respiratory syncytial virus (A) and S. typhimurium (B).

https://www.uniprot.org/uniprot/P69360
https://www.uniprot.org/uniprot/P0A1G9
https://www.uniprot.org/uniprot/P0A1G9


Fig. 4. Human proteins predicted to be targeted by the HRSV protein SH|P69360 (A) and the S. typhimurium protein dnaQ|P0A1G9.
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pathogen functional mimicry are not necessarily physical but
potentially functional interactions, though the inference templates
are human physical PPIs. For bacterial pathogens, the effectors may
remain in the bacterial cell or may be secreted and transported to
the host cellular organelles to indirectly or directly interfere with
host cellular processes.

3.3.3. Pathogen interference with human immune signaling pathways
We further map the pathogen targeted genes onto human

immune signaling pathways to study how human respiratory syncy-
tial virus and Salmonella typhimurium interfere with human signal-
ing activities. Human immune signaling pathways are taken from
NetPath [47]. For the sake of simplicity, the pathways IL1–IL11
are merged into one IL signaling pathway and we totally obtain
27 pathways. The pathways that the two pathogens target are pro-
vided in Supplementary file S9–S10. As shown in Fig. 5(A), the top
pathways targeted by most of the HRSV proteins include Tumor
necrosis factor alpha (TNF), Epidermal growth factor receptor
(EGFR1), T Cell Receptor (TCR), Interleukin-1–11 (IL), Brain-
derived neurotrophic factor (BDNF), Receptor activator of nuclear
factor kappa-B ligand (RANKL), etc. Furthermore, most HRSV pro-
teins target more than one pathway and 6 HRSV proteins target
more than 10 pathways (see Fig. 5(B)).

The genome space of Salmonella typhimurium is much larger
than that of human respiratory syncytial virus, and thus a human
immune signaling pathway is potentially targeted by more S. typhi-
murium proteins. As shown in Fig. 5(C), the least targeted pathway
Thymic stromal lymphopoietin (TSLP) is predicted to be targeted
by more than 200 S. typhimurium proteins. The intensively targeted
pathways include Tumor necrosis factor alpha (TNF), Androgen
receptor (AR), Epidermal growth factor receptor (EGFR1), Trans-
forming growth factor beta receptor (TGFBeta), Interleukin-1–11
(IL), T Cell Receptor (TCR). Furthermore, a S. typhimurium protein
is prone to target more pathways. As shown in Fig. 5(D), more than
500 S. typhimurium proteins target more than 15 immune signaling
pathways. The interference with human immune signaling path-
ways is more functional than physical, because subcellularly co-
localization as restricted by Formula (1)–(2) does not necessarily
indicate physical interactions.

3.3.4. Pathogen interference with human cellular transcriptional
activities

The computational results show that human respiratory syncy-
tial virus and Salmonella typhimurium are predicted to target 457
and 1697 human genes/proteins that are associated with human
cellular transcriptional activities, respectively (see Supplementary
file S11–S12). For clarity purpose, only 25 top transcription-
associated human proteins are illustrated. Many transcription-
associated human proteins are targeted by more than one HRSV
protein. For instance, WWP2|O00308, CLU|P10909 and RUVBL2|
Q9Y230 are targeted by 4 HRSV proteins and the other
transcription-associated human proteins are targeted by 3 HRSV
proteins (see Fig. 6(A)). WWP2|O00308 is highly expressed in
undifferentiated embryonic stem cells and is involved in regulation
of human cellular transcriptional activities, e.g. negative regulation
of DNA-binding transcription factor activity (GO:0043433), nega-
tive regulation of transcription by RNA polymerase II
(GO:0000122), protein ubiquitination (GO:0016567), regulation
of ion transmembrane transport (GO:0034765), etc (https://
www.uniprot.org/uniprot/O00308). Among the HRSV proteins,
only 1–3 HRSV proteins are predicted to target a large number of
human transcription-associated proteins (see Fig. 6(B)).

As shown in Fig. 6(C), the top 25 transcription-associated
human proteins are all predicted to be targeted by more than
100 S. typhimurium proteins. These interactions probably take
place in two spatially-separated cells and are potentially more
functionally than physically. All these human genes targeted by
S. typhimurium are involved in human cellular transcription regula-
tion. For instance, ILF2|Q12905 functions predominantly as a het-
erodimeric complex with ILF3 and potentially regulates the
transcription of IL2 gene during T-cell activation (https://www.
uniprot.org/uniprot/Q12905). Further GO analyses show that
ILF2|Q12905 participates in the cellular processes of positive regu-
lation of transcription, DNA-templated (GO:0045893), transcrip-

https://www.uniprot.org/uniprot/O00308
https://www.uniprot.org/uniprot/O00308
https://www.uniprot.org/uniprot/Q12905
https://www.uniprot.org/uniprot/Q12905


Fig. 5. Pathway enrichment analyses. A–B show the number of HRSV proteins that target each specific human immune signaling pathway and the number of human immune
signaling pathways that each HRSV protein targets. C–D show the number of S. typhimurium proteins that target each specific human immune signaling pathway and the
number of human immune signaling pathways that each S. typhimurium protein targets.

Fig. 6. Pathogen interference with host cellular transcriptional activities. A–B show the number of HRSV proteins that target each specific human gene/protein associated
with gene transcription and the number of human transcriptional genes/proteins that each HRSV protein targets. C–D show the number of S. typhimurium proteins that target
each specific human gene/protein associated with gene transcription and the number of human transcriptional genes/proteins that each S. typhimurium protein targets. For
clarity, only 25 top transcription associated human proteins are illustrated in (A) and (C).
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tion, DNA-templated (GO:0006351), neutrophil degranulation
(GO:0043312). FOS|P01100 is a nuclear phosphoprotein that forms
a tight but non-covalently linked complex with the JUN/AP-1 tran-
scription factor (https://www.uniprot.org/uniprot/P01100). GO
analyses show that FOS|P01100 participates in some major
transcription-associated cellular processes, e.g. positive regulation

https://www.uniprot.org/uniprot/P01100
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of transcription by RNA polymerase II (GO:0045944), positive reg-
ulation of pri-miRNA transcription by RNA polymerase II
(GO:1902895), transforming growth factor beta receptor signaling
pathway (GO:0007179), response to cold (GO:0009409), condi-
tioned taste aversion (GO:0001661), etc. Among these S. typhimur-
ium proteins, only a few proteins are predicted to target a large
number of human transcription-associated proteins (see Fig. 6(D)).

3.4. Comparison with existing methods

Most of the existing computational methods directly build pre-
dictive models on experimentally verified pathogen-host PPI data
and thus are not applicable to the experimentally less-studied
pathogens in the context of pathogen-host protein interactions.
To infer pathogen-host PPIs for less-studied pathogens, two cate-
gories of computational methods have been proposed, namely
pathogen mimicry [18–21,25,26] and transfer learning [22]. Patho-
gen mimicry methods are further divided into pathogen sequence
mimicry, i.e. interlog methods [18–21,25], and pathogen structural
mimicry [26]. Transfer learning method [22] builds a predictive
model on the experimental data from other species to predict the
pathogen-host PPIs for the pathogen concerned. Transfer learning
is also used to build a predictive model on the experimental
pathogen-host PPI data from the species itself, e.g. semi-
supervised multi-task learning [11] and ensemble transfer learning
[13].

In this study, the proposed pathogen functional mimicry is
more general and flexible to cover the sequence, motif, structure
and interface mimicry, because sequence and structure similarity
could ultimately lead to functional similarity. In this section, we
compare the proposed framework with a pathogen sequence
mimicry method [21] and several transfer learning methods
[11,13,22]. The transfer learning methods include direct methods
that directly build model on the experimental pathogen-host PPIs
of the species itself [11,13] and indirect method that builds model
indirectly on the experimental pathogen-host PPIs from other spe-
cies [22].

3.4.1. Comparison with pathogen sequence mimicry method
Among the pathogen mimicry methods, we only choose to

compare with the pathogen sequence mimicry method [21] that
is validated against independent experimental data. Mei et al.
[21] restrict the interlog inference within the co-evolving M.
tuberculosis H37Rv and Homo sapiens. The interlogs are inferred
from PPI networks of M. tuberculosis H37Rv alone, which are
extracted from STRING [48] and have been reported to be of
low quality [49]. In this framework, we use the well-studied
human PPI networks as inference template. For comparison pur-
pose, we replace the pathogen M. tuberculosis H37Rv in [21] with
human immunodeficiency virus and Francisella tularensis to verify
the advantage of pathogen functional mimicry over pathogen
sequence mimicry.

Independent test shows that the pathogen sequence mimicry
method [21] achieves much worse performance than the proposed
framework on the same experimental pathogen-host PPI data from
human immunodeficiency virus (see Fig. 7(A)) and Francisella
tularensis (see Fig. 7(B)). The pathogen sequence mimicry method
[21] recognizes 49.96% and 40.00% of the experimental HIV-
human PPIs and F. tularensis-human PPIs respectively, while the
proposed framework more encouragingly recognizes 73.09% and
75.81% of the experimental HIV-human and F. tularensis-human
PPIs respectively. On the same negative independent test data,
the proposed framework achieves 91.67% and 66.13% recognition
rate for HIV and F. tularensis respectively, while the pathogen
sequence mimicry method [21] only achieves 61.78% and 64.44%
recognition rate for HIV and F. tularensis respectively. The proposed
pathogen functional mimicry method excels the pathogen
sequence mimicry method [21] partly because it covers more types
of pathogen mimicries.

3.4.2. Comparison with cross-species transfer learning method
Kshirsagar et al. [22] builds KMM-SVM based transfer learning

models on the pathogen-host PPIs from other pathogens to predict
the pathogen-host PPIs of the target pathogen. Take Salmonella
typhimurium for example. KMM-SVM trains on experimental Sal-
monella-mouse PPIs and recognizes 35.5% of experimental Sal-
monella-human PPIs (see Fig. 7(C)). In addition, KMM-SVM trains
on experimental Francisella-human PPIs and recognizes 16.1% of
experimental Salmonella-human PPIs (see Fig. 7(D)). The indepen-
dent test results show that a potentially large genome gap between
the source and the target species (e.g. mouse versus human, Fran-
cisella versus Salmonella) make cross-species knowledge transfer
less effective. However, the proposed framework encouragingly
achieves 75.81% independent test performance on the experimen-
tal Salmonella-human PPIs. This result shows that pathogen mimi-
cry could evolutionarily narrow the genome gap between co-
evolving pathogen and host.

Transfer learning is also used to build predictive models on the
experimental pathogen-host PPI data from the species itself. Both
methods [11,13] are built on experimental HIV-human PPIs. How-
ever, the semi-supervised multi-task learning [11] only achieves
10% overlap between siRNA screen and predictions, while the
ensemble transfer learning [13] only recognizes 55.77% of the lar-
gest 1101Tat-associated HIV-human PPIs. The proposed frame-
work encouragingly recognizes 73.09% of the 3188 experimental
HIV-human PPIs, though it is trained on the HIV-human PPIs
inferred from human PPI-networks via pathogen functional mimi-
cry. The proposed framework excels the existing methods, partly
because the experimental data covers very limited pathogen
genes/proteins while the proposed pathogen functional mimicry
achieves a much larger coverage of genes and obtain much more
training data.

4. Discussions

Machine learning modeling of biological problems often
requires sufficient experimental data as training data to build cred-
ible predictive models. However, in many cases the species con-
cerned are experimentally less-studied. In recent years, transfer
learning has been well recognized as an effective technique to
achieve cross-species knowledge transfer. Knowledge transferred
from well-studied source species is potentially useful to enrich
the feature information or augment the training data of the target
species. Nevertheless, genome similarity is a critical concern of
transfer learning modeling and a large cross-species genome gap
is prone to yield less reliable models.

Pathogen mimicry has been recognized as a basic biological
mechanism that a pathogen evolves to invade or hijack host cellu-
lar processes. Pathogen sequence, structure and interface mimi-
cries have been used to develop computational methods for
pathogen-host PPI prediction. From evolutionary point of view,
these mimicries requires a long time of evolution and many tran-
sient protein interactions may not stringently require structural
matches. From computational point of view, these mimicries are
biased not to cover the other kinds of mimicries. In this study,
we propose a more general and flexible pathogen functional mimi-
cry strategy to infer pathogen-host PPIs from human protein-
protein interaction networks alone. Pathogen functional mimicry
is defined via GO semantic similarity. In some sense, the purpose
of pathogen co-evolving and mimicking host protein sequences



Fig. 7. Performance comparison with the existing methods.
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and structures is to perform and substitute its host counterpart
functions. From this point of view, pathogen functional mimicry
actually covers sequence, structure and interface mimicry. As a
result, pathogen functional mimicry is less biased to cover more
types of mimicries and meanwhile more training data could be
obtained. From data point of view, pathogen functional mimicry
is less demanding because it does not require the information of
protein structure and PPI interface that is not easily available.

Inference template is the second critical concern in pathogen-
host PPI prediction. The existing methods generally use the PPIs
from third-party species as template to infer pathogen-host PPIs.
However, a large genome gap between third-party species and
the concerned species is prone to yield less credible results. Patho-
gen mimicry achieves knowledge transfer across co-evolving
pathogen and host, so that the genome gap is reduced. In addition,
we use the well-studied host PPI networks (i.e. Homo sapiens) as
template, which is more reliable than the bacterial pathogen tem-
plate [21].

Validation against experimental data is the third critical con-
cern in pathogen-host PPI prediction. In many cases, there are very
limited experimental data that can be used as independent test
data. In this study, we use all the available experimental data to
validate the proposed framework. Independent tests on the exper-
imentally verified pathogen-host PPIs from Human immunodefi-
ciency virus and Francisella tularensis show that the proposed
framework encouragingly outperforms the existing methods. As a
result, the assumption of pathogen functional mimicry is effec-
tively validated. Nevertheless, performance estimation shows that
the proposed framework is somewhat biased towards the positive
class. The bias partly results from the negative data sampling. For
bacterial pathogens, the bias seems to be more serious, partly
because the non-interacting pathogen-host protein pairs are ran-
domly sampled in two different cells and the coverage of negative
data is limited, which is similar to the subcellularly restricted sam-
pling method [50]. Negative data sampling is a critical concern in
PPI prediction [15,51], which could be to some extent improved
via computational methods, e.g. augmenting the available experi-
mentally derived non-interacting protein pairs via homology
[51]. Solution to this problem ultimately depends on the accumu-
lation of experimental data and development of sophisticated com-
putational methods. In addition, the F. tularensis-human PPIs
derived via Y2H technique potentially contain a certain level of
noise, and thus the independent test performance on Francisella
tularensis is not so encouraging.

As two case studies, we apply the proposed framework to hu-
man respiratory syncytial virus and Salmonella typhimurium for
genome-scale reconstruction of pathogen-host PPI networks. GO
enrichment analyses show that the pathogen and predicted human
target genes are generally involved in some common cellular pro-
cesses. Pathway enrichment analyses show that HRSV tends to tar-
get Tumor necrosis factor alpha (TNF), Epidermal growth factor
receptor (EGFR1), T Cell Receptor (TCR) and Interleukin-1–11
(IL)., while S. typhimurium tends to target Tumor necrosis factor
alpha (TNF), Androgen receptor (AR), Epidermal growth factor
receptor (EGFR1) and Transforming growth factor beta receptor
(TGFBeta). Besides human immune signaling pathways, HRSV
and S. typhimurium also interfere with some major human cellular
transcriptional activities. For instance, HRSV is predicted to inter-
fere with human protein WWP2 that is highly expressed in undif-
ferentiated embryonic stem cells and is involved in regulation of
DNA-binding transcription factor activity. S. typhimurium is pre-
dicted to target human protein FOS that forms a tight but non-
covalently linked complex with the JUN/AP-1 transcription factor.
All the other results are provided in the supplementary files and
potentially give biological insights into the signaling cross-talk
mechanism between pathogen and host.

According to the comprehensive database VirHostNet 2.0 [32],
there are 239 pathogens that are studied in terms of their protein
interactions with Homo sapiens. We choose the four pathogens (i.e.
human immunodeficiency virus, Francisella tularensis, human respira-
tory syncytial virus and Salmonella typhimurium) with relative lar-
ger experimental data to validate the proposed framework.
Development of a web interface to study all the other pathogens
is on our further research agenda.
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5. Conclusions

In this study, we propose a transfer learning framework based
on pathogen functional mimicry to infer pathogen-host PPIs from
human PPI networks alone. The performance of independent test
on experimental PPI data validates the effectiveness of pathogen
functional mimicry, which is more flexible, less biased and less
demanding than pathogen sequence and structure mimicries.
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