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In practical encephalogram (EEG)-based machine learning, different subjects can be
represented by many different EEG patterns, which would, in some extent, degrade
the performance of extant subject-independent classifiers obtained from cross-subjects
datasets. To this end, in this paper, we present a robust Latent Multi-source Adaptation
(LMA) framework for cross-subject/dataset emotion recognition with EEG signals by
uncovering multiple domain-invariant latent subspaces. Specifically, by jointly aligning
the statistical and semantic distribution discrepancies between each source and target
pair, multiple domain-invariant classifiers can be trained collaboratively in a unified
framework. This framework can fully utilize the correlated knowledge among multiple
sources with a novel low-rank regularization term. Comprehensive experiments on DEAP
and SEED datasets demonstrate the superior or comparable performance of LMA with
the state of the art in the EEG-based emotion recognition.

Keywords: encephalogram, latent space, emotion recognition, co-adaptation, maximum mean discrepancy

INTRODUCTION

Contemporarily, in the field of affective computing research, automated emotion recognition (AER)
has attracted lots of attention from machine learning and computer vision (Kim et al., 2013). In
traditional schema, one auto emotion recognition system driven by EEG signals usually includes
two core components, i.e., feature extraction followed by emotion classification (Lan et al., 2018).
Some representative EEG feature extraction methods (Jenke et al., 2014; Zhang et al., 2020b) can be
viewed comprehensively in Jenke et al. (2014). This work mainly focuses on machine learning-based
emotion classification methods.

In the past decade, a large scale of emotion recognition methods has been presented
for effective emotion recognition using EEG features (Musha et al., 1997; Kim et al.,
2013; Li et al., 2018b,c). Zheng (2017) proposed a novel emotion recognition method by
exploiting the group sparse canonical correlation analysis, thus simultaneously implementing
EEG channel selection and emotion recognition. Recently, Li et al. (2018c) also presented
a sparse linear regression model with graph regularization for emotion recognition using
EEG signals. In the past decade, due to their outperformed performance compared with
traditional methods, deep emotion recognition methods using EEG signals have been widely
explored in emotion feature extraction and recognition (Lotfi and Akbarzadeh-T, 2014),
such as criminal psychological emotion recognition based on deep learning and EEG
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signals (Liu and Liu, 2021), EEG-based Deep Belief Network
model (Zheng and Lu, 2015), multi-channel EEG-based
recognition model (Song et al., 2018), and EEG-based neural
network model (Li et al., 2018b).

It is worthy to note that the aforementioned works for emotion
recognition perform well only in such scenario that both training
and test samples follow the same distribution (Zhang et al.,
2020a), in which the recognition models obtained from the
source dataset(s) therefore can be easily utilized in the target
dataset effectively (Zhang et al., 2019a). Unfortunately, these
traditional methods may fail in addressing cross-subject/dataset
emotion recognition due to the mismatch of feature distribution
with EEG signals. To address this issue, many domain adaptation
(DA) emotion recognition models for AER problem have been
promoted (Chu et al., 2017; Li et al., 2018a; Li et al., 2020a,b;
Bao et al., 2021; Wang et al., 2021). In a DA emotion recognition
system, one usually focuses on exploring an effective recognition
model on one target domain with few or even none of the labeled
data, by borrowing some positive knowledge from other source
domain(s) with slightly different distribution with that of the
target domain (Bruzzone and Marconcini, 2010; Tao et al., 2012;
Long et al., 2014; Zhang et al., 2019b).

A typical challenge in one EEG-based emotion recognition
system is the cross-subject/dataset learning problem (Li et al.,
2018a). In such scenario, DA techniques can be exploited to
address this challenging issue where both training and test data
follow slightly different distribution (Tao et al., 2012; Long et al.,
2014; Li et al., 2021). To deal with the challenging cross-subject
EEG emotion recognition problem, Pandey and Seeja (2019)
proposed a subject-independent approach for EEG emotion
recognition. Li et al. (2018a) proposed another method for cross-
subject EEG emotion recognition. In the past decade, deep neural
networks (DNNs) (Ganin et al., 2016; Li et al., 2018a) have also
driven rapid progress in DA (Duan et al., 2012a; Ding et al.,
2018a). The DA issues can be solved by the domain adversarial
neural network (DANN) (Ganin et al., 2016). It remains unclear,
however, whether the performance of deep DA methods is
really contributed by their deep feature representation, the fine-
tuned classifiers, or is rather an outcome of the adaptation
regularization terms (Ghifary et al., 2017).

Although existing DA methods have obvious effectiveness and
efficiency in the special use of emotion recognition (Chu et al.,
2017), there is few work to use the joint feature selection method
and then carry out the multi-source adaptive domain recognition
of cross datasets by exploiting the correlation knowledge among
domains and features. Besides, during DA, most of the multi-
source domain adaptation (MDA) methods (Yang et al., 2007;
Duan et al., 2012b,c; Tommasi et al., 2014; Tao et al., 2015, 2017;
Ding et al., 2018b) generally cope with the sources independently
without considering the correlation information among the
source domains (Zhang et al., 2019c), which may destroy the
discriminant structure (either intrinsic or extrinsic) of multi-
source domains (Rosenstein et al., 2005). Last but not the least,
for an MDA system, it is crucial for source weight determination
during learning based on the correlation and quality of source
domains. To the best of our knowledge, these characters are not
feasible enough in extant MDA methods.

In order to solve the above problems in existing MDA, we
explore to exploit the relevant knowledge among sources in the
uncovered subspaces to learn a multi-source adaptive emotion
recognition model. In other words, we mainly adopt the strategy
of digging the relationship between multi-source domains and
one target domain (including feature and distribution) for
promoting multi-source adaptive emotion recognition with EEG
signals. We aim to progress beyond existing works that have
partially addressed those issues by exploring to solve all the
above-mentioned issues in a unified framework. Specifically,
we propose in this work a robust Latent Multiple-source
Adaption (LMA) method for EEG-based emotion recognition by
mining multiple shared latent subspaces, each for one source–
target domain pair. The method employs the robust regression
scheme to process high-dimensional, sparse outliers and non-
i.i.d. (independently identical distribution) EEG features by
jointly utilizing the l2,1-norm (Nie et al., 2010a) and trace
norm. Under this framework, the row sparsity regularization
is designed to obtain the solution of sparse feature selection
(Zhang et al., 2020b). We match distributions between each
domain pair (including both target and multi-source domains)
by minimizing the nonparametric Maximum Mean Discrepancy
(MMD) (Gretton et al., 2009; Pan et al., 2011) in each uncovered
latent space shared by this source–target pair. The contributions
of this paper are listed as follows:

(1) We propose a unified multi-source adaptive emotion
recognition framework with EEG features by uncovering
multiple latent subspaces.

(2) Our framework selects features in a collaborative way
and considers the correlated knowledge among sources. In
LMA, the importance of each feature does not need to be
evaluated separately. In addition, in our unified framework,
we can learn multiple loss functions with feature selection
for all source adaptation subjects synchronously, so that our
framework can use the correlated information of multiple
sources as auxiliary information.

(3) In this framework, the original geometric structure is
retained by using the graph Laplacian regularization, and
the l2,1-norm minimization sparse regression approach is
used to suppress the influence of noise or outliers in the
domains, which shows the robustness of the framework.

(4) Through a large number of experiments on two EEG
datasets, we prove the effectiveness and convergence of this
framework.

The remainder of the paper is organized as follows: In
section Related Work, we discussed the related works with
feature selection and multi-source DA learning. In section
Proposed Framework, our framework LMA will be designed, and
section Algorithm arranges the corresponding optimal algorithm
of LMA. The experimental results and analysis on two real
EEG datasets are presented in section Experimental Evaluation.
Finally, we conclude in Section Conclusion.
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TABLE 1 | Notations and descriptions.

Notations Descriptions

N Sample number of each source–target
pair

d Feature dimensionality number

χ Sample/feature space

0 Label/prediction space

a = [a1, a2, ..., ad]
T
∈ Rd Vector a

A ∈ Rn×d Matrix A

Ai,j The (i, j)th element of the matrix A

Ai,: and A:,j The i/jth row/column vector of A

(·)T Transpose operator

tr(·) Trace operator

〈A,B〉 = tr(AT B) The inner product of two matrices A
and B

||a||p :=
(∑d

i=1 |ai |
p
)1/p

The p-norm of a vector a

||A||
2,1
=
∑n

i=1

∣∣∣∣Ai,:
∣∣∣∣

2 =
∑n

i=1

√∑d
j=1 A2

ij The l2,1-norm of A

||A||∗ = tr((AAT )
1
2 ) The trace-norm of A

Ir Identity matrix of size r × r

1d d-dimensional vector with all ones

0d d-dimensional vector with all zeroes

RELATED WORK

In the past decades, affective computing community has paid
increasing attention to the emotion recognition with brain–
computer interfaces (BCI) (Mühl et al., 2014; Chu et al.,
2017). A brain–computer interface system could capture certain
emotion states and respectively make corresponding response to
these states using spontaneous EEG signals even when explicit
input from the subjects is unavailable (Zhang et al., 2019a), thus
augmenting the user experience in the session of interactivity.
Nowadays, a large number of methods (Zhang et al., 2016, 2017)
have been proposed to recognize different emotion information
from brain-wave signals. The latest works about affective BCI
(aBCI) took account of machine learning algorithms on emotion
recognition using a few discriminative features (Jenke et al.,
2014; Mühl et al., 2014). In one representative BCI system, a
certain feature extractor firstly extracts discriminative features
from the raw EEG data, and then these features as well as
labeled emotion states are sent into the classifier for real-time
affection recognition. In the last decade, many aBCI-related
works have presented sound and interesting emotion recognition
performance (Mühl et al., 2014).

Although existing methods have obtained satisfied
achievements on EEG-based emotion recognition, the expected
performance could still be degraded by certain impacts in the
case of cross-subject/dataset recognition due to the difference
between subjects/datasets. Therefore, one needs to train a
specific classifier for individual subject/dataset-of-interest. Even
for the same subject, it is also indispensable to recalibrate the
classifier frequently for maintaining a satisfied recognition
accuracy since the EEG signals are unstable now and then. This
would undoubtedly increase the costs of manual labor as well
as time. Fortunately, the DA (a.k.a. domain transfer) technique

can be leveraged to tackle these issues existing in EEG-based
emotion recognition.

In the past decade, DA technique (Duan et al., 2012a,b,c; Tzeng
et al., 2015; Tzeng et al., 2017; Ding et al., 2018a,b,c) has elicited an
increasing attention in the community of machine learning. Up
to now, domain-adaptation-based emotion recognition methods
have nearly dominated the literature of aBCI Dolan, 2002; Mühl
et al., 2014; Jayaram et al., 2016; Lan et al., 2018; Zhong et al.,
2020; Zheng et al., 2015; Zheng and Lu, 2016; Chai et al.,
2016; Chai et al., 2017; Shi et al., 2013; Koelstra et al., 2012;
Zheng and Lu, 2015), which aim to address different issues
in emotion classification by pursuing various DA skills using
the EEG datasets such as SEED. In these preceding works,
a commonly used strategy is to uncover a shared subspace
from different domains by preserving certain discriminative
properties, thus decreasing the differences among subjects or
sessions extracted from the captured EEG signals (Tao and Dan,
2021). While extensive exploration on cross-subject/session has
been conducted effectively in the prior works by leveraging
various DA tricks, one obvious shortage in these works is that
the evaluation dataset is just limited to one single database,
e.g., SEED. In practical aBCI applications, the EEG datasets
could also change since the EEG signals may be produced by
different subjects, sessions, EEG devices, experimental schemes,
and emotional stimuli. Henceforth, one of the yet unsolved issues
in current research is the robustness and effectiveness of the
proposed DA methods on cross-datasets/subjects.

PROPOSED FRAMEWORK

Notation
In the context, the symbol definitions are listed in Table 1. We
respectively denote by [A1,A2, ...,Ak] and [A1;A2; ...;Ak] the
concatenation of k matrices according to the row (horizontally)
and the column (vertically). In this work, we focus on the multi-
source adaptation framework, which can be driven by S source
domains of c-class. We denote by Xa

= {xa
1, ..., xa

na
} ∈ Rd×na

(a = 1, 2, ..., S) the ath source dataset with na samples1.
Its corresponding class label matrix can be denoted as
Ya
= [ya

1, ..., ya
na
]
T
∈ Rna×c

∈ 0 = {0, 1}c×1 with yil = 1
if the ith sample is labeled as the lth class and -1 others.
Correspondingly, we denote by Xt

= {xt
1, xt

2, ..., xt
m} ∈ Rd×nt

the target dataset of interest. Since the true classes of the samples
in Xt are inaccessible in the training stage, the target labels (or
pseudo labels) Y t

= [yt
1, ..., yt

nt
]
T
∈ Rnt×c

∈ 0 can be predicted
by certain pre-trained classifiers trained on the source datasets
with labeled data. Therefore, detecting the ground-truth label of
each target sample is our ultimate goal.

We further denote Xa/Xt with the label l as Xa(l)/Xt(l)

(l = 1, ..., c), and the ath source–target domain pair as
Xa = [Xa,Xt

] ∈ Rd×N (N = nt + na) with label matrix
Ya = [Ya,Y t

] by packing the ath source and the target data.

1While we do not need to limit the number of instances in each source domain,
which is identical with that assumed when shaped into the training matrix, for the
sake of simplicity, we can extract the same number of training instances from each
source domain.
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Problem Statement
A commonly used strategy in the representative MDA is to
acquire knowledge from multiple sources by leveraging certain
common knowledge shared by them to promote the target
learning of interest. We propose in this work a robust Latent
Multiple-source Adaption (LMA) emotion recognition method
based on EEG features. The method employs the robust
regression scheme to process high-dimensional, sparse, outliers,
and non-i.i.d. EEG features by jointly utilizing the l2,1-norm and
trace norm (Yang et al., 2013). The designed method has three
characteristics, which are integrated into a unified optimization
formulation to find an effective emotion recognition model by
aligning the feature distribution between each source–target
domain pair. Specifically, it includes four technical aspects: (1)
via employing the l2,1-norm minimization, a robust loss term is
introduced into each source model learning by taking account
of the influence of noise or outliers in EEG signal (Li et al.,
2015), and a sparse regularization term is designed to eliminate
over-fitting and a sparse features subset is selected; (2) based
on the designed regression model and the semantic distribution
matching between each pair of domains in each uncovered
latent spaces (Tao et al., 2019), it not only provides robustness
on loss function, but also retains the domain distribution
(including local and global) structures (Nie et al., 2010b), and
meanwhile maintains a high dependence on the (pseudo) label
knowledge of the source domains and the target domain (Nie
et al., 2010b; Ding et al., 2018c; Zhang et al., 2020a), so as
to obtain preferable generalization performance; and (3) by
exploiting the trace norm of matrix, we can make full use of
the correlative information among multiple sources and transfer
more discriminative knowledge to the target domain.

Specifically, we present the flow diagram of LWA in Figure 1
to illustrate our innovation: firstly, we can project each source
EEG data into one domain-invariant subspace by minimizing the
domain-wise distribution discrepancy; thus, S classifiers are being
jointly learned by employing trace norm as well as l2,1-norm; we
then obtain S target label matrices predicted from these source
classifiers on the target domain; furthermore, in the original
space, we also learn a target model using the squared regression
scheme with the constraint of prediction consistency on the
target data between those source models and the target model;
and by uncovering multiple domain-invariant latent spaces, we
finally formulate a joint learning framework of multi-source
adaptation for EEG-based emotion recognition. To implement
these properties, in the following part, we will detail the objective
formulation of the proposed method.

General Formulation
In this section, we propose the general formulation of LMA
framework underpinned by the robust regression principle and
the regularization theory. We investigate the learning problem
under multiclass setting, with the decision classifiers

{
f a
θ (x)

}S
a=1,

where θ is the parameter of the hypothesis space of those
decision functions. We propose a unified MDA framework by
uncovering S discriminative latent subspaces 2a (a = 1, 2, ..., S)
(Tao and Xu, 2019) and to learn decision classifiers f a

θ (x)s of

all sources simultaneously. In particular, the proposed method
minimizes the distribution difference of each domain pair after
the projection Pa into the subspace 2a, as well as the structural
risk functional of the labeled data from the source domain Xa.
We also let 2a be orthogonal on rows so that 2a2

T
a = Ir×r ,

where r(�d) is the dimensionality of the shared latent space. We
then endeavor to find S cross-domain models parameterized by
{θa}

S
a=1 via jointly utilizing correlated knowledge among sources

in some latent spaces. We therefore propose the following general
formulation of LMA:

<

(
f a
θa
, f t

θt
,2a

)
=

S∑
a=1

(
R(f a

θa
,Ya)+ dist2a(Xa,Xt)+0(f a

θa
)
)
+ Con(f a

θa
, f t

θt
,Xt)

+R(f t
θt
,Y t)+�(f a

θ ) , (1)

where θa/t is the parameter set of the ath source/target model,
Con(f a

θa
, f t

θt
,Xt) enforces the discriminative consistency between

the ath source and the target model on the target dataset, R(·, ·)
is the robust regression model, the regularization term 0(f a

θa
)

controls the complexity of f a
θa

, dist2a(Xa,Xt) is for aligning the
distributions of each domain pair in the latent space 2a, the
regularizer �(f a

θ ) controls the low rankness of all source models
for mining the correlated knowledge. Hence, by solving the
objective in (1), the subspace 2a and the decision functions f a/t

θa/t

s can be learned simultaneously. In the sequence, we will focus
on designing these components in the general formulation one
by one to construct a unified framework.

Design of Regression Model
In LMA, we learn a composite source classifier function
f a
= P◦a2a trained on the EEG features, where Qa represents

the source classifier model, and ◦ is the function combination
operator. We therefore explore to find the best approximation
Wt for f t by leverage Qa in 2a with the assumption that
there exist some commonalities (e.g., discriminative structures)
between different domains (Tao et al., 2019). Moreover, it should
also maintain the discriminative structure in the original space.
To capture the source correlation information, we respectively
design the following classification functions for the ath source
domain in the latent space:

f a
θ (X

a) = VT
a φ(Xa)+ QT

a ψθ(Xa), a = 1, 2, ..., S, (2)

where φ : χ→ H2 is a known feature map projecting the ath
source data from the input space χ into certain reproducing
kernel Hilbert space (RKHS) (Nie et al., 2010b) H. The other
component ψθ is a parameterized low-dimensional space that
aims at encoding the shared structure between each source
domain and the target domain. The weight vector Qa is defined
in the projected subspace under the projection ψθ for the ath
source, and Va is the weight matrix defined in the original feature
space. With the parametric form in (2), the learned subspace

2It is important to note that the feature mapping function φ with respect to each
source domain can be completely different from each other.
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FIGURE 1 | Flowchart of LMA on EEG-based emotion recognition.

ψθ can capture the intrinsic structure of source correlation
in the MDA problem, which are shared by each source and
the target domain. Correspondingly, we also can design the
target recognition model: f t(Xt) =WT

t φ(Xt) with the weight
matrix Wt . We present the empirical kernel map as discussed in
Gretton et al. (2009):

ψe : χ→ RN, for linear kernel mapping
x→ Kψ(·, x)|x1,x2,...,xN =

(
Kψ(x1, x), ...,Kψ(xN, x)

)
,

for nonlinear kernel mapping
.

In the following, we will discuss both the linear classification
function and the nonlinear (kernel) classification function and
integrate them into a unified form.

• Linear classifier. We can consider a simple linear form of
feature map, where θ = 2a is an r × d dimensional matrix
and ψθ(x) = 2aψ(x), with a known d-dimensional vector
function ψ(x). Furthermore, following (11), we can take a
simple model φ(Xa) = ψ(Xa) = Xa into account. We can
thereby write the linear classifier as

f a
θ (X

a) = VT
a Xa
+ QT

a2aXa, a = 1, 2, ..., S. (3)

• Nonlinear classifier. If we take kernel learning into account
and assume that the feature map φ(x) and ψ(x) belong

to certain reproducing kernel Hilbert space (RKHS), Eq.
(3) therefore can be kernelized. For ψ(x), we firstly
denote the kernel matrix as Kψ =

〈
ψ(xi),ψ(xj)

〉
. By using

empirical kernel, we have kernel matrix Ka
= φ(Xa) with

(Ka)i,j =
〈
φ(xa

i ),φ(x
a
j )
〉
, where xa

i , xa
j ∈ Xa. Finally, we can

let ψθ = 2aψe, where 2a ∈ Rr×N is used to transform
the empirical kernel vector to an r-dimensional space. Let
{9 i

a}
r
i=1 denote the weight parameters in the embedded

kernel subspace for the ath source. Hence, the kernelized
decision functions become

f a
θ (x) = ωT

a Ka(·, x)+9T
a 2aKa(·, x). (4)

where ωa is the weight coefficients in the original kernel space for
the ath source.

In order to model the linear case in Eq. (3) and kernel case in
Eq. (4) into a unified framework, we introduce

Ta =

{
Va + QT

a2a, linear
ωa +9

T
a 2a kernel

. (5)

Moreover, in the following, we use two symbols, namely, Wa and
Pa, where Wa denotes Va in the linear case and ωa in the kernel
case, and Pa denotes Qa in the linear case and 9a in the kernel
case. Then, Eq. (5) becomes Ta =Wa + PT

a2a for both linear and
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kernel cases, and we can represent the data in linear space and
nonlinear space as follows:

Xa/t
=

{
Xa/t, linear

Ka/t(·, x) , kernel
. (6)

In the sequence, we also refer to Xa/t as Xa/t if without special
denotation for simplicity of expression. As a result, we can
formulate the predictors, linear form as in Eq. (4) and nonlinear
form as in Eq. (6), in a unified form as depicted in

f a
θ (X

a) = TT
a Xa, a = 1, 2, ..., S (7)

We introduce the sparse regression scheme (Shi et al.,
2015) by exploiting l2,1-norm minimization to enhance the
robustness against the misclassification. We particularly
construct a scaled pseudo label matrix for the target data, i.e.,
F = [f1, f2, ..., fnt

] = (Y t(Y t)T)−1/2Y t
∈ Rnt×c, where the scaled

pseudo label fi = yt
i if xt

i is labeled, fi = 0 otherwise. Therefore,
FFT
= Int can be easily derived with additional constraint

F ≥ 0. We then respectively find the source classifiers trained
on Xa (a = 1, 2, ..., S) and the target classifier trained on Xt by
minimizing the following loss functions.

R(f a
θa
,Ya) =

∣∣∣∣∣∣f a
θa
(Xa)− Ya

∣∣∣∣∣∣
2,1
. (8)

R(f t, F) =
∣∣∣∣f t(Xt)− F

∣∣∣∣2
F + β

(
||Wt||2,1 + tr(FLFT)

)
. (9)

where L denotes the graph Laplacian matrix induced from
the target samples.

Moreover, it is intuitively reasonable that the outputs of f a s
on the target domain are expected to be consistent with those of
f t , which would gradually make Pa and Wt more accurate after
lots of iterations. This prediction consistency can be minimized
via the following residual:

Con(f a, f t,Xt) =
∣∣∣∣∣∣XT

t (Wa +2aPa)− Fa
∣∣∣∣∣∣2

F

+

∣∣∣∣∣∣XT
t Wt − F

∣∣∣∣∣∣2
F
+
∣∣∣∣Fa
− F

∣∣∣∣2
F . (10)

In such a way, Pa and Wt would jointly enhance the target
discriminations for the final emotion recognition.

Additionally, based on the parametric form of the decision
function f a

θ as in Eq. (7), we introduce the following regularizer:

0(f a
θ ) = ||Wa||

2
+ ||Ta||2,1 =

∣∣∣∣∣∣Ta −2
T
a Pa

∣∣∣∣∣∣2
F
+ ||Ta||2,1 ,

(11)
which controls the complexity of each source classifier
independently in the original and latent subspaces, respectively.

Uncovering Latent Spaces
In this subsection, we will present an effective strategy to
capture multiple domain-invariant subspaces to mitigate the
domain discrepancy as well as excavate some domain-invariant

discriminative information. To this end, we give two main
constraints or conditions on uncovering these latent spaces: (1)
preserving the within-domain local structures and (2) aligning
the inter-domain marginal distribution divergence as well as
conditional distribution discrepancy. Following existing feature
extraction methods (Tao et al., 2016), we further constrain 2a to
be orthogonal on rows, i.e.,2a2

T
a = Ir , where r (typically far less

than d) is the feature dimensionality in the latent space.
To fulfill the first condition, we construct a locality preserving

regularizer to measure the smoothness along the intrinsic
discriminative structure of the domain features (Nie et al.,
2010b; Shi et al., 2015; Ding et al., 2018c). Specifically, one can
construct an undirected graph with a weighted adjacency matrix∏

a = [(
∏

a)i,j]i,j=1,2,...,N , which is defined as (Yan et al., 2006):

(
∏

a
)i,j =



exp(−γ||xi − xj||
2), if xi ∈ δk(xj) or xj ∈ δk(xi)

and both have the same labels
exp(− γ

||xi−xj||
2 ), if xi ∈ δk(xj) or xj ∈ δk(xi)

and both have different labels,
0, otherwise

,

(12)
where xi, xj ∈ Xa = [Xa,Xt

], δk(x) denotes the k nearest
neighbor set of x, and the hyper-parameter γ can be empirically
computed as θa

√
c due to the impact of multi-class distribution,

where θa is the squared root of the mean norm of Xa. Deriving a
diagonal matrix 1a from

∏
a with (1a)i,i =

∑
j(
∏

a)i,j, we then
compute the graph Laplacian matrix as La = 1a −

∏
a. Thus,

preserving the local geometrical structures of EEG features can
be implemented by the following commonly used formulation in
the manifold learning (Chen et al., 2013).

tr(2T
a XaLaXT

a2a). (13)

Benefiting from its simplicity and effectiveness, Maximum Mean
Discrepancy (Gretton et al., 2009; Pan et al., 2011) has been
commonly used to measure the distribution distance between two
different domains. Consequently, to meet the second condition,
we aim to minimize the MMD in certain optimized RKHS
(Gretton et al., 2009). Specifically, the MMD between each
domain pair is defined as follows:

MMD(Xa,Xt)

= sup
||φ||≤1

(
EXa∼P [φ(Xa)]− EXt∼Q

[
φ(Xt)

])
=
∣∣∣∣EXa∼P [φ(Xa)]− EXt∼Q

[
φ(Xt)

]∣∣∣∣
H

, (14)

The empirical counterpart of the MMD in Eq. (14) can be defined
as:

MMD(Xa,Xt) =

∣∣∣∣∣∣
∣∣∣∣∣∣ 1
na

∑
xi∈Xa

φ(xi)−
1
nt

∑
xj∈Xt

φ(xj)

∣∣∣∣∣∣
∣∣∣∣∣∣
H

, (15)

which can recover an asymptotically unbiased estimation of
the squared MMD in Eq. (14). Denote the gram matrix
K̃a(xi, xj) = φ(xi)

Tφ(xj) on dataset Xa as

K̃a =

[
K̃a K̃at

K̃ta K̃t

]
∈ RN×N, (16)
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FIGURE 2 | Domain adaptation emotion recognition on within-dataset (SI: Session I, SII: Session II, SIII: Session III).

where K̃a, K̃t , and K̃at (or K̃ta) are the Gram matrices respectively
defined on the source domain, target domain, and cross domain
data. Thus, the squared MMD in Eq. (15) can be formulated as

MMD(Xa,Xt) = tr
(
K̃aDa) , (17)

where

Dij
a
=


1

n2
a

when xi, xj ∈ Xa

1
n2

t
when xi, xj ∈ Xt

−1
nant

otherwise
. (18)

In the sequence, we will take into account the feature map φ in
linear as well as kernel forms:

λ Linear kernel: K̃a = XT
a2

T
a2aXa if φ(x) = 2ax, where

Xa = [x1, x2, ..., xN ].
λ Nonlinear kernel: K̃a = KT

a 2
T
a2aKa if

φ(x) = 2aψe(x) = 2aKa(·, x), where ψe(x) is the empirical
kernel map defined in Eq. (4).

Recalling the definition of X in Eq. (6), the domain
discrepancy criterion defined in (17) can be reformulated:

MMD2(Xa,Xt) = tr(K̃aDa) = tr(2T
a Ka2a), (19)

where

Ka =

{
XaDaXT

a , linear kernel
KT

a DaKa, nonlinear kernel
. (20)

Note that Eq. (19) could not preserve the local structures of
the EEG data from the same class in the latent spaces due to
the shortage of semantic alignment. This would significantly
deteriorate the learning performance in some cases. To this end,
we further address this issue by improving Eq. (19) with the
following class distribution matching term:

c∑
l=1

∣∣∣∣∣∣
∣∣∣∣∣∣ 1
nl

a

nl
a∑

i=1

2T
a φ(xa(c)

i )−
1
nl

t

nl
t∑

j=1

2Tφ(xt(c)
j )

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

=

c∑
l=1

tr(2T
a K(l)a 2a), (21)

where

K l
a =

{
X(l)a Da(l)(X(l)a )

T, linear
(K(l)a )

TDa(l)K(l)a , kernel
,

X(l)a = [Xa(l),Xt(l)
], with Xa(l) and Xt(l) being the datasets of

the lth class, respectively, from source and target domains, nl
a

(respectively nl
t) is the data size of the lth class from the ath source

(respectively target) domain, and the elements of the matrix
Da(l)
= [Di, ja(l)] are defined as

Da(l)
i,j =


1

(nl
a)

2 , when xi, xj ∈ Xa(l)

1
(nl

t)
2 , when xi, xj ∈ Xt(l)

−1
nl

anl
t
, otherwise

. (22)

Equation (21) explicitly forces EEG data from different domains
but the same class to be mapped adjacently in the latent spaces.
By unifying Eq. (19) and Eq. (21), we can obtain:

c∑
l=0

tr(2T
a K(l)a 2a) = tr

(
2T

a

( c∑
l=0

K(l)a

)
2a

)
, (23)

where Ka(0) = Ka and Da(0)
= Da. We further denote

3a
=
∑c

l=0 K(l)a . By combining Eq. (13) and Eq. (23), we
can attempt to uncover a latent space by minimizing the
following formulation:

dist2a (X
a,Xt) = tr

(
2T

a (XaLaXT
a +3

a)2a

)
s.t. 2T

a2a = Ir . (24)

Sharing Source Discriminative Structure
While each source model is learned in different latent space from
each other, one still can presume that these source models might
be correlated due to the correlation of source EEG signals in the
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model level (Tao et al., 2016). These correlated discriminative
structures can be encoded by a low rank matrix of all source
models, thus transferring the source knowledge from each other.
For its simplicity of computation, the following trace norm of
the matrix P = [P1, P2, ..., PS], which is a surrogate of the rank
minimization, can be adopted for correlating the source models.

�(f a
θ ) = ||P||∗ = tr

((
PPT

) 1
2
)
, (25)

Overall Formulation
Combining the above formulations respectively defined in Eqs
(8) to (11) and Eqs (24) and (25) together, we have the following
objective function:

< = arg min
Pa,Wt,Ta, Fa,

F,Wt,ϑ,η,2

S∑
a=1

[
ϑ

q1
a
∣∣Ya − XT

a Ta
∣∣
2,1

+α
(
|Ta|2,1 + |Ta −2aPa|

2
F
)
+ η

q2
a
∣∣Fa − XT

t Ta
∣∣2
2,1
]

+

S∑
a=1

η
q2
a tr(2T

a Ca2a)+
S∑

a=1
η

q2
a |Fa − F|2F

+
∣∣XT

t Wt − F
∣∣2
F + β

(
|Wt|2,1 + tr(FLFT)

)
+

λ
2 |P|∗

s.t.
S∑

a=1
ϑa =

S∑
a=1

ηa = 1,2T
a2a = Ir

,

(26)
where Ca = XaLaXT

a +3
a, ϑ = [ϑ1, ...,ϑa]

T is the weight
vector to jointly combine all source regression loss, α, β, and λ

are three regularization parameters, q1, q2 > 1 are two tunable
parameters for avoiding trivial solution, and the tunable vector
η = [η1,η2, ...,ηS] denotes the adaptation degrees of different
sources. The l2,1-norm regularization added on projection matrix
Pa forces most of the rows in Pa (a = 1, ..., S) to shrink to zero,
thus performing feature selection on original data.

Emotion Recognition
After the best model parameters have been pursued, the
source and target classifiers can be applied to recognize
the emotion level of each probe EEG data. Specifically, we
linearly fuse two recognition results on the probe data,
i.e., f s(Xt) =

∑S
a=1 ϑa(X

t)T(2aPa +Wa) obtained from source
models, and f t(Xt) = (Xt)TWt predicted from the target model,
as the final prediction value. That is, the following combination
function can be exploited for recognizing the emotion level of the
given test data xt

i :

j = arg max
j

(
yt

i = δf s(xt
i)+ (1− δ)f t(xt

i)
)

j ,

where δ is a trade-off parameter, tuned from [0, 1]. In the
experimental setting, we empirically set δ = 0.5 for initialization,
followed by the evaluation of its impact on performance with
different values of it.

ALGORITHM

In this section, an alternately iterative procedure is adopted to
optimize the objective function in Eq. (26), which is followed by
an overall algorithm.

Optimization
In terms of the definition in Nie et al. (2010a), we can derive∣∣T̃∣∣2,1 = 2tr

(
T̃TQT̃

)
, where Q is a diagonal matrix with the ith

diagonal element Qii =
1

2||T̃i,:||2
. Hence, we can further transform

Eq. (26) into Eq. (27):

< = arg min
Pa,Wt,Ta, Fa,

F,ϑ,η,2

S∑
a=1


ϑ

q1
a tr(T̃T

a ZaT̃a)+ αtr
(
TT

a GaTa

+ |Ta −2aPa|
2
F
)

+η
q2
a
(
tr(2T

a Ca2a)+ |Fa − F|2F
+tr(QT

a Z̃aQa)
)


+

λ
2 tr

(
PT (PPT)− 1

2 P
)
+
∣∣XT

t Wt − F
∣∣2
F + β

(
|Wt|2,1 + tr(FLFT)

)
s.t.

S∑
a=1

ϑa =
S∑

a=1
ηa = 1,2T

a2a = Ir

,

(27)
where T̃a = (Ya − XT

a Ta) and Qa = Fa − XT
t Ta .

By solving the derivative of Eq. (27) w.r.t. Wt and letting it
equal to zero:

∂<

∂Wt
=0⇒Wt=1

−1XtF, (28)

where 1 = XtXT
t + βṼ , and Ṽ is a diagonal matrix with the kth

diagonal element being (Ṽ)kk =
1

2||(Wt)k,:||2
. Substituting Wt in

Eq. (27) with Eq. (28), we have:

< = arg min
Pa,Ta, Fa,

F,ϑ,η,2

S∑
a=1


ϑ

q1
a tr(T̃T

a ZaT̃a)+ α
(
tr
(
TT

a GaTa
)

+ |Ta −2aPa|
2
F
)
+ |Fa − F|2F

+η
q2
a
(
tr(2T

a Ca2a)+ tr((Fa − XT
t Ta)

T Z̃a(Fa − XT
t Ta))

)


+
λ
2 tr

(
PT (PPT)− 1

2 P
)
+ βtr

(
F1̃FT)

s.t.
∑S

a=1 ϑa =
∑S

a=1 ηa = 1,2T
a2a = Ir

, (29)

where 1̃ = βL+
(
XT

t 1
−1Xt − I

)
+ βXT

t 1
−1Ṽ1−1Xt . By

solving the derivative of Eq. (29) w.r.t. Fa and letting it equal to
zero, we have:

∂<
∂Fa
= 2Z̃aFa − 2Z̃aXT

t Ta + 2Fa − 2F = 0
⇒ Fa = S−1

a
(
F + Z̃aXT

t Ta
) , (30)

where Sa = Z̃a + I. Plugging Fa in Eq. (30) into Eq. (29), we can
get:

ηr
atr
((

S−1
a F +

(
S−1

a Z̃aXT
t − XT

t
)

Ta
)T Z̃a

(
S−1

a F +
(
S−1

a Z̃aXT
t − XT

t
)

Ta
))

+ηr
a
∣∣∣∣(S−1

a − I)F + S−1
a Z̃aXT

t Ta
∣∣∣∣2

F + βtr
(
F1̃FT) . (31)

By solving the derivative of Eq. (31) w.r.t. F and letting it equal
to 0, we obtain:

F = G−1
a DaTa, (32)
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FIGURE 3 | Domain adaptation emotion recognition on within-dataset with multi-kernel learning (SI: Session I, SII: Session II, SIII: Session III).

FIGURE 4 | Domain adaptation emotion recognition on cross-dataset (SI: Session I, SII: Session II, SIII: Session III).

where

{
Ga = η

q2
a S−1

a Z̃vS−1
a + η

q2
a (S−1

a − I)T(S−1
a − I)+ 1̃

Da = η
q2
a
(
S−1

a − I
)

S−1
a Z̃aXT

t + η
q2
a S−1

a Z̃a
(
S−1

a Z̃a − I
)

XT
t
, (33)

By replacing F and Fa in Eq. (29) with those in Eqs (30) and
(32), respectively, and solving the derivative of Eq. (29) with
reference to Ta and equaling to zero, we then get:

Ta = H−1
a
(
ϑ

q1
a XaZaYa + α2aPa

)
, (34)

where:

Ha = ϑ
q1
a XaZaXT

a + α (Ga + I)+ η
q2
a
(
(S−1

a − I)G−1
a Da

+S−1
a Z̃aXT

t
)T (

(S−1
a − I)G−1

a Da + S−1
a Z̃aXT

t
)

+βDT
a G−1

a 1̃G−1
a Da + η

q2
a
(
S−1

a G−1
v Dv + S−1

a Z̃aXT
t − XT

t
)T

Z̃a
(
S−1

a G−1
v DvTv + S−1

a Z̃aXT
t − XT

t
) . (35)

Let Ua =
1
2
(
PPT)− 1

2 and by replacing Ta in Eq. (29) with Eq.
(34), and solving the derivative of Eq. (29) in reference to Pa and
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FIGURE 5 | Multi-source adaptation emotion recognition accuracy (SI: Session I, SII: Session II, SIII: Session III).

equaling to zero, we then get:

Pa = −
(
2T

a Oa2a + λUa

)−1
MT

a2a, (36)

where

Oa =



ϑ
q1
a α2H−1

a XaZaXT
a H−1

a + α3H−1
a GaH−1

a

+α
(
αH−1

a − I
)T (

αH−1
a − I

)
+η

q2
a α2H−1

a
(
(S−1

a − I)G−1
a Da + S−1

a Z̃aXT
t
)T(

(S−1
a − I)G−1

a Da + S−1
a Z̃aXT

t
)

H−1
a

+η
q2
a α2H−1

a
(
S−1

a G−1
v Dv + S−1

a Z̃aXT
t − XT

t
)T

Z̃a
(
S−1

a G−1
v Dv + S−1

a Z̃aXT
t − XT

t
)

H−1
a

+βα2H−1
a DT

a G−1
a 1̃G−1

a DaH−1
a


, (36-1)

Ma =



ϑ
q1
a αH−1

a XaZa
(
ϑ

q
aXT

a H−1
a XaZaYa − Y

)
+ α2ϑ

q1
a

H−1
a GaH−1

a XaZaYa + ϑ
q1
a
(
αH−1

a − I
)

H−1
a XaZaYa

+ηr
aϑ

q1
a αH−1

a
∣∣(S−1

a − I)G−1
a Da + S−1

a Z̃aXT
t
∣∣2
F H−1

a

XaZaYa + βαϑ
q1
a H−1

a DT
a G−1

a 1̃G−1
a DaH−1

a XaZaYa

+ηr
aϑ

q1
a αH−1

a
(
S−1

a G−1
v Dv + S−1

a Z̃aXT
t − XT

t
)T Z̃a(

S−1
a G−1

v Dv + S−1
a Z̃aXT

t − XT
t
)

H−1
a XaZaYa


. (36-2)

By substituting the optimal solution of the updated variables
in Eqs (30), (32), (34), and (36) into Eq. (29) by mathematical
calculation with the constraints 2T

a2a = Ir , we then can get the
following objective function in reference to2a:

<(2a) = min
2a

tr
(
2T

a

(
η

q2
a Ca −Ma

(
2T

a Oa2a + λUa

)−1
MT

a

)
2a

)
, (37)

which is equivalent to the following objective:

<(2a) = max
2T

a2a=Ir
tr(2T

a Ra2a), (38)

where Ra = Ma
(
2T

a Oa2a + λUa
)−1 MT

a − η
q2
a Ca. According to

Li et al. (2015), 2a can be relaxedly obtained by the Eigen-
decomposition of Ra .

Lastly, we respectively optimize ϑa and ηa by fixing other
variables. In this situation, the objective in Eq. (29) by preserving
ϑa changes to the following problem:

min
ϑa≥0,ϑT

a 1=1

S∑
a=1

ϑ
q
atr(T̃T

a ZaT̃a), (39)

Let ga = tr
(
T̃T

a ZaT̃a
)
, the Lagrange function of Eq. (39) is

=(ϑa,ϕ) =

S∑
a=1

ϑ
q1
a ga − ϕ

( S∑
a=1

ϑa − 1

)
, (40)

Let the derivative of =(ϑa,ϕ) with respect to ϑa be equivalent to
0 and we can obtain:

ϑa = (ϕ
/
(q1ga))

1
q1−1 , (41)

Substituting Eq. (41) into the constraint
∑S

a=1 ϑa = 1, we obtain

ϑa = (ga)
1/(1−q1)

/ S∑
a=1

(ga)
1/(1−q1), (42)

With the same deduction with that of ϑa, we also get the
following optimal solution of ηa:

ηa = (ha)
1/(1−q2)

/ S∑
a=1

(ha)
1/(1−q2), (43)

where ha = tr(2T
a Ca2a)+ ||Fa − F||2F + tr((Fa − XT

t Ta)
T

Z̃a(Fa − XT
t Ta)).
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Overall Algorithm
An overall optimization process of LMA can be outlined
in the Algorithm 1. Following the same strategy in Zhang
et al. (2019b), we employ a window-based breaking criterion
to better achieve the convergence state of the algorithm.
In terms of this strategy, we denote by h̄ = 6 the window
size and compute ς =

∣∣MaxObjitr −MinObjitr
∣∣ /MaxObjitr in

itr−thiteration, where Objitr = {Objitr−h̄+1, ...,Objitr} represents
the set of historical target values in the window. While
ς < ε=10−5, our algorithm will stop the iteration.

Algorithm 1: Multi-source adaptation learning.

Input: Source datasets {Xs
i }

S
i=1, Laplacian matrices {Li}

S
i=1, target

dataset X t, and parameters α, β, and λ, the maximal iteration number `.
Output: Converged projection matrices {Pi}

S
i=1, {2i}

S
i=1, and matrices

{Fi}
S
i=1 and Wt.

Initialization: Set itr = 0, and initialize 2a = Ir and {Pitr
a }

S
a=1 randomly.

Let Pitr
= [Pitr

1 , ...,P
itr
S ];

1: for a = 1 to S do
{

1) Compute matrix Da
itr and Da(l)

itr , and K
itr
a and K

itr
a(l) with empirical kernel

mapping, thus computing

3a
=
∑c

l=0 K
(l)
a , l = 1, ..., c and Compute ϑa =

tr
(
XaLaXT

a +3
a)
)

∑S
a=1 tr

(
XaLaXT

a +3
a)
) ;

2) Initialize Ta = 2aPa and F itr
=
∑S

a=1 ϑa(X
t)T2aPa;

}
2: repeat
{
3) Compute W itr

t by Eq. (28)
4) Compute the matrix Ṽ itr with (Ṽ)kk =

1
2||(W itr

t )k,: ||2
;

5) set a = 1;
repeat
{
6) Compute the diagonal matrix Z itr

a , Gitr
a , and Z̃ itr

a ;
7) Compute Sitr

a = Z̃ itr
a + I;

8) Compute 2a according to Eq. (38) and then compute ηitr
a according

to Eq. (43);
9) Compute F itr

a = (S
itr
a )
−1 (F itr

+ Z̃ itr
a XT

t T itr
a
)

by (30);
10) Compute F itr by (32) after computing Gitr

a and Ditr
a by (33);

10) Compute T itr
a by (34) with (35);

11) Compute Pitr
a by (36) after computing (36-1) and (36-2);

12) Compute ϑ itr
a according to Eq. (42);

13) Compute the matrix
Ritr

a = Mitr
a
(
(2itr

a )
T Oitr

a 2
itr
a + λUitr

a
)−1

(Mitr
a )

T
− (ηitr

a )
q2 Citr

a ;
14) a = a+ 1;
} until a > S
7) Update Pitr+1

a = Pitr
a , thus 2itr+1

a = 2itr
a s.t. a = 1, ..,S;

8) Update F itr+1
a = F itr

a according to (30) s.t. a = 1, ..,S;
9) Update ϑ itr+1

i according to (42) s.t. a = 1, ..,S;
10) Update ηitr+1

i according to (43) s.t. a = 1, ..,S;
11) Update F itr+1 by (32), thus W itr+1

t according to (28);
12) Let itr = itr + 1;
}until itr > ` or ς < 10−5

3: return {Pa}
S
a=1, {2a}

S
a=1, Wt, F and {Fi}

S
a=1.

In terms of the proof in Nie et al. (2010a), the convergence of
the iterative procedures in Algorithm 1 can be guaranteed by the
following theorem.

Theorem 1 (Tao and Dan, 2021). The objective value in Eq.
(29) would steadily decline after several iterations by Algorithm
1, thus finally converging to the optimum.

EXPERIMENTAL EVALUATION

In this part, we comprehensively compare the proposed method
with several state of the arts on two widely used benchmark
databases including SEED (Zheng and Lu, 2015) and DEAP
(Koelstra et al., 2012) for EEG-based emotion recognition
(Mansour et al., 2009).

Databases
According to Zhong et al. (2020) and Lan et al. (2018), there
exist certain significant differences between SEED and DEAP
since they can be generated by different subjects, sessions, EEG
devices, experimental schemes, and emotional stimuli. Detailed
information about these two datasets can be viewed in Lan et al.
(2018). In the following experiments, we adopt the differential
entropy (DE) (Lan et al., 2018; Zhong et al., 2020) as the data
feature in emotion recognition, which has also been widely used
in the preceding literatures (Shi et al., 2013; Zhang et al., 2015;
Chai et al., 2016; Zheng and Lu, 2016; Chai et al., 2017; Lan et al.,
2018; Zhong et al., 2020) for DA emotion recognition.

Baselines and Setting
We will systematically compare our method with such state of the
arts as FSSL, an effective feature selection method without DA,
FastDAM (Duan et al., 2012a), Multi-KT (Tommasi et al., 2014)
with l2-norm constraint on p, A-SVM (Yang et al., 2007), and
DSM (Duan et al., 2012a). Since existing deep DA frameworks
have achieved many inspiring results on emotion recognition
as well as visual recognition, we also additionally present
comparisons with several deep (CNN-based) DA methods with
deep features: DAN (Long et al., 2015), ReverseGrad (Ganin and
Lempitsky, 2015), and MultiDIAL (Carlucci et al., 2020) based on
AlexNet, SDDA (Ding et al., 2018a), and CCSA (Motiian et al.,
2017), a unified framework of supervised DA and generalization
with deep models.

In our multi-source adaptation settings, for the baselines FSSL
and A-SVM, we just equally fuse all prediction values of the base
classifiers respectively obtained from each source domain3.

In our method, LMA, there exist three vital parameters,
i.e., λ, α, and β, that need to be tuned. In the community
of machine learning, how to jointly search the best parameter
values is still a yet unaddressed open issue. Consequently, we
empirically choose these parameters using the grid search strategy
also adopted in our previous work (Tao et al., 2019). Specifically,
we fine-tune the values of λ, α, and β from the grid range
{10−4, 10−3, ..., 103, 104

} in a heuristic way. Additionally, we
also empirically set q1 = q2= 2 for preventing the trivial solution
in terms of the conclusion reported in Hou et al. (2017).
Finally, we search the nearest neighbor number k from the set
{35, 10, 15, 17}, which is also adopted in FSSL. In Algorithm 1,
we pre-set the maximum iteration number τ = 100.

Through our experiments, we adopt the RBF kernel function,
i.e., Ki,j = exp(−σ||xi − xj||

2), for all nonlinear methods, where

3For each source domain, we train one SVM by using the corresponding labeled
samples. Then, for each test instance x, the decision values from p SVM classifiers
are converted into the probability values by using the sigmoid function (i.e.,
g(t) = 1/(1 + exp(−t)). Finally, we average the p probability values as the final pr.
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σ is equal to 1
/

d. In FastDAM, we operate the same practice in

Duan et al. (2012a) and set γi =
exp(−δDist(Xs

i ,X))∑
i exp(−δDist(Xs

i ,X))
(i = 1, ..., S.),

where δ = 100.

Cross-Subject Emotion Recognition
Note that different subjects even from the same dataset still
have different EEG feature distributions due to the individual
characteristics. We therefore practice the so-called leave-one-
out cross-validation strategy conducted also in Lan et al. (2018)
to evaluate the emotion recognition performance. That is, one
subject remains to be the target domain, and others from the
dataset are constructed as multiple sources. In this multi-source
scenario, we follow the same setting as Tao and Dan (2021) to
evaluate our method compared with other state of the arts on
SEED and DEAP, respectively.

Performance Evaluation
We plot in Figure 2 the recognition performance of LMA
compared with the baselines on two benchmark datasets. The
final obtained upper bound of chance level (UBCL) with 95%
confidence interval is also recorded in Figure 2. It is well known
that the theoretical performance (or chance level) (about 33.33 %)
of the random prediction could be achieved approximately by the
real chance level if the size of training data approached infinity
(Lan et al., 2018). When there are finite samples, we obtain the
empirical chance level by repeating the trials with the samples in
question equipped with randomized class labels (Lan et al., 2018).

From Figure 2, we can observe that the mean performance
(40.16%) of FSSL on DEAP is very close to the random
prediction. While it has significantly exceeded UBCL at a 5%
significance level, the relatively worse performance of FSSL
still indicates the imperative importance of DA in cross-
subject emotion recognition due to the substantial distribution
divergence between different subjects. This importance has been
witnessed by almost all baseline adaptation methods, which
have yielded better performance than FSSL in all cross-subject
settings. Specifically, our method, LMA, undoubtedly obtains
the best recognition accuracy (about 25.14% gains over FSSL),
which is closely followed by DSM. While all DA as well as
our method, LMA, achieved on DEAP obvious improvement
over FSSL with respect to t-test with p-value > 0.05,
the mean recognition performance of these methods is yet
not satisfied so far due to the complexity and difference
among all subjects.

The no-adaptation method FSSL touched on SEED an
average accuracy of 53.78% on three sessions from SEED,
which significantly outperformed UBCL. Those multi-source
adaptation methods including our method, LMA, unsurprisingly
achieved more accuracy gains than the no-adaptation method on
SEED. We can still observe that our method, LMA, demonstrates
the best performance on SEED by upgrading the average accuracy
with 75.47% w.r.t. t-test with p-value > 0.05. An interesting
observation is that all methods work better on SEED than DEAP,
which has also been reported in Lan et al. (2018) and Tao and
Dan. (2021). The reason for this phenomenon might be that
the larger distribution discrepancy between different subjects

from DEAP prevented boosting performance in these methods
(Mansour et al., 2009; Lan et al., 2018).

Multiple Kernel Selection
As well known, the choice of kernel is a challenging issue in
the kernel learning method. Recently, multiple kernel learning
(MKL) has been effectively proposed for conquering this choice
issue existing in single kernel learning methods. Consequently,
we also evaluate the performance boost in our method by using
MKL (called as MKLMA for short) for each source domain.
To this end, the first step is to construct a new space spanned
by multiple kernel mapping features. We firstly denote by
{φa}

0
a=1 an empirical kernel function set, which respectively

projects Xa into 0 different spaces. Then, an orthogonally
integrated space can be constructed by concatenating these 0
spaces. We denote the mapping features in this final space by
φ̃(xi) = [φ1(xi)

T,φ2(xi)
T, ...,φ0(xi)

T
]
T
∈ R0na , where xi ∈ Xa.

Correspondingly, the kernel matrix in this final space can be
easily deduced as Knew = [K̃1; K̃2; ...; K̃0], where K̃i is the ith
kernel matrix from the 0 feature spaces. Aiming to exploit the
multiple kernel spaces, we therefore employ four kernel mapping
functions including the above-used Gaussian kernel. The other
additionally employed kernels are inverse square distance kernel
function, Laplacian kernel function, and inverse distance kernel
function, respectively, denoted as Kij = 1

/(
1+ σ

∣∣∣∣xi − xj
∣∣∣∣2),

Kij = exp
(
−
√

σ
∣∣∣∣xi − xj

∣∣∣∣), and Kij = 1/(1+
√

σ
∣∣∣∣xi − xj

∣∣∣∣).
The observation from Figure 3, in which MKLMA

significantly outperforms LMA, justifies that our LMA with
MKL can further boost the recognition performance on DEAP
and SEED. This also proves the importance of kernel choice in
those kernel-based learning models.

Cross-Dataset Emotion Recognition
Single-Source Adaptation
In this subsection, we will demonstrate the consistent robustness
of LMA by evaluating its performance in several cross-dataset
settings, which is more challenging than the cross-subject
adaptation due to the intrinsic difference between datasets. For
the scenario of cross-dataset adaptation, we specially design
several different cross-dataset strategies by splitting the training
set and test set, respectively, in terms of their EEG instruments
and emotional stimuli sources, thus making up six cases,
i.e., DEAP→ SI, DEAP→ SII, DEAP→ SIII, SI→ DEAP,
SEED II→ DEAP, and SIII→ DEAP, where A→B denotes the
adaptation from the dataset A to the dataset B, and SI, SII, and
SIII are respectively denoted as the dataset of session I, session II,
and session III from the database SEED.

A representative hypothesis used in DA is that the feature
space of both source and target domains should be the same.
Following this assumption, we employ in this part only 32
channels shared between SEED and DEAP to construct a
common feature space with 160 dimensions for both domain
datasets. In the first three trials, we sample 2,520 samples as the
source from DEAP and 2,775 samples as the target from three
different sessions (SI, SII, and SIII) in SEED. We evaluate each
subject with respect to recognition accuracy in each session and
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FIGURE 6 | Emotion recognition accuracies of different methods using deeply extracted features (SI: Session I, SII: Session II, SIII: Session III).

TABLE 2 | Multi-source adaptation emotion recognition accuracies of derived methods as well as LMA.

Method {DEAP,SII,SIII}→SI {DEAP,SI,SIII}→SII {DEAP,SI,SII}→SIII {SI,SII,SIII}→DEAP {SI,SII}→DEAP {SI,SIII}→DEAP

LMA_NF 73.52 69.10 69.58 55.43 52.01 56.22

LMA_NL 69.13 65.36 66.11 52.32 53.16 52.71

LMA_NS 72.68 68.23 68.38 54.69 51.08 54.20

LMA 74.57 70.2 69.85 57.33 54.16 57.17

Bold denotes the best recognition rates (SI: Session I, SII: Session II, SIII: Session III).

then record the final mean results over 15 subjects from SEED. In
the other trials, we resample 41,625 source samples from SEED
and 180 target samples from DEAP. We also record the mean
recognition accuracy of each subject in DEAP over 14 subjects.
For the limitation of memory, 10% of the source data (4,162
samples) is randomly sampled as the actual training samples (Shi
et al., 2013; Zheng and Lu, 2015, 2016; Chai et al., 2016, 2017; Lan
et al., 2018; Zhong et al., 2020).

The mean recognition results on six cross-datasets are plotted
in Figure 4. We can observe from these results that the
performance of FSSL is almost near the random guess in that it
is slightly inferior to UBCL with about 95% confidence interval.
Besides, as observed from the results, the mean performance
of each method is slightly worse on cross-dataset than within-
dataset. This confirms the larger distribution gaps between two
datasets than within-dataset. The advantage of DA would be
reflected in this situation since DA could potentially relieve the
distribution issue in the cross-dataset applications, which can
also be justified by the observation from Figure 4, where all
DA methods outperform the no-adaptation one. While Multi-
KT and FastDAM occasionally obtain the best performance
in some settings, our method, LMA, still contributes the best
performance in most cases.

Multi-Source Adaptation
As reported in preceding works about DA learning, multiple
source domains can improve the adaptation performance to some

FIGURE 7 | Emotion recognition accuracies with different values of δ (SI:
Session I, SII: Session II, SIII: Session III).

extent by integrating multiple prior knowledge. Nevertheless,
in concrete applications, multi-source adaptation also incurs
another challenge, i.e., source scalability issue, since multi-
source learning could lead to the so-called “negative transfer”
problem. In this scenario, how to discriminately exploit multiple
sources becomes a challenge worthy to be addressed in the
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multi-source adaptation learning frameworks. To this end,
we will explore in this part the different reliabilities of the
prior sources in the emotion recognition task (Tao et al.,
2019; Tao and Dan, 2021). We evaluate the performance of
all baseline DA methods with multiple prior sources on the
designed cross-dataset settings. The average accuracies of all
methods are plotted in Figure 5, where A-SVM employs the
average prior model.

When there exists very large distribution discrepancy between
different domain datasets, it is hard for A-SVM to eliminate
the inter-domain distribution bias. Therefore, the results in
Figure 5 show that A-SVM is inferior to other multi-source
adaptation methods in most settings. A-SVM even has a
downgraded performance tendency with the increase of source
domains in some scenarios, which indicates the existence of a
“negative transfer” phenomenon in A-SVM. Another interesting
observation from Figure 5 is that all DA methods except
A-SVM achieve more improvement by leveraging multiple source
knowledge than by bridging only one source (i.e., cross-subject
settings) when the number of source domains increase. This
proves that it is beneficial to leverage multiple sources for
boosting the recognition performance. Moreover, LMA and DSM
conquer others by touching on the top performance, due to
their designed weights for discriminately screening the optimal
sources. Our method, LMA, obtains more gains over DSM
in some scenarios. A possible explanation is that the shared
discriminative information among source models in LMA is
advantageous to multi-source adaptation learning by utilizing the
optimal weight vector.

Deep Feature Adaptation
In this subsection, we will particularly evaluate our method,
LMA, with deeply extracted features by comparing it with several
recently proposed deep adaptation models on cross-dataset
emotion recognition using the multi-source settings.

In practical tasks, our method, LMA, can be trained on the
deeply transformed features of all domains, which follows the
same setup with that in Zhou et al. (2018) and Zhu et al.
(2017). Concretely, some pretrained deep model (e.g., VGG16)
is first fine-tuned using the source domain, then the deep
features can be extracted from EEG signals in both source
and target domains with this CNN model, and finally the
recognition model would be trained on these extracted features.
In the context of our experiments, we denote our methods
with the VGG16 model as LMA+VGG16. As for DAN, SDDA,
MultiDIAL, and ReverseGrad, we use their released source codes
to fine-tune the pre-trained models by respectively using the
pre-tuned parameters in their works (Ganin and Lempitsky,
2015; Long et al., 2015). Note that these deep adaptation
methods typically aim to learn domain-invariant representations.
Different from the deep adaptation frameworks, our proposed
method explores to learn a domain-invariant recognition model
with strong generalization ability from the source domain to
the target domain. Consequently, we expect that our method
can further upgrade the recognition performance with the
co-learning strategy on the deeply extracted features from
some deep model.

We plot the mean results of all methods in Figure 6,
from which we can observe that our deep adaptation method
LMA+VGG16 significantly outperforms LMA. This indicates the
advantage of deep features, which can be attributed to its robust
feature representation. Furthermore, LMA+VGG16 also obtains
comparable recognition performance with respect to other deep
adaptation methods. This may be attributed to the classification-
level constraint in LMA, where most of the source discriminative
structures are expected to be preserved by the guidance of
target classification. In some cases, as shown in Figure 6,
LMA+VGG16 even achieves the top performance compared with
other deep adaptation frameworks. This phenomenon shows that
the proposed LMA can become an effective surrogate to the deep
adaptation model by just exploiting the deep features extracted
from any one of the state-of-the-art deep models.

Parameter Impact
In our method, LMA, there exist three hyper-parameters (i.e.,
λ, β, and α) that needed to be tuned. These hyper-parameters
are mainly used to trade off different components of the
LMA framework. We therefore respectively set these parameters
into their extreme values to explore the importance of each
component in LMA. To this end, we set β = 0 to denote LMA
without target feature selection by LMA_NF, set α = ηa = 0
to denote by LMA_NL the case where LMA ignores latent
space representations, and set λ = 0 to denote by LMA_NS the
scenario where LMA fails to consider the shared discriminative
structures among multiple sources. We evaluate these derived
methods on cross-dataset recognition tasks.

The results in Table 2 clearly show that none of the three
derived methods can achieve the best performance as that
obtained by LMA. This further verifies the valuable contribution
of each component to LMA. Specifically, LMA_NL has a
significant downgraded manifestation compared with LMA,
which, from the opposite side, proves that the utilization
of shared latent spaces is very preferable to boosting the
performance of LMA; the performance of LMA_NTF is slightly
weaker than LMA, i.e., the performance of LMA would be slightly
impacted by the target feature selection due to the intrinsic
existence of some noise/outlier data in the target data; the inferior
performance of LMA_NS proves the importance of the utilization
of correlation knowledge among source models in cross-dataset
emotion recognition.

Note that in section Emotion Recognition, we use the
following combination function to recognize the emotion level
of the given test data xt

i :

j = arg max
j

(
yt

i = δf s(xt
i)+ (1− δ)f t(xt

i)
)

j ,

where δ ∈ [0, 1] is a trade-off parameter, which is empirically
set as 0.5 in the preceding trials. In this part, we will further
evaluate the impact on LMA with different values of δ in multi-
source adaptation scenarios. We plot the recognition accuracy
w.r.t. different values of δ in Figure 7. From the curves shown in
Figure 7, we can observe the following several interesting results:

Frontiers in Neuroscience | www.frontiersin.org 14 April 2022 | Volume 16 | Article 850906

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-850906 April 20, 2022 Time: 14:33 # 15

Tao et al. Robust Latent Multi-Source Adaptation

(1) Theoretically, δ controls the weight of source classifiers
and larger values of δ will make the source classifiers
more important in LMA. An extreme case is δ → 1,
where only source classifiers are guaranteed, but the target
discriminative information for the test samples is discarded.
In this case, all experimental results demonstrate a trend
of slight downgrade. This shows the necessity of composite
discrimination information by combining both source and
target classifiers.

(2) Another extreme case is δ → 0. In this case, LMA will
recognize the emotion state of certain test data by only
using the target discriminator, which cannot leverage the
prior source information with discriminating power. From
Figure 7, we can see that all curves show an obvious
upgrade in performance around δ = 0, which shows
the importance of multi-source discriminative models
in our framework.

(3) We cannot obtain the best performance when δ values are
relatively small or large, which shows the significance of
exploiting the discriminative information from both source
and target classifiers in our method.

(4) After δ > 0.5, we can see that most curves are relatively
stable across δ values, which shows that our method is not
significantly sensitive to δ > 0.5. Hence, we can empirically
set δ = 0.5 in the experiments.

CONCLUSION

To deal with the cross-subject/dataset EEG-based emotion
recognition task, we proposed a robust LMA. In multiple
domain-invariant latent spaces, LMA aims at transferring
multi-source knowledge into target learning mainly by
leveraging correlation knowledge among source models, which

discriminatively screens unimportant prior evidences in sources.
The comprehensive experiments performed on two public
datasets verify the effectiveness of LMA in dealing with cross-
subject/dataset emotion recognition. In most scenarios, our
LMA (or LMA-VGG16) obtains the best results or comparable
performance with respect to several representative baselines.

Since the implementation of LMA algorithm needs an iterative
optimization procedure, how to improve the efficiency of LMA
and seek a more efficient algorithm would be an issue worthy
of further study in our future research. The unreliable and
misleading pseudo labels strategy may be another potential
problem in our LMA. Consequently, our successive work would
explore how to seamlessly incorporate target label into the
framework of LMA.
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