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Currently, it is well known that the tumor microenvironment not only provides energy
support for tumor growth but also regulates tumor signaling pathways and promotes the
proliferation, invasion, metastasis, and drug resistance of tumor cells. The tumor
microenvironment, especially the function and mechanism of tumor-associated
macrophages (TAMs), has attracted great attention. TAMs are the most common
immune cells in the tumor microenvironment and play a vital role in the occurrence and
development of tumors. circular RNA (circRNA) is a unique, widespread, and stable form
of non-coding RNA (ncRNA), but little is known about the role of circRNAs in TAMs or how
TAMs affect circRNAs. In this review, we summarize the specific manifestations of
circRNAs that affect the tumor-associated macrophages and play a significant role in
tumor progression. This review helps improve our understanding of the association
between circRNAs and TAMs, thereby promoting the development and progress of
potential clinical targeted therapies.
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INTRODUCTION

With the continuous development of high-throughput sequencing, a class of covalently closed RNA
molecules with extensiveness, diversity, stability, and evolutionary conservation has come into view,
known as circular RNA (circRNA) (1, 2). circRNA has a unique covalently closed loop structure and
a specific tertiary structure and exhibits tissue- and developmental stage-specific expression, which
Abbreviations: APCs, antigen-presenting cells; CAE, cancer-associated endothelial cells; CAFs, cancer-associated fibroblasts;
circ-CDR1as, cerebellar degeneration-related 1 antisense; circ-PAIP2, circRNA poly(A) binding protein-interacting protein 2;
circRNA, circular RNA; circ-ZNF609CSCs, circRNA zinc-finger protein 609; CSC, cancer stem cells; CRC, colorectal cancer;
CTLA4, cytotoxic T-lymphocyte-associated protein 4; ECM, extracellular matrix; EcRNA, exonic circRNa; EGF, epithelial
growth factor; EGFR, epidermal growth factor receptor; ElciRNA, exon–intron circRNA; ceRNA, competing endogenous
RNA; HCC, hepatocellular carcinoma; HGF, hepatocyte growth factor; IL-10, interleukin 10; IL-17, interleukin 17; IL-23,
interleukin 23; IRF, interferon regulatory factor; LPS, lipopolysaccharide stimulation; MBLs, mannose-binding lectins; MHC,
major histocompatibility complex; miR, microRNA; ncRNA, non-coding RNA; NGS, next-generation sequencing; PD-L1,
programmed death ligand 1; PDGF, platelet-derived growth factor; PGE2, prostaglandin 2; Pol II, polymerase II; RBPs, retinol-
binding proteins; STAT, signal transducer and activator of transcription; TAMs, tumor-associated macrophages; TGF-b1,
transforming growth factor-b1; TLR4, regulate toll-like receptor 4; TME, tumor microenvironment.
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plays an essential role in multiple cellular processes (3). Some
circRNAs have been reported to be involved in tumor genesis,
progression, and metastasis (4, 5), and circRNAs have been
identified as important markers of various tumors (6–9). As a
critical determinant of all stages of cancer development and
progression, the tumor microenvironment (TME) is a complex
ecosystem involving the coevolution of cancer cells and the
surrounding matrix (10). A variety of cellular components in
TME include immune cells [T cells, tumor-associated
macrophages (TAMs), dendritic cells, mast cells, etc.], cancer-
associated endothelial cells (CAE), cancer-associated fibroblasts
(CAFs), and cancer stem cells (11, 12). Non-cellular counterparts
include growth factors, cytokines, and extracellular matrix
(ECM) (13). Other studies have shown that circRNAs play a
variety of roles in the TME, promote or inhibit the immune
system and angiogenesis, improve the permeability of endothelial
cells, promote tumor metastasis, lead to ECM remodeling, and
jointly support tumor progression (14, 15)—for example, CAFs
can release circEIF3k under hypoxia, upregulate miR-214, and
downregulate the programmed death ligand-1 (PD-L1)
expression in colorectal cancer, thus inhibiting the progression
of colorectal cancer (16). CAF-derived cytokines promote the
progression and metastasis of hepatocellular carcinoma (HCC)
by activating the circRNA–miRNA–mRNA axis in tumor cells
(17). The high expression of cerebellar degeneration-related 1
antisense (circ-CDR1as) can enhance the penetration level of
CAEs to promote tumor growth and metastasis (18). circRNAs
may become the entry point of the entire ncRNA network,
providing broad prospects for the clinical treatment of
tumors (19).

Currently, circRNAs participate in the progression of
tumorigenesis by acting on the TME and affecting the polarization
of TAMs. However, the relationship and interactions of circRNAs
and TAMs have not been systematically summarized. In this review,
we will outline the specific manifestations of circRNAs affecting the
tumormicroenvironment aswell as the latestfindings suggesting that
theyparticipate in themetabolic reprogrammingof tumor-associated
macrophages and play an important role in tumor progression. Our
review will improve the understanding of the relationship between
circRNA and TAMs to promote the development and progress of
potential clinical targeted therapies.

circRNAs
circRNAs are single-stranded RNAswith covalently closed circular
structures with tissue/developmental stage-specific expression
patterns (20–23), which are highly regulated by cis-acting
elements and trans-acting factors (24–27). The covalently closed
loops formed by circRNAs are produced by the back-splicing of the
exon and/or intron sequences of the primary transcript and endow
them with the inherent ability to resist the decay of extranuclear
RNA (28). Back-splicing is catalyzed by the standard spliceosome
mechanism, but protein factors and CIS-complementary
sequences, especially Alu repeats, can regulate this process (29).
Alu complementary-dependent base-pairing supports the
connection of downstream splicing donor pairs with non-splicing
upstream splicing receptors, and the contributed RNA is covalently
Frontiers in Oncology | www.frontiersin.org 2
closed (30). circRNAs exist in a wide range of species, ranging from
viruses tomammals, and can function as transcriptional regulators,
microRNA (miR) sponges, and protein templates (6, 31–33). Based
on the diversity of source sequences, circRNAs can be divided into
threecategories: exonic circRNAs (EcRNA), exon–introncircRNAs
(EIciRNAs), and circular intronic RNAs (ciRNAs) (8, 29, 34–36).
However, a fourth tricRNA may be isolated, which corresponds to
intronic circular tRNA (37). Most circRNAs are derived from pre-
mRNA, while a small portion of intron-derived circRNAs are
derived from pre-tRNA (36, 38).

Many studies have shown that circRNA has several
characteristics, namely (22):

(1) Abundance and diversity: thousands of different circRNAs
have been identified in eukaryotes through RNA-seq technology,
and the complexity of the circRNA production mechanism leads
to its diversity (29, 39). The enrichment of circRNA can also be
found in saliva and blood (22).

(2) Stability: a unique ring structure makes circRNA resistant
to ribonuclease, without 5′–3′ polarity and a polyadenylated tail,
which results in higher stability than linear RNA (22).

(3) Conservation: circRNAs are highly conserved in different
species (40).

(4) Specificity: circRNAs are usually specifically expressed in a
tissue or developmental stage-specific manner (8, 41). The
characteristics of circRNAs give them the following
different functions:

(a) They have miRNA sponges, such as circRNA sex-
determining region Y (cir-SRY) (42). (b) They interact with
proteins and their expression, such as retinol-binding proteins
and mannose-binding lectins (43).

(c) They have translation templates, such as circRNA zinc-
finger protein 609 (circ-ZNF609) (44).

(d) They have transcription regulators, such as circRNA poly
(A) binding protein-interacting protein 2 (circ-PAIP2) (45).

circRNAs are generated in the nucleus, but most of them are
found in the cytoplasm—for example, circRNAs formedby exons are
generally located in the cytoplasm (22), which suggests specific rules
for circRNA transport or localization. Although most circRNAs are
locatedprimarily in the cytoplasm, ciRNAsandEIciRNAsare limited
to the nucleus (23, 35, 46), which means that their role is in nuclear
events, such as transcriptional regulation. ciRNAs regulate the
transcription of their parental genes by promoting the elongation
of polymerase II. The binding of circRNAs to proteins may depend
not only on nucleotide sequences but also on the different secondary
or tertiary structures of circRNAs (47). Abnormally regulated
circRNAs play a suppressive or carcinogenic role in the initiation
and progression of cancer, affecting a number of cellular functions,
such as the maintenance of proliferation signals, promotion of cell
migration and invasion, resistance to apoptosis, and induction of
angiogenesis (48, 49). Meanwhile, circRNAs play an important
regulatory role in diseases by interacting with disease-related
miRNAs (50). Studies have shown that circRNAs are helpful for
the treatment of osteoporosis,which is related to the differentiationof
osteoclasts (51).

circRNAs, with a closed-loop structure and high stability, are
gene expression regulators that play a variety of regulatory roles in
December 2021 | Volume 11 | Article 780744
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transcription, splicing, and chromatin interactions (52).
The differences in the formation process and shape of the four
circRNAs as well as the characteristics and functions of circRNAs
are shown in Figure 1 (53). circRNAs exhibit inherent conserved
and environmental resistance stability due to their circular
structure, presence in blood and peripheral tissues, and
coexistence with exosomes and may be considered as potential
biomarkers or therapeutic targets for a number of immune diseases
(54). Most circRNA translation products have an impact on cancer
progression or inhibition (49, 55), which leads to abnormal
expression in various types of cancer (28), including colorectal
cancer (56), hepatocellular carcinoma (5, 57, 58), gastric cancer (59,
60), acute promyelocytic leukemia (61), and breast cancer (62, 63).
Listed in Table 1 is the relationship between some circRNAs and
tumors, suggesting that circRNAs are mainly related to
inflammatory responses, including the interaction between
cytokines and chemokines, and are a potential disease marker
that can be used as promising biomarkers for diagnosis, providing
a new therapeutic target for tumor treatment (65, 66).
Frontiers in Oncology | www.frontiersin.org 3
TAMs
A tumor has a highly heterogeneous structure. Tumor cells interact
with a variety of cells and factors, including immune cells and
immune factors, to form a complex tumor immune
microenvironment (67). The TME is a complex environment
where tumor cells coexist with immune cells and other cells,
blood vessels, signaling molecules, and the ECM and is the place
where the immune system interactswith tumorcells (68).Exosomes
are a component of the TME (69); they act as effective signaling
molecules between cancer cells and surrounding cells that make up
the TME (9, 70). Studies have found that circRNAmolecules can be
transferred to exosomes and are more abundant in exosomes than
in cells, suggesting that they may be promising cancer biomarkers
(9). Meanwhile, the TME can actively reprogram macrophage
metabolism through the direct exchange of metabolites,
cytokines, and other signaling mediators in cancer (71).

Macrophages are composed of many cell types with complex
and delicate regulatory networks. The type, density, and location of
macrophages, as well as other inflammatory infiltrates, have good
FIGURE 1 | Most ecircRNAs are primarily produced from two or three exons of reverse splicing, in which the 3′ splicing donor of the pre-mRNA is covalent to the 5′ splicing
receptor. Intron circular RNAs include circular intron RNAs (ciRNAs), excision of group I introns, excision of group II introns, excision of lariat introns, and excision of tRNA
introns. Exon–intron circular RNA is a circular RNA in which exons and introns exist simultaneously. Internal repetitive sequences may play an important role in its generation,
possibly similar to ecircRNAs. Intergenomic circRNAs contain two intron circRNAs, flanked by GT-AC splicing signals, which act as splicing donors and acceptors of
circRNAs and form a complete circRNA. The resulting intron ends are joined by RtcB ligase to form a stable circRNA, named tricRNA.
December 2021 | Volume 11 | Article 780744
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prognostic value in various cancer types (72–74). Macrophages are
key mediators of tissue homeostasis, while tumors upset this
balance; macrophages can even become drivers of metastasis (72,
75).Macrophages are specialized phagocytes that differentiate from
circulating classical monocytes after extravasation into tissues (76,
77) and express both activating and inhibiting receptors in the
phagocytosis of opsonic or apoptotic cells (78). Macrophages can
engulf a largenumberofpathogens andkill bacteria in cells (79–81).
In addition to directly killing tumor cells, macrophages also serve as
specialized antigen-presenting cells, which can present tumor cell-
derived antigens onmajor histocompatibility complex (MHC) class
I (82) and class II (83) molecules, thereby activating endogenous
antitumor T cell responses, amplifying the therapeutic effect and
reducing the risk of tumor cell escape due to antigen loss (84–86).
TAMs are derived from bone marrow-derived monocytes and
tissue macrophages that are recruited into and fill the TME,
promoting the spread and diffusion of cancer cells (87–90).
TAMs are key cells that generate immunosuppressive tumor
microenvironments by producing cytokines, chemokines, and
growth factors and triggering T cells to release inhibitory immune
checkpoint proteins. TAMs can directly help tumor cells migrate
through the paracrine ring between macrophages and tumor cells,
which involves macrophages secreting epithelial growth factor
(EGF) family ligands and tumor cells secreting CSF1, to improve
the invasive characteristics of tumor cells (91).

Consistent with macrophages, TAMs are also highly plastic (92)
and adapt to microenvironmental changes by regulating cell
metabolism and reprogramming phenotypes (93, 94). TAMs
enhance tumor progression by promoting genetic instability,
angiogenesis, fibrosis, immunosuppression, lymphocyte rejection,
invasion, and metastasis and promote the inflammatory
environment by secreting cytokines, such as interleukin-17 (IL-
17) and interleukin-23 (IL-23) (95, 96). Many studies have shown
that TAM infiltration is closely related to tumor cell proliferation
Frontiers in Oncology | www.frontiersin.org 4
and can express a variety of cytokines that stimulate tumor cell
proliferation and survival, including EGF, platelet-derived growth
factor, transforming growth factor-b1, hepatocyte growth factor,
and epidermal growth factor receptor (97, 98). Figure 2 shows that,
once monocytes from peripheral blood are recruited into the tumor,
the tumor environment rapidly promotes their differentiation into
TAMs (96). Initially, monocytes and macrophages are recruited to
the site of tumorigenesis. Under the guidance of different
microenvironmental signals, macrophages can differentiate into
two functional phenotypes, namely, classical activated
macrophages (M1) and alternately activated macrophages (M2).
In contrast to the antitumor effects of M1, M2 has anti-
inflammatory and tumorigenic properties. M2 TAMs are
predominant in progressive tumors and are important regulatory
cells in the TME response (99, 100). The major event in the tumor
microenvironment is the polarization of macrophages into the
tumor-suppressor M1 or tumor-promoting M2 macrophages.
Although there is considerable evidence that TAMs are
predominantly M2-like macrophages, the mechanisms by which
TAMs polarize intoM1 andM2macrophages remain unclear (101).
TAMs exhibit the patterns of M1 and M2 macrophages, but these
cells are known to have transcriptional profiles different from those
of M1 or M2 macrophages (102). However, it is certain that TAMs
are related to the occurrence and development of various tumors,
such as breast cancer, prostate cancer, glioma, lymphoma, bladder
cancer, lung cancer, cervical cancer, and melanoma (103–105).
TAMs, which are abundant in most types of malignancies, can
promote tumor angiogenesis, allowing cancer cells to escape from
the tumor into the circulation and inhibit anti-tumor immune
mechanisms (106, 107). Some studies have shown that CSF1, IL-4,
IL-13, and IL-10 can promote the polarization of M1-like TAMs to
M2-like TAMs in the TME (102). Under specific conditions, the
transformation of M2-like TAMs into M1-like TAMs may lead to
tumor regression (108). By releasing pro-inflammatory molecules,
TABLE 1 | Some circRNA types in cancers.

Types Expression Cancers miRNA
sponges

Roles Influence References

circMTO1 Under-
expressed

Hepatocellular
carcinoma

miR-9 Tumor
suppressor

It affects the expression of downstream P21 protein (57)

circRNA
cSMARCA5

Downregulated Hepatocellular
carcinoma

miR-181b-
5p
miR-17-3p

Tumor
suppressor

It inhibits the proliferation and metastasis of the cancer by
regulating TIMP3 expression

(5, 58)

circRNA circ-
Ccnb1

Downregulated Breast cancer / Cell death
agent

It results in the induction of cell death in cancer (62)

circGFRA1 Upregulated Breast cancer miR-34a
ceRNA

Tumor
suppressor

It regulates GFRA1 expression (63)

circRNA f-
circM9

Upregulated Acute promyelocytic
leukemia

/ Proto-
oncogene

It contributes to cellular transformation in cancer (61)

circRNA
circ0006916

Downregulated Lung cancer miR-522-3p Tumor
suppressor

It inhibits cell proliferation by slowing down the cell cycle
process

(64)

CiRS-7 Upregulated Gastric cancer miR-7 Tumor
suppressor

It antagonizes the miR-7-mediated PTEN/PI3K/AKT pathway in
gastric cancer

(59)

circ-ITCH Upregulated Gastric cancer MiR-199a-
5p

Tumor
suppressor

It affects the EMT process of gastric cancer (60)

circCCDC66 Upregulated Colorectal cancer miR-33b
miR-93
miR-185

Proto-
oncogene

It is associated with poor cancer prognosis (56)
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such as TNF-a and IFN-g, activating TLR, and reducing anti-
inflammatory factors (such as ARG1, TGF-b, and IL10), M1-like
TAMs can promote the inflammatory response and antitumor
activity of the TME (109). TAMs can antagonize, enhance, or
mediate the antitumor effects of cytotoxic agents, tumor irradiation,
antiangiogenic/vascular injury agents, and checkpoint inhibitors
(73, 110–113).
THE RELATIONSHIP BETWEEN circRNAs
AND MACROPHAGE POLARIZATION

In primary tumors, TAMs have an M1-like phenotype and can
eliminate certain immunogenic tumor cells (114). However, the
TME can induce the M2-like polarization of TAMs, which is the
cause of the formation of primary carcinoma (111, 115). Studies
have demonstrated the relationship between circRNAs and
macrophages—for example, circASAP1 can act as a competing
endogenous RNA (ceRNA) of miR-326 andmiR-532-5p to mediate
TAM infiltration, and circRNA-CDR1as may be crucial for tumor
tissue immunity and cell penetration, such as CD8+ T cells, activated
Frontiers in Oncology | www.frontiersin.org 5
natural killer (NK) cells, and M2 macrophages (116). circ-ASAP1
can mediate TAM osmosis by regulating the miR-326/miR-532-5P-
CSF-1 pathway (117). There is no specific mechanism elucidated in
this respect, which suggests that the next step is to study how
circRNAs interact with tumor-associatedmacrophages. Studies have
shown that circRNAs can regulate macrophage differentiation and
polarization, while the pathways regulatingmacrophage polarization
are not completely clear. Several molecules are involved in this
process (Figure 3), such as interferon regulatory factor (IRF) and
signal transducer and activator of transcription (STAT) (118, 119).
Lipopolysaccharide stimulation (LPS) stimulates M1 macrophages
by inducing STAT1-a and STAT1-b and interacting with the
receptor TLR-4 (120). circPPM1F can play an active role in
the LPS-induced activation of M1 macrophages through the
circPPM1F–HUr–PPM1F–NF-kB axis (121), and circCdy can
promote M1 polarization by inhibiting the entry of IRF4 into the
nucleus (122). CSF-1, IL-4, IL-10, TGF-b, and IL-13 are conducive to
the polarization of the M2 subgroup (123, 124). The overexpression
of has-circ-0005567 inhibits thepolarizationofM1macrophages and
promotes thepolarizationofM2macrophages (125).Comparedwith
M2-type macrophages, circRNA-003780, circRNA-010056, and
FIGURE 2 | Macrophages in the tumor microenvironment become tumor-associated macrophages (M0) once exposed to tumor substances (MCSF), and M0 can
differentiate into M1 and M2. When activated by interferon -g and lipopolysaccharides, M1 macrophages show bactericidal activity and express high levels of CD86,
inducible nitric oxide synthase, and pro-inflammatory cytokines, such as interleukin (IL-6), IL-12, IL-23, and tumor necrosis factor. M2 macrophages are activated by
Th2 cytokines IL-4 and IL-13 as well as various parasite-related signals, which can be divided into four subtypes (M2a, M2b, M2c, and M2d). They are mainly
involved in inhibiting type I inflammation and promoting tissue repair and healing responses.
December 2021 | Volume 11 | Article 780744
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circRNA-010231 are upregulated inM1macrophages. However, the
expression of circRNA-003424, circRNA-013630, circRNA-001489,
and circRNA-018127 is downregulated (126). Studies have shown
that, in general, M1 is expressed in bones, the brain, and other adult
tissues, and M2 is expressed in embryonic development stages,
undifferentiated tissues, and tumors (127). circ-0048117 can
regulate toll-like receptor 4 (TLR4) by acting as an miR-140 sponge
to promote the polarization of M2 macrophages. Studies have
confirmed that the activation of TLR4 on the surface of
macrophages plays an important role in macrophage
differentiation (128). TLR4 is strongly expressed in lung cancer
TAMs and promotes the transformation of TAMs to M2-type
macrophages by promoting the oxidative phosphatizing process in
mitochondrial metabolism and inhibiting the glycolysis pathway
Frontiers in Oncology | www.frontiersin.org 6
(129). circRNA-0003528 promotes tuberculosis-associated
macrophage polarization by upregulating the expression of
cytotoxic T-lymphocyte-associated protein 4 (130).

Although most studies have found that circRNAs are more
closely related to M2 polarization, the specific mechanism between
circRNAs and M2 is not clear. Under the influence of tumor-
derived factors, TAMs can secrete a series of cytokines, including IL-
10, TGF-b, and prostaglandin 2 (PGE2), to further inhibit T cell-
mediated immune responses and establish a self-proliferative
immunosuppressive TME (72, 74). These cytokines can also affect
circRNA expression. Accordingly, interleukin-10 (IL-10) can also
inhibit the function of a variety of immune cells and the expression
of anti-inflammatory macrophages; additionally, IL-10 can induce
Tregs. Besides these, the abnormally expressed extracellular
FIGURE 3 | Tumor-associated macrophages can usually be divided into M1 type and M2 type. M1 macrophages are generally activated through interferon-g and
lipopolysaccharides, which mainly secrete pro-inflammatory factors and play a vital role in the early stage of inflammation. M2 macrophages are activated by Th2
cytokines, such as IL-4, IL-13, and the immune complex, express and inhibit the inflammatory factors, and play a role in inhibiting inflammatory response and tissue
repair. circRNA can affect the mutual transformation between M1 and M2. circRNA-0003528 induces M1 macrophage polarization by activating CTLA4. circRNA-
0048117 promotes the polarization of M1 to M2 macrophages by promoting the expression of TLR4. circ-Cdy can affect M1 polarization through IRF4. In M1
polarization, the expressions of circ-003780, circ-010056, and circ-010231 are upregulated, while the expressions of circ-003424, circ-013630, and circ-001489 are
downregulated; the opposite is true for M2 polarization. circ-0005567 can inhibit M1 polarization and promote M2 polarization.
December 2021 | Volume 11 | Article 780744
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circRNA may induce Treg cells and interact directly with immune
factors to mediate immune activity and facilitate intercellular
communication (131, 132). IL-10 produced by TAMs can inhibit
the function of antigen-presenting cells and then block the function
of T cell effects, such as cytotoxicity, to inactivate the anti-tumor
response, which leads to the downregulation of circRNAs related to
the tumor response, thus promoting tumor growth (133). It was
found that the transformation from M2-like TAMs to M1-like
TAMs can lead to tumor regression under specific conditions (134).
The mutual regulation between M1-like and M2-like TAMs is
achieved by signal axes, such as STAT1/STAT6 and IRF5/IRF4,
which are very important for the occurrence, development, and
cessation of tumor inflammation (135). This may be a potential
target for the regulation of M1-like and M2-like TAM
transformation in clinical cancer immunotherapy. Promoting the
conversion of M2 macrophages to the M1 phenotype can become a
tumor treatment method (136).

Complex interactions exist between circRNAs and key
counterparts in the TME (137), which can affect a variety of
physiological and pathological activities, including tumor
angiogenesis (138, 139). CAE is arranged on the inner surface of
tumor blood vessels and lymphatic vessels, which can support
angiogenesis and tumor neovascularization (140), while circ-
CDR1as is positively correlated with the CAE infiltration level
(18). Endothelial cells are the key to tumor angiogenesis, and the
effect of circRNA on endothelial cells can affect tumor progression
(141, 142)—for example, circ-IAR can destroy the tight junctions
between endothelial cells, increase the permeability of vascular
endothelial cells, and promote tumor metastasis (143). Some
circRNAs can induce the expression of PD-L1 in the TME and
mediate the regulation of tumor immunity—for example, the
upregulation of PD-L1 mediated by has-circ-0020397 can lead to
the inhibition of apoptosis and the acquisition of tumor immune
escape in the TME (144). In short, tumor development is generally
related to M2 polarization, and circRNA is also more closely related
to M2 polarization and can act with related factors in the TME. The
transformation from M2 to M1 can promote tumor regression,
which suggests that we can further study key targeted circRNAs to
inhibit M2 polarization and promote the transformation from M2
to M1 to treat tumors.
circRNAs ARE ASSOCIATED WITH TAMs
IN DIFFERENT CANCERS

TAMs infiltrate most solid tumors in large numbers and contribute
to tumor progression by stimulating proliferation, angiogenesis, and
metastasis and providing anti-tumor immune barriers. Co-existing
with circRNAs in the TME, TAMs may establish and reshape the
extracellular matrix structure by allowing tumor cells to invade
through the TME. circRNAs enable TAMs to interact with tumor
cells or other stromal cells by secreting growth factors, cytokines,
and chemokines (72, 76). Signals from tumor cells, lymphocytes,
and stromal cells affect TAM function and diversity as well as the
corresponding changes in circRNA expression (145, 146). circRNAs
play a key role in the development and progression of human
Frontiers in Oncology | www.frontiersin.org 7
cancers such as lung, liver, breast, and colon cancers. Because of the
large number of circRNAs, their functions may be complex and
different fromeach other, so the functions andmechanisms ofmost
circRNAs, such as has-circ-0014235, have not been fully identified,
and little is known about the existence or effect of circRNA
modification. The specific interactions between circRNAs and
TAMs are also unknown. In TAMs, circPTK2 is mainly expressed
in the tumor invasion frontier (M1-rich area) and stroma (M2-rich
area). In contrast, circHIPK3 is mainly expressed inM2, located in
the tumor nest and surrounding tumor invasion, suggesting that
circRNA is closely related to tumor pathology and prognosis (147).
Meanwhile, circRNAs have been found to be enriched in exosomes
(4). circRNAs can specifically bind to tumor-specific miRNAs or
mRNAs in exons and can be used as new tumor antigens to regulate
the immune response (141). Some circRNAs can be detected in
exosomes from the serum, urine, and tumors. Exosome circRNAs
may be involved in cell growth, angiogenesis, epithelial–
mesenchymal transformation, and targeted therapy (148, 149)—
for example, circFBLIM1 carried by serum exosomes can be
transferred to HCC cells, thereby promoting disease progression
and suggesting that circRNAmaybeabiomarkerof variousdiseases
(150). In colorectal cancer, the exons secreted by M2 macrophages
highly express miR-21-5p and miR-155-5p to regulate the
migration and invasion of colorectal cancer cells (151). circ-
BACH1 (has-circ-0061395) is significantly upregulated in HCC
tissues, and p27 inhibition is regulated byHUR,which reduces circ-
BACH1 to inhibit the proliferation and increase the apoptosis of
HCC cells (152). Studies have shown that circASAP1 promotes the
proliferation and invasion of HCC cells by regulating miR-326/
miR-532-5p-MAPK1 signaling and regulates the infiltration of
tumor-associated macrophages by regulating the miR-326/miR-
532-5P-CSF-1 pathway (117).

HighTAMinfiltration is associatedwitha lowoverall survival rate
in breast, gastric, oral, ovarian, bladder, and thyroid cancers but is not
associatedwith low overall survival in colorectal cancer (CRC) (153).
In bladder cancer, circPTK2 promotes the proliferation and
migration of bladder tumor cells through the interaction of M2
tumor-associated macrophages (154), while circHIPK3 has been
found in CRC by activating the downstream Bcl/Beclin 1 signaling
pathway in the TME, thus promoting the growth and differentiation
of TAMs (155). circRNA-002178 can act as a ceRNA and induce T
cell depletion in lung adenocarcinoma by promoting PD-L1/PD1
expression incancer cellswith spongymiR-34 (156),whichaffects the
polarization process of tumor-associated macrophages, as shown in
Figure 3. Mutated p53 cancer cells can be re-transformed from
macrophages to TAM through miR-1246 (157), which is beneficial
for anti-inflammatory immunosuppression and the increased
activities of TGF-b, while it also affects the expression of related
circRNAs (158).

InTAMs, circ-0061395 competitively combineswithmiR-877-5p
to improve the expression of PIK3R3 and promote the degree of
malignancy of HCC cells. The inhibition of circWHSC1 in vitro can
inhibit the proliferation and metastasis of HCC cells and inhibit
tumorigenesis in vivo (159). Other studies have shown that
circWHSC1, as a sponge for miR-142-3p, directly targets HOXA1,
which inhibits the polarization of TAMs, while inhibiting miR-142-
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3p can improve the effects of circWHSC1 gene knockdown on the
proliferation and metastasis of HCC cells. The overexpression of
miR-142-3p inhibits the growth and motility of HCC cells, and the
elevation of HOXA1 reverses this effect (160). The overexpression of
circMCTP2 in gastric cancer can restore MTMR3 expression in
gastric cancer cells to cisplatin through spongingmiR-99a-5p, which
also affects the process of macrophage reprogramming TAMs (161).
Other studies have also shown that exosomal circRNA can promote
cell growth and inhibit DNA damage (162). Experimental results
have shown that circPPM1F can accelerate the activation of M1
macrophages and accelerate the apoptosis of islet cells in diabetic
mice (121). Therefore, further studies of exosomal circRNAs will
provide a new method for the diagnosis and targeted treatment of
many diseases.

CONCLUSION AND PROSPECT ON
circRNAs AND TAMs

With the development of next-generation sequencing technology,
an increasingnumber of circRNAshave beendiscovered. circRNAs
are a novel class of non-coding endogenous RNAswith closed-loop
characteristics. At present, there is no evidence that circRNAs are
directly related to the differentiation of tumor-associated
macrophages, but some studies have shown that they can be
transformed into endogenous RNA to participate in the
differentiation process. However, not all circRNAs are positively
correlated with tumor-associated macrophages, and the specific
correlation between them deserves further study. In general, M1
macrophages promote inflammatory responses against invading
pathogens and tumor cells, while M2 macrophages tend to exhibit
an immunosuppressive phenotype that is conducive to tissue repair
and tumor progression. The abundance of TAMs in tumors is often
related to the acquisition of tumor-specific pathological features,
such as immunosuppression, neovascularization, invasiveness,
metastasis, and poor response to treatment, which indirectly
suggests that TAMs may have a tumor-promoting function.
TAMs may affect the expression of circRNAs in various cancers,
such as lung cancer, liver cancer, colon cancer, and gastric cancer.

Tumor-associated macrophages, especially those that infiltrate
tumor tissues, secrete various cytokines according to their polarity
and play an important role in the occurrence, invasion, and
metastasis of tumors. circRNAs, on the other hand, can specifically
adsorb miRNAs to be used as competitive endogenous RNAs. By
enhancing exon expression, circRNAs interact with the TME to
establish an immunosuppressive environment and promote tumor
Frontiers in Oncology | www.frontiersin.org 8
cell proliferation, anti-apoptosis, invasion, and migration.
Unfortunately, the cause and function of circRNA are not entirely
clear; this is also true for the role of the specific mechanism between
circRNAs and TAMs. However, previous studies have shown that
there is little correlationbetween the two.Further researchwillhelpus
delve into the role of circRNA and TAMs in tumor growth. The
dynamicbalanceand interactionbetweenTAMsand tumorcellsplay
an important role in the occurrence and development of tumors.
circRNAs can also affect TAM differentiation by influencing the
TME, thus further affecting tumor growth and development. It was
found that the expression of circRNAs in tumor tissues is not
absolutely upregulated or downregulated; it may be upregulated in
lung cancer but downregulated in breast cancer. Such contradictions
make it difficult to connect the polarization of TAMs with the
expression of circRNAs, but they show a correlation. Studies on the
relationship between circRNAs and TAMs are still at a superficial
stage, and there are not enough studies to prove a clear logical
relationship between them. circRNAs have many small molecular
subtypes, and the TAM polarization process involves many small
molecular substances. Perhaps an algorithm can be developed to
study the pairwise collocation or mixed collocation between the two
to further reveal the relationship between them; this is a direction for
future research. Further studies on the relationship between
circRNAs and TAMs can help elucidate the role of circRNAs in the
nervous system, cancer development, innate immune response, and
other biological environments and diseases. circRNA is expected to
become a new tumor marker and potential target, providing a new
direction for tumor diagnosis and targeted therapy.
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