

Received 20 October 2016 Accepted 28 October 2016

Edited by T. J. Prior, University of Hull, England

Keywords: crystal structure; coordination polymer; metal organic framework; cadmium complex.

CCDC references: 1512964; 1512963

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 3 ACCESS

Two cadmium coordination polymers with bridging acetate and phenylenediamine ligands that exhibit two-dimensional layered structures

David K. Geiger,* Dylan E. Parsons and Bracco A. Pagano

Department of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA. *Correspondence e-mail: geiger@geneseo.edu

Poly[tetra- μ_2 -acetato- $\kappa^8 O:O'$ -bis(μ_2 -benzene-1,2-diamine- $\kappa^2 N:N'$)dicadmium], [Cd₂(CH₃COO)₄(C₆H₈N₂)₂]_n, (I), and poly[[(μ_2 -acetato- $\kappa^2 O:O'$)(acetato- $\kappa^2 O,O'$)(μ_2 -benzene-1,3-diamine- $\kappa^2 N:N'$)cadmium] hemihydrate], {[Cd(CH₃COO)₂(C₆H₈N₂)]·0.5H₂O}_n, (II), have two-dimensional polymeric structures in which monomeric units are joined by bridging acetate and benzenediamine ligands. Each of the Cd^{II} ions has an O₄N₂ coordination environment. The coordination geometries of the symmetry-independent Cd^{II} ions are distorted octahedral and distorted trigonal antiprismatic in (I) and distorted antiprismatic in (II). Both compounds exhibit an intralayer hydrogenbonding network. In addition, the water of hydration in (II) is involved in interlayer hydrogen bonding.

1. Chemical context

 Cd^{II} is able to substitute for Zn^{II} in the active sites of zinccontaining enzymes and to interfere with the metabolism of Ca^{II} , which are the primary reasons for its toxicity (Borsari, 2014). In addition, the substitution of Cd^{II} for spectroscopically silent Zn^{II} provides a means of exploring zinccontaining biomolecules using ¹¹¹Cd and ¹¹³Cd NMR spectroscopies (Kimblin & Parkin, 1996; Henehan *et al.*, 1993; Jalilehvand *et al.*, 2009, 2012). Thus, the coordination chemistry of cadmium is of interest.

Metal-organic frameworks (MOFs) have received much attention because of their many potential applications including gas storage, catalysis, chemical sensors and molecular separation (Dey *et al.*, 2014; Kreno *et al.*, 2012; Farha & Hupp, 2010). Our previous efforts in the area of coordination polymers have focused on compounds based on phenylenediamine and acetate ligands incorporating Zn^{II} (Geiger & Parsons, 2014) and Pb^{II} (Geiger *et al.*, 2014). We have extended this work to include Cd and report the structural analyses of two Cd compounds herein. Although acetate ligands adopt a myriad of different metal-binding modes, only the μ_2 -acetato- $\kappa^2 O:O'$ mode is observed in (I). Both acetato- $\kappa^2 O,O'$ and μ_2 -acetato- $\kappa^2 O:O'$ modes are found in (II).

Numerous examples of structures with benzene-1,2-diamines exhibiting monodentate and/or bidentate coordination modes have been reported (Narayanan & Bhadbhade, 1996; Ovalle-Marroquín *et al.*, 2002; Ariyananda & Norman, 2005; Chen *et al.*, 2006; Maxcy *et al.*, 2000; Qian *et al.*, 2007; Dickman, 2000; Mei *et al.*, 2009; Djebli *et al.*, 2012; Zick & Geiger, 2016; Geiger *et al.*, 2014; Geiger & Parsons, 2014; Geiger, 2012). Examples of benzene-1,4-diamine metal-complex structures

have also been reported (Batten *et al.*, 2001; Faizi & Prisyazhnaya, 2015). Few examples of bridging benzene-1,2diamine- $\kappa^2 N:N'$ (Liang & Qu, 2008; Duff, 1968), 1,3-diamine- $\kappa^2 N:N'$ (Chemli *et al.*, 2013), or benzene-1,4-diamine- $\kappa^2 N:N'$ (Liu *et al.*, 2012) ligands have been reported. Compounds (I) and (II) are two new examples of coordination polymers in which benzenediamine ligands bridge two metal atoms.

2. Structural commentary

As shown in Fig. 1, (I) has two symmetry-independent Cd^{II} ions. Cd1 sits on a crystallographically imposed inversion center and Cd2 resides on a crystallographically imposed twofold rotation axis. Each of the Cd^{II} ions exhibits an O₄N₂ coordination sphere composed of four bridging $\kappa^2 O:O'$ acetate ligands and two bridging $\kappa^2 N:N'$ benzene-1,2-diamine ligands. For the coordination sphere of Cd1, the twist angles (Muetterties & Guggenberger, 1974; Dymock & Palenik, 1975) defined employing the triangular face centroids N1O1O3 and N1ⁱⁱⁱO3ⁱⁱⁱO1ⁱⁱⁱ (see Fig. 2) are 52.26 (12), 66.27 (15) and 56.47 (9)°, giving an average value of 60 (5)°. Perfect O_h or D_{3d} trigonal antiprismatic structures have a twist angle of 60°, whereas a D_{3h} trigonal prismatic structure has a twist angle of 0°. The coordination sphere of Cd2 exhibits twist angles of

Table 1	
Selected	geometric parameters (Å, °) for (I).

Cd1-O3	2.323 (3)	Cd2-O4 ⁱ	2.365 (3)
Cd1-O1	2.332 (3)	Cd2-O2	2.260 (3)
Cd1-N1	2.325 (4)	Cd2-N2 ⁱⁱ	2.416 (4)
O3-Cd1-N1	84.79 (12)	$O4^i$ -Cd2-O4 ^{iv}	80.73 (15)
O3-Cd1-O1	82.98 (11)	O2 ⁱⁱⁱ -Cd2-N2 ⁱⁱ	79.40 (12)
N1-Cd1-O1	84.38 (12)	O2-Cd2-N2 ⁱⁱ	115.81 (12)
$O2^{iii}$ -Cd2-O2	99.65 (17)	O4 ⁱ -Cd2-N2 ⁱⁱ	76.91 (12)
O2 ⁱⁱⁱ -Cd2-O4 ⁱ	156.01 (10)	O4 ^{iv} -Cd2-N2 ⁱⁱ	85.97 (11)
O2-Cd2-O4 ⁱ	93.98 (12)	$N2^{ii}$ -Cd2- $N2^{v}$	157.5 (2)

Symmetry codes: (i) -x + 1, -y + 3, -z + 2; (ii) x, y + 1, z; (iii) $-x + 1, y, -z + \frac{3}{2}$; (iv) $x, -y + 3, z - \frac{1}{2}$; (v) $-x + 1, y + 1, -z + \frac{3}{2}$.

 Table 2

 Selected geometric parameters (Å, °) for (II).

Cd1-O3	2.275 (3)	Cd1-O1	2.374 (4)
Cd1-O4 ⁱ	2.301 (3)	Cd1-N2 ⁱⁱ	2.388 (4)
Cd1-N1	2.324 (4)	Cd1-O2	2.443 (4)
$O3-Cd1-O4^{i}$	79.37 (11)	N1-Cd1-N2 ⁱⁱ	101.86 (14)
O3-Cd1-N1	107.45 (13)	$O1-Cd1-N2^{ii}$	84.00 (13)
O4 ⁱ -Cd1-N1	99.25 (13)	O3-Cd1-O2	168.71 (11)
O3-Cd1-O1	114.63 (11)	$O4^{i}-Cd1-O2$	98.78 (12)
$O4^{i}-Cd1-O1$	85.82 (12)	N1-Cd1-O2	83.83 (13)
N1-Cd1-O1	137.80 (13)	O1-Cd1-O2	54.09 (11)
$O3-Cd1-N2^{ii}$	86.63 (14)	$N2^{ii}-Cd1-O2$	91.49 (13)
O4 ⁱ -Cd1-N2 ⁱⁱ	157.39 (13)		

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $x, -y + 1, z + \frac{1}{2}$.

35.49 (8), 45.92 (17) and 45.92 (17)° [average 42 (6)°] using opposite triangular faces O2O4ⁱN2^{iv} and N2ⁱⁱO4^{iv}O2^{vii} (see Fig. 2). The coordination geometry is best described as distorted octahedral with the two nitrogen donor atoms *trans* for Cd1 and distorted trigonal antiprismatic for Cd2 with O₂N trigonal faces. Selected geometrical parameters are given in Table 1.

The atom-labeling scheme for (I). Anisotropic displacement parameters for non-H atoms are drawn at the 30% probability level. [Symmetry codes: (i) -x + 1, -y + 3, -z + 2; (ii) x, y + 1, z; (iii) -x + 1, -y + 2, -z + 2; (iv) x, -y + 3, $z - \frac{1}{2}$; (v) x, y - 1, z; (vi) -x + 1, y + 1, $-z + \frac{3}{2}$; (vii) -x + 1, y, $-z + \frac{3}{2}$.]

research communications

Figure 2

Representations of the Cd^{II} coordination environments observed in (I) and (II). Symmetry identifiers are those used in Figs. 1 and 3.

The N₂O₄ coordination geometry of (II) can be described as severely distorted trigonal antiprismatic with bidentate acetate oxygen atoms and a $\kappa^2 N:N'$ benzene-1,3-diamine nitrogen atom (O1O2N2ⁱ) forming one of the trigonal faces and two $\kappa^2 O:O'$ acetate ligand oxygen atoms and a nitrogen atom from a $\kappa^2 N:N'$ benzene-1,3-diamine (O3O4ⁱⁱN1) forming the other trigonal face (see Fig. 2). The atom-labeling scheme is shown in Fig. 3. The twist angles are 53.71 (11), 22.56 (8) and 45.38 (13)° [average = 41 (16)°]. As seen in Table 2, the Cd-O bond lengths associated with the bidentate acetate ligand are shorter than those of the bridging, monodentate acetate ligands, as has been observed in other cadmium complexes (Wang *et al.*, 2011, 2013).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1-H1A\cdots O2^{iii}$	0.86 (2)	2.34 (2)	3.175 (5)	163 (4)
$N1-H1B\cdots O4^{vi}$	0.91(2)	2.21 (3)	3.003 (5)	146 (4)
$N1-H1B\cdots O4^{vii}$	0.91(2)	2.38 (4)	3.029 (5)	128 (4)
$N2-H2A\cdots O3^{viii}$	0.86(2)	2.30(2)	3.111 (5)	158 (4)
$N2-H2B\cdots O3^{vi}$	0.86(2)	2.64 (2)	3.458 (5)	161 (4)
$N2-H2B\cdots O4^{vi}$	0.86 (2)	2.55 (4)	2.973 (5)	111 (3)

Symmetry codes: (iii) $-x + 1, y, -z + \frac{3}{2}$; (vi) -x + 1, -y + 2, -z + 2; (vii) $x, -y + 2, z - \frac{1}{2}$; (viii) x, y - 1, z.

3. Supramolecular features

As seen in Fig. 4, the supramolecular architecture of (I) exhibits independent layers in the *bc* plane, which are repeated in the [100] direction. Extensive $N-H\cdots O$ hydrogenbonding interactions exist (see Table 3), but none of them extend between the layers. Based on an analysis of the extended structure using the *SOLV* routine of *PLATON* (Spek, 2009), the unit cell contains no solvent-accessible voids.

Compound (II) also exhibits a two-dimensional extended structure. Layers parallel to the *bc* plane and repeated in the [100] direction are observed as seen in Fig. 5. N– $H \cdots O(acetate)$ hydrogen bonds (Table 4) are present within the layers. The water of hydration sits on a crystallographically imposed twofold rotation axis and, as seen in Fig. 6, is involved in $O-H \cdots O$ and $N-H \cdots O$ hydrogen-bonding interactions (Table 4) that link adjacent layers.

Figure 3

The atom-labeling scheme for (II). Anisotropic displacement parameters for non-H atoms are drawn at the 30% probability level. [Symmetry codes: (i) $x, -y + 1, z + \frac{1}{2}$; (ii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$]

Figure 4

Packing diagram for (I) showing the two-dimensional network parallel to (100). All H atoms have been omitted for clarity.

Table 4	
Hydrogen-bond geometry (Å, °) for (II)	•

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} O5-H5\cdots O2 \\ N1-HN1A\cdots O5 \\ N1-HN1B\cdots O3^{iii} \\ N2-HN2A\cdots O4^{iv} \\ N2-HN2B\cdots O1^{iii} \end{array}$	0.81 (2)	2.06 (4)	2.788 (5)	149 (7)
	0.86 (2)	2.34 (2)	3.183 (4)	166 (4)
	0.89 (2)	2.12 (2)	2.991 (5)	166 (5)
	0.87 (2)	2.32 (4)	3.012 (6)	137 (4)
	0.88 (2)	2.17 (3)	2.994 (5)	156 (5)

Symmetry codes: (iii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (iv) x, -y + 1, $z - \frac{1}{2}$.

4. Database survey

Examples of cadmium coordination polymers with carboxylate ligands and that exhibit two-dimensional sheet structures have been reported (Li *et al.*, 2014; Gao *et al.*, 2004; Chen & Zhang, 2014; Zhang *et al.*, 2007; Liu & Xu, 2005; Song *et al.*, 2006; Kong *et al.*, 2008*a*,*b*; Xu *et al.*, 2013; Zhuo *et al.*, 2006).

Packing diagram for (II) showing the layers parallel to (100). H atoms have been omitted for clarity.

Figure 6

Partial packing diagram for (II) showing the hydrogen-bonded network. Only H atoms involved in the hydrogen-bonded network are shown. [Symmetry codes: (i) -x + 1, y, $-z + \frac{3}{2}$; (ii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (iii)x, -y + 1, $z - \frac{1}{2}$.]

Cadmium is commonly observed with a trigonal–prismatic or trigonal–antiprismatic coordination geometry, often with one or two capping ligands (Bygott *et al.*, 2007; Cherni *et al.*, 2012; Uçar *et al.*, 2004; Banerjee *et al.*, 2005; Keypour *et al.*, 2000). Coordination polymers with bridging benzene-1,2-diamine ligands (Liang & Qu, 2008; Duff, 1968), bridging benzene-1,3-diamine ligands (Chemli *et al.*, 2013), and bridging benzene-1,4-diamine ligands (Liu *et al.*, 2012) have been reported

5. Synthesis and crystallization

5.1. Preparation of (I)

213 mg (0.924 mmole) cadmium acetate hydrate were dissolved in 10 mL of ethanol. With stirring, 204 mg (1.89 mmol) of benzene-1,2-diamine were added and the resulting solution was refluxed for 2 h. A white precipitate formed, which was isolated by filtration and dried under vacuum. The yield was quantitative (310 mg). Selected IR bands (diamond anvil, cm⁻¹): 3278 (*w*), 1532 (*s*), 1504 (*s*), 1405 (*s*). ¹H NMR (400 MHz, dmso- d_6 , p.p.m.): 1.87 (*s*, 6H), 6.35 (*m*, 2H), 6.35 (*m*, 2H).

Single crystals were obtained by heating some of the product in N,N'-dimethylformamide and allowing the solution to slowly cool to room temperature. The crystal used for data collection was obtained by cutting a piece from a larger plate.

5.2. Preparation of (II)

230 mg (1.00 mmol) cadmium acetate hydrate were dissolved in 10 mL of ethanol. 217 mg (2.01 mmol) benzene-1,3-diamine were added with stirring. The solution was gently refluxed for 2 h. After chilling the reaction mixture in an ice bath, the precipitate was filtered and dried under vacuum. A yield of 248 mg (71%) was obtained. Selected IR bands (diamond anvil, cm⁻¹): 3425 (*b*), 3329 (*s*) 3328 (*b*), 3137 (*m*),

research communications

Table	5	
Experi	mental	details

	(I)	(II)
Crystal data		
Chemical formula	$[Cd_{2}(C_{2}H_{3}O_{2})_{4}(C_{6}H_{8}N_{2})_{2}]$	$[Cd(C_{2}H_{3}O_{2})_{2}(C_{6}H_{8}N_{2})] \cdot 0.5H_{2}O$
$M_{ m r}$	338.63	695.28
Crystal system, space group	Monoclinic, $C2/c$	Monoclinic, C2/c
Temperature (K)	200	200
a, b, c (Å)	23.283 (3), 7.2399 (9), 14.2744 (16)	20.777 (6), 8.2374 (18), 15.002 (4)
β (°)	96.887 (4)	102.583 (9)
$V(\dot{A}^3)$	2388.8 (5)	2505.9 (11)
Z	8	4
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	1.83	1.75
Crystal size (mm)	$0.40 \times 0.40 \times 0.05$	0.40 imes 0.08 imes 0.08
Data collection		
Diffractometer	Bruker SMART X2S benchtop	Bruker SMART X2S benchtop
Absorption correction	Multi-scan (SADABS; Bruker, 2013)	Multi-scan (SADABS; Bruker, 2013)
T_{\min}, \hat{T}_{\max}	0.53, 0.91	0.69, 0.87
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	14588, 2263, 1633	8942, 2443, 1859
R _{int}	0.089	0.057
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.610	0.617
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.109, 1.05	0.037, 0.095, 0.99
No. of reflections	2263	2443
No. of parameters	174	180
No. of restraints	4	6
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \; ({\rm e} \; {\rm \AA}^{-3})$	1.14, -1.17	0.86, -1.02

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

1520 (*s*), 1505 (*s*), 1400 (*s*). ¹H NMR (400 MHz, dmso- d_6 , p.p.m.): 1.83 (*s*, 6H), 5.78 (*m*, 3H), 6.64 (*t*, 1H). ¹³C NMR (dmso- d_6 , p.p.m.): 22.1, 100.5, 103.6, 129.6, 149.5, 178.0.

Clear, brown needles suitable for X-ray analysis were obtained upon slow evaporation of an ethanolic solution of the product. The crystals exhibit a melting range of 441–443 K with decomposition.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. For both (I) and (II), all hydrogen atoms were located in difference Fourier maps. The hydrogen atoms were refined using a riding model with a C-H distance of 0.98 Å for the methyl groups and 0.95 Å for the phenyl carbon atoms. The methyl hydrogen atom isotropic displacement parameters were set using the approximation $U_{iso}(H) =$ $1.5U_{eq}(C)$. All other C-H hydrogen atom isotropic displacement parameters were set using the approximation $U_{iso}(H)$ = $1.2U_{eq}(C)$. The N-H bond lengths were restrained to 0.88 Å in (I) and (II). The O-H bond length of the water of hydration in (II) was restrained to 0.84 Å and the H-O-H angle was restrained to 105° . $U_{iso}(H)$ was refined freely for the amine and water hydrogen atoms, except that for (II) the isotropic displacement parameters of the hydrogen atoms associated with N2 were restrained to be the same.

Acknowledgements

This work was supported by a Congressionally directed grant from the US Department of Education (grant No. P116Z100020) for the X-ray diffractometer and a grant from the Geneseo Foundation.

References

- Ariyananda, W. G. P. & Norman, R. E. (2005). *Acta Cryst.* E61, m187–m189.
- Banerjee, S., Ghosh, A., Wu, B., Lassahn, P.-G. & Janiak, C. (2005). Polyhedron, 24, 593–599.
- Batten, S. R., McKenzie, C. J. & Nielsen, L. P. (2001). Acta Cryst. C57, 156–157.
- Borsari, M. (2014). *Cadmium: Coordination Chemistry in Encyclopedia of Inorganic and Bioinorganic Chemistry*, pp. 1–16 New York: Wiley.
- Bruker (2013). APEX2, SAINT, SADABS, and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bygott, A. M. T., Geue, R. J., Ralph, S. F., Sargeson, A. M. & Willis, A. C. (2007). *Dalton Trans.* pp. 4778–4748.
- Chemli, R., Kamoun, S. & Roisnel, T. (2013). Acta Cryst. E69, m670– m671.
- Chen, H.-R. & Zhang, W.-W. (2014). Acta Cryst. C70, 1079-1082.
- Chen, Z.-L., Zhang, Y.-Z. & Liang, F.-P. (2006). Acta Cryst. E62, m1296-m1297.
- Cherni, S. N., Cherni, A. & Driss, A. (2012). X-ray Struct. Anal. Online, 28, 13–14.

- Dickman, M. H. (2000). Acta Cryst. C56, 58-60.
- Djebli, Y., Boufas, S., Bencharif, L., Roisnel, T. & Bencharif, M. (2012). Acta Cryst. E68, m1411-m1412.
- Duff, E. J. (1968). J. Chem. Soc. A, pp. 434-437.
- Dymock, K. R. & Palenik, G. J. (1975). Inorg. Chem. 14, 1220-1222.
- Faizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175– m176.
- Farha, O. K. & Hupp, J. T. (2010). Acc. Chem. Res. 43, 1166-1175.
- Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1875–m1877.
- Geiger, D. K. (2012). Acta Cryst. E68, m1040.
- Geiger, D. K. & Parsons, D. E. (2014). Acta Cryst. E70, m247-m248.
- Geiger, D. K., Parsons, D. E. & Zick, P. L. (2014). Acta Cryst. E70, 566–572.
- Henehan, C. J., Pountney, D. L., Vašák, M. & Zerbe, O. (1993). Protein Sci. 2, 1756–1764.
- Jalilehvand, F., Amini, Z. & Parmar, K. (2012). Inorg. Chem. 51, 10619–10630.
- Jalilehvand, F., Leung, B. O. & Mah, V. (2009). Inorg. Chem. 48, 5758– 5771.
- Keypour, H., Salehzadeh, S., Pritchard, R. G. & Parish, R. V. (2000). *Polyhedron*, **19**, 1633–1637.
- Kimblin, C. & Parkin, G. (1996). Inorg. Chem. 35, 6912-6913.
- Kong, Z.-G., Wang, J.-J. & Wang, X.-Y. (2008a). Acta Cryst. C64, m333–m335.
- Kong, Z.-G., Wang, J.-J. & Wang, X.-Y. (2008b). Acta Cryst. C64, m365–m368.
- Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). *Chem. Rev.* **112**, 1105–1125.
- Li, Q., Wang, H.-T. & Ye, Q. (2014). Acta Cryst. C70, 992-997.
- Liang, W.-X. & Qu, Z.-R. (2008). Acta Cryst. E64, m1254.
- Liu, B.-X. & Xu, D.-J. (2005). Acta Cryst. E61, m1218-m1220.

- Liu, J.-Q., Zhang, Y., Lü, Y.-J. & Jiang, Z.-J. (2012). Acta Cryst. E68, m430.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Maxcy, K. R., Smith, R., Willett, R. D. & Vij, A. (2000). Acta Cryst. C56, e454.
- Mei, L., Li, J., Ming, Z. S., Rong, L. Q. & Liang, L. X. (2009). Russ. J. Coord. Chem. 35, 871–873.
- Muetterties, E. L. & Guggenberger, L. J. (1974). J. Am. Chem. Soc. 96, 1748–1756.
- Narayanan, B. & Bhadbhade, M. M. (1996). Acta Cryst. C52, 3049– 3051.
- Ovalle-Marroquín, P., Gómez-Lara, J. & Hernández-Ortega, S. (2002). Acta Cryst. E58, m269–m271.
- Qian, B., Ma, W.-X., Lu, L.-D., Yang, X.-J. & Wang, X. (2007). Acta Cryst. E63, m2930.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
- Song, W.-D., Gu, C.-S., Liu, J.-W. & Hao, X.-M. (2006). Acta Cryst. E62, m2397–m2399.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Uçar, İ., Yeşilel, O. Z., Bulut, A., İçbudak, H., Ölmez, H. & Kazak, C. (2004). Acta Cryst. C60, m392–m394.
- Wang, J., Tao, J.-Q. & Xu, X.-J. (2011). Acta Cryst. C67, m173-m175.
- Wang, P., Zhao, Y., Chen, Y. & Kou, X.-Y. (2013). Acta Cryst. C69, 1340–1343.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Xu, X.-J., Miao, J.-Y. & Wang, J. (2013). Acta Cryst. C69, 620-623.
- Zhang, X.-F., Gao, S., Huo, L.-H. & Zhao, H. (2007). Acta Cryst. E63, m1314–m1316.
- Zhuo, X., Wang, Z.-W., Li, Y.-Z. & Zheng, H.-G. (2006). *Acta Cryst.* E**62**, m785–m787.
- Zick, P. L. & Geiger, D. K. (2016). Acta Cryst. E72, 1037-1042.

supporting information

Acta Cryst. (2016). E72, 1718-1723 [https://doi.org/10.1107/S2056989016017382]

Two cadmium coordination polymers with bridging acetate and phenylenediamine ligands that exhibit two-dimensional layered structures

David K. Geiger, Dylan E. Parsons and Bracco A. Pagano

Computing details

For both compounds, data collection: *APEX2* (Bruker, 2013); cell refinement: *APEX2* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

(I) Poly[tetra- μ_2 -acetato- $\kappa^8 O:O'$ -bis(μ_2 -benzene-1,2-diamine- $\kappa^2 N:N'$)dicadmium]

```
Crystal data
```

```
[Cd_{2}(C_{2}H_{3}O_{2})_{4}(C_{6}H_{8}N_{2})_{2}]

M_{r} = 338.63

Monoclinic, C2/c

a = 23.283 (3) Å

b = 7.2399 (9) Å

c = 14.2744 (16) Å

\beta = 96.887 (4)°

V = 2388.8 (5) Å<sup>3</sup>

Z = 8
```

Data collection

Bruker SMART X2S benchtop diffractometer Radiation source: sealed microfocus tube Doubly curved silicon crystal monochromator Detector resolution: 8.3330 pixels mm⁻¹ ω scans Absorption correction: multi-scan (SADABS; Bruker, 2013) $T_{\min} = 0.53, T_{\max} = 0.91$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.109$ S = 1.052263 reflections 174 parameters 4 restraints F(000) = 1344 $D_x = 1.883 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 120 reflections $\theta = 3.5-24.0^{\circ}$ $\mu = 1.83 \text{ mm}^{-1}$ T = 200 KPlate, clear colourless $0.40 \times 0.40 \times 0.05 \text{ mm}$

14588 measured reflections 2263 independent reflections 1633 reflections with $I > 2\sigma(I)$ $R_{int} = 0.089$ $\theta_{max} = 25.7^{\circ}, \theta_{min} = 2.9^{\circ}$ $h = -28 \rightarrow 27$ $k = -8 \rightarrow 8$ $l = -17 \rightarrow 16$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0496P)^{2} + 0.5909P] \qquad \Delta \rho_{max} = 1.14 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -1.17 \text{ e } \text{\AA}^{-3}$ $(\Delta / \sigma)_{max} < 0.001$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cd1	0.5	1.0	1.0	0.02022 (18)
Cd2	0.5	1.48311 (6)	0.75	0.02246 (18)
01	0.53894 (13)	1.2329 (4)	0.91404 (19)	0.0280 (7)
O2	0.57421 (14)	1.2817 (4)	0.7785 (2)	0.0341 (8)
O3	0.43034 (13)	1.2226 (4)	1.01819 (19)	0.0287 (8)
O4	0.44787 (12)	1.2680 (4)	1.17354 (18)	0.0275 (7)
N1	0.44368 (16)	0.9351 (5)	0.8581 (2)	0.0220 (8)
H1A	0.4354 (19)	1.040 (4)	0.831 (3)	0.033 (14)*
H1B	0.4683 (16)	0.875 (6)	0.824 (3)	0.045 (15)*
N2	0.44711 (17)	0.5481 (6)	0.8818 (2)	0.0226 (8)
H2A	0.438 (2)	0.445 (4)	0.905 (3)	0.040 (15)*
H2B	0.4719 (16)	0.612 (6)	0.917 (3)	0.044 (15)*
C1	0.39101 (18)	0.8316 (6)	0.8544 (3)	0.0232 (10)
C2	0.39284 (18)	0.6415 (6)	0.8678 (3)	0.0213 (10)
C3	0.3425 (2)	0.5424 (7)	0.8632 (3)	0.0315 (12)
H3	0.344	0.4118	0.8697	0.038*
C4	0.2890 (2)	0.6318 (8)	0.8489 (3)	0.0409 (13)
H4	0.2541	0.5629	0.8467	0.049*
C5	0.2872 (2)	0.8209 (8)	0.8380 (3)	0.0403 (13)
Н5	0.251	0.8824	0.829	0.048*
C6	0.3376 (2)	0.9219 (7)	0.8400 (3)	0.0326 (11)
H6	0.336	1.052	0.8316	0.039*
C7	0.57788 (19)	1.2169 (6)	0.8615 (3)	0.0267 (11)
C8	0.6357 (3)	1.1326 (10)	0.8978 (4)	0.0650 (18)
H8A	0.6648	1.2304	0.9089	0.098*
H8B	0.6473	1.0454	0.8511	0.098*
H8C	0.6324	1.0673	0.9571	0.098*
С9	0.41522 (19)	1.2753 (6)	1.0965 (3)	0.0248 (10)
C10	0.3540 (2)	1.3437 (8)	1.0964 (3)	0.0450 (14)
H10A	0.3441	1.3462	1.1612	0.067*
H10B	0.3274	1.2609	1.0581	0.067*
H10C	0.3507	1.4686	1.0697	0.067*

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.0250 (3)	0.0215 (3)	0.0140 (3)	-0.00045 (16)	0.0019 (2)	-0.00028 (16)
Cd2	0.0275 (3)	0.0228 (3)	0.0180 (3)	0	0.0066 (2)	0
O1	0.0330 (18)	0.0259 (18)	0.0270 (16)	0.0015 (14)	0.0107 (14)	0.0053 (14)
O2	0.047 (2)	0.034 (2)	0.0226 (18)	0.0065 (16)	0.0110 (14)	0.0081 (15)
O3	0.0396 (18)	0.0311 (19)	0.0166 (16)	0.0122 (15)	0.0083 (13)	0.0014 (14)
O4	0.0324 (18)	0.0324 (19)	0.0173 (16)	-0.0035 (15)	0.0010 (14)	-0.0029 (14)
N1	0.030(2)	0.018 (2)	0.017 (2)	0.0000 (18)	0.0014 (16)	0.0001 (17)
N2	0.032 (2)	0.021 (2)	0.016 (2)	-0.0048 (19)	0.0047 (17)	0.0002 (18)
C1	0.032 (3)	0.028 (3)	0.010 (2)	-0.001 (2)	0.0050 (18)	-0.0021 (18)
C2	0.028 (2)	0.023 (2)	0.012 (2)	0.0015 (19)	0.0038 (18)	-0.0012 (18)
C3	0.039 (3)	0.030 (3)	0.026 (3)	-0.008(2)	0.007 (2)	-0.004 (2)
C4	0.033 (3)	0.051 (4)	0.038 (3)	-0.006 (3)	0.004 (2)	-0.001 (3)
C5	0.030 (3)	0.049 (4)	0.041 (3)	0.011 (3)	0.004 (2)	0.003 (3)
C6	0.032 (3)	0.035 (3)	0.029 (3)	0.006 (2)	0.000 (2)	-0.002 (2)
C7	0.029 (3)	0.023 (3)	0.028 (3)	0.003 (2)	0.004 (2)	0.001 (2)
C8	0.065 (4)	0.066 (5)	0.065 (4)	0.004 (4)	0.013 (3)	0.002 (4)
С9	0.030 (2)	0.017 (2)	0.028 (3)	-0.0014 (19)	0.009 (2)	0.000(2)
C10	0.036 (3)	0.063 (4)	0.036 (3)	0.016 (3)	0.006 (2)	-0.004(3)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—C6	1.398 (6)	Cd1—O1 ⁱ	2.332 (3)	
C1—C2	1.390 (6)	Cd1—N1	2.325 (4)	
C10—H10C	0.98	Cd1—N1 ⁱ	2.325 (4)	
C10—H10B	0.98	Cd2—O4 ⁱⁱ	2.365 (3)	
C10—H10A	0.98	Cd2—O4 ⁱⁱⁱ	2.365 (3)	
С2—С3	1.369 (6)	Cd2—O2 ^{iv}	2.260 (3)	
С3—Н3	0.95	Cd2—O2	2.260 (3)	
C3—C4	1.398 (7)	Cd2—N2 ^v	2.416 (4)	
C4—H4	0.95	Cd2—N2 ^{vi}	2.416 (4)	
C4—C5	1.378 (7)	N1—H1B	0.907 (19)	
С5—Н5	0.95	N1—H1A	0.864 (19)	
С5—С6	1.378 (7)	N1—C1	1.432 (5)	
С6—Н6	0.95	N2—H2B	0.857 (19)	
С7—С8	1.512 (7)	N2—H2A	0.86 (2)	
C8—H8C	0.98	N2—Cd2 ^{vii}	2.415 (4)	
C8—H8B	0.98	N2—C2	1.426 (6)	
C8—H8A	0.98	O1—C7	1.250 (5)	
C9—C10	1.509 (6)	O2—C7	1.267 (5)	
Cd1—O3 ⁱ	2.323 (3)	O3—C9	1.270 (5)	
Cd1—O3	2.323 (3)	O4—Cd2 ⁱⁱ	2.365 (3)	
Cd1—O1	2.332 (3)	O4—C9	1.261 (5)	
O3 ⁱ —Cd1—O3	180.00 (13)	C2—N2—H2A	102 (3)	
O3 ⁱ —Cd1—N1	95.21 (12)	Cd2 ^{vii} —N2—H2A	108 (3)	

O3—Cd1—N1	84.79 (12)	C2—N2—H2B	110 (4)
O3 ⁱ —Cd1—N1 ⁱ	84.79 (12)	Cd2 ^{vii} —N2—H2B	101 (3)
O3—Cd1—N1 ⁱ	95.21 (12)	H2A—N2—H2B	115 (4)
N1—Cd1—N1 ⁱ	180.0	C2—C1—C6	119.7 (4)
$O3^{i}$ —Cd1—O1	97.02 (11)	C2-C1-N1	120.1 (4)
03-Cd1-01	82.98 (11)	C6-C1-N1	120.2 (4)
N1-Cd1-O1	84.38 (12)	$C_3 - C_2 - C_1$	120.1(4)
$N1^{i}$ —Cd1—O1	95.62 (12)	$C_3 - C_2 - N_2$	1198(4)
$O3^{i}$ $Cd1$ $O1^{i}$	82.98 (11)	C1 - C2 - N2	120 1 (4)
$03-Cd1-01^{i}$	97.02 (11)	$C_{2} - C_{3} - C_{4}$	120.1(1) 120.5(5)
$N1-Cd1-O1^{i}$	95 62 (12)	C2_C3_H3	119.8
$N1^{i}$ Cd1 $O1^{i}$	84 38 (12)	C4-C3-H3	119.8
$01-Cd1-01^{i}$	180.0	$C_{5} - C_{4} - C_{3}$	119.4 (5)
Ω^{2iv} Ω^{2iv}	99.65 (17)	C5-C4-H4	120.3
$O2^{iv}$ $Cd2$ $O2^{ii}$	156.01 (10)	$C_3 - C_4 - H_4$	120.3
$O_2 = Cd_2 = O_4$	130.01(10) 03.08(12)	$C_3 - C_4 - H_4$	120.3 120.7(5)
$O2^{iv}$ Cd2 $O4^{iii}$	93.98(12)	$C_4 C_5 H_5$	120.7 (5)
02 - Cd2 - 04	95.96 (11) 156 01 (10)	$C_{4} C_{5} H_{5}$	119.0
02 - Cd2 - 04	130.01(10) 20.72(15)	$C_{0} - C_{3} - H_{3}$	119.0
$O_4 = C_{d2} = O_4$	30.73(13)	C_{5}	119.0 (5)
$O_2 = Cd_2 = N_2 v$	/9.40 (12)	C_{3} — C_{0} — H_{0}	120.2
$O_2 = C_0 Z = N_2 Z$	113.81(12)	C1 = C0 = H0	120.2
$O4^{}$	70.91 (12) 85.07 (11)	01 - 07 - 02	123.0(4)
$O4^{}O2^{i}$	83.97 (11) 115.91 (12)	01 - 07 - 08	120.8(4)
$O_2^{\text{II}} = Cd_2 = N_2^{\text{III}}$	115.81 (12)	02-07-08	115.3 (4)
$O_2 = C_0 = N_2 v^1$	/9.40 (12)	C/-C8-H8A	109.5
$O4^{\text{III}}$ $Cd2$ $N2^{\text{III}}$	85.97 (12)	C/—C8—H8B	109.5
$O4^{m}$ — $Cd2$ — $N2^{m}$	76.91 (12)	H8A—C8—H8B	109.5
$N2^{v}$ —Cd2—N2 ^{vi}	157.5 (2)	C/—C8—H8C	109.5
C7—O1—Cd1	127.2 (3)	H8A—C8—H8C	109.5
C7—O2—Cd2	111.8 (3)	H8B—C8—H8C	109.5
C9—O3—Cd1	125.3 (3)	O4—C9—O3	123.6 (4)
C9—O4—Cd2 ⁱⁱ	126.4 (3)	O4—C9—C10	119.1 (4)
C1—N1—Cd1	121.9 (2)	O3—C9—C10	117.3 (4)
C1—N1—H1A	107 (3)	C9—C10—H10A	109.5
Cd1—N1—H1A	107 (3)	C9—C10—H10B	109.5
C1—N1—H1B	109 (3)	H10A—C10—H10B	109.5
Cd1—N1—H1B	104 (3)	C9—C10—H10C	109.5
H1A—N1—H1B	107 (4)	H10A—C10—H10C	109.5
C2—N2—Cd2 ^{vii}	120.6 (2)	H10B—C10—H10C	109.5
Cd1—N1—C1—C2	-75.0 (4)	C4—C5—C6—C1	-0.8 (7)
Cd1—N1—C1—C6	103.1 (4)	C2—C1—C6—C5	-0.9 (6)
C6—C1—C2—C3	2.6 (6)	N1—C1—C6—C5	-179.0 (4)
N1—C1—C2—C3	-179.3 (4)	Cd1—O1—C7—O2	131.3 (4)
C6—C1—C2—N2	179.5 (4)	Cd1—O1—C7—C8	-54.7 (6)
N1-C1-C2-N2	-2.4 (6)	Cd2—O2—C7—O1	13.3 (6)
Cd2 ^{vii} —N2—C2—C3	99.3 (4)	Cd2—O2—C7—C8	-160.9 (4)
Cd2 ^{vii} —N2—C2—C1	-77.6 (5)	Cd2 ⁱⁱ —O4—C9—O3	100.8 (5)

supporting information

C1—C2—C3—C4	-2.7 (6)	Cd2 ⁱⁱ —O4—C9—C10	-81.4 (5)
N2—C2—C3—C4	-179.6 (4)	Cd1O3O4	26.7 (6)
C2—C3—C4—C5	1.0 (7)	Cd1—O3—C9—C10	-151.1 (4)
C3—C4—C5—C6	0.8 (7)		

Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+1, -y+3, -z+2; (iii) x, -y+3, z-1/2; (iv) -x+1, y, -z+3/2; (v) x, y+1, z; (vi) -x+1, y+1, -z+3/2; (vii) x, y-1, -z+3/2; (vii) x, y z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D^{\dots}A$	D—H···A
N1—H1A····O2 ^{iv}	0.86 (2)	2.34 (2)	3.175 (5)	163 (4)
N1—H1 <i>B</i> ····O4 ⁱ	0.91 (2)	2.21 (3)	3.003 (5)	146 (4)
N1—H1 <i>B</i> ····O4 ^{viii}	0.91 (2)	2.38 (4)	3.029 (5)	128 (4)
N2—H2A····O3 ^{vii}	0.86 (2)	2.30 (2)	3.111 (5)	158 (4)
N2—H2 B ···O3 ⁱ	0.86 (2)	2.64 (2)	3.458 (5)	161 (4)
N2—H2 B ···O4 ⁱ	0.86 (2)	2.55 (4)	2.973 (5)	111 (3)
C8—H8C···O3 ⁱ	0.98	2.61	3.295 (7)	127

Symmetry codes: (i) -x+1, -y+2, -z+2; (iv) -x+1, y, -z+3/2; (vii) x, y-1, z; (viii) x, -y+2, z-1/2.

(II) Poly[[$(\mu_2$ -acetato- $\kappa^2 O: O'$)(acetato- $\kappa^2 O, O'$)(μ_2 -benzene-1,3-diamine- $\kappa^2 N: N'$)cadmium] hemihydrate]

Crystal data

[Cd(C2H3O2)2(C6H8N2)]·0.5H2O $M_r = 695.28$ Monoclinic, C2/ca = 20.777 (6) Å b = 8.2374 (18) Å c = 15.002 (4) Å $\beta = 102.583 \ (9)^{\circ}$ $V = 2505.9 (11) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART X2S benchtop 8942 measured reflections diffractometer 2443 independent reflections Radiation source: sealed microfocus tube 1859 reflections with $I > 2\sigma(I)$ Doubly curved silicon crystal monochromator $R_{\rm int} = 0.057$ $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$ Detector resolution: 8.3330 pixels mm⁻¹ $h = -25 \rightarrow 25$ ω scans $k = -9 \rightarrow 10$ Absorption correction: multi-scan $l = -18 \rightarrow 11$ (SADABS; Bruker, 2013) $T_{\rm min} = 0.69, \ T_{\rm max} = 0.87$ Refinement Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ and constrained refinement $wR(F^2) = 0.095$ $w = 1/[\sigma^2(F_o^2) + (0.0489P)^2]$ S = 0.99where $P = (F_o^2 + 2F_c^2)/3$ 2443 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.86 \text{ e } \text{\AA}^{-3}$ 180 parameters $\Delta \rho_{\rm min} = -1.02 \ {\rm e} \ {\rm \AA}^{-3}$ 6 restraints

F(000) = 1384 $D_{\rm x} = 1.843 {\rm Mg m^{-3}}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 2588 reflections $\theta = 2.7 - 23.5^{\circ}$ $\mu = 1.75 \text{ mm}^{-1}$ T = 200 KNeedle, clear brown $0.40 \times 0.08 \times 0.08$ mm

H atoms treated by a mixture of independent

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cd1	0.69991 (2)	0.34064 (4)	0.80989 (2)	0.02831 (14)
01	0.68026 (16)	0.1764 (4)	0.9313 (2)	0.0381 (9)
O2	0.59435 (17)	0.3087 (4)	0.8546 (2)	0.0436 (9)
O3	0.80578 (15)	0.3370 (3)	0.7917 (3)	0.0357 (8)
O4	0.79978 (15)	0.6013 (4)	0.7691 (2)	0.0375 (8)
05	0.5	0.5121 (7)	0.75	0.0581 (16)
Н5	0.517 (3)	0.455 (4)	0.792 (2)	0.09 (2)*
N1	0.63907 (19)	0.5002 (5)	0.6938 (3)	0.0281 (9)
HN1A	0.6021 (14)	0.522 (5)	0.708 (3)	0.039 (15)*
HN1B	0.649 (2)	0.605 (3)	0.701 (3)	0.039 (14)*
N2	0.7361 (2)	0.4639 (5)	0.4277 (3)	0.0328 (9)
HN2A	0.750 (2)	0.394 (5)	0.393 (3)	0.044 (11)*
HN2B	0.7682 (17)	0.526 (5)	0.457 (3)	0.044 (11)*
C1	0.6204 (2)	0.2190 (6)	0.9196 (3)	0.0316 (11)
C2	0.5810(3)	0.1613 (6)	0.9855 (4)	0.0553 (16)
H2A	0.5764	0.2496	1.0275	0.083*
H2B	0.6034	0.0692	1.0204	0.083*
H2C	0.5372	0.1272	0.952	0.083*
C3	0.8315 (2)	0.4712 (5)	0.7778 (3)	0.0283 (10)
C4	0.9037 (2)	0.4701 (6)	0.7760 (4)	0.0423 (13)
H4A	0.9093	0.5044	0.7156	0.064*
H4B	0.9213	0.3602	0.7888	0.064*
H4C	0.9275	0.5451	0.8224	0.064*
C5	0.6364 (2)	0.4410 (5)	0.6031 (3)	0.0276 (10)
C6	0.6875 (2)	0.4739 (5)	0.5613 (3)	0.0292 (11)
H6	0.7238	0.5375	0.5921	0.035*
C7	0.6866 (2)	0.4152 (5)	0.4748 (3)	0.0314 (11)
C8	0.6335 (3)	0.3195 (6)	0.4305 (4)	0.0463 (14)
H8	0.6327	0.2769	0.3714	0.056*
C9	0.5833 (3)	0.2881 (7)	0.4720 (4)	0.0573 (17)
H9	0.5473	0.2237	0.4413	0.069*
C10	0.5832 (3)	0.3481 (5)	0.5588 (4)	0.0436 (14)
H10	0.5475	0.3258	0.5871	0.052*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Cd1	0.0331 (2)	0.0280 (2)	0.0254 (2)	0.00293 (14)	0.00988 (14)	-0.00140 (14)
01	0.0347 (19)	0.045 (2)	0.036 (2)	0.0083 (15)	0.0105 (16)	0.0041 (15)

O2	0.043 (2)	0.049 (2)	0.038 (2)	0.0063 (16)	0.0066 (17)	0.0087 (16)
O3	0.0333 (17)	0.0217 (17)	0.056 (2)	-0.0019 (13)	0.0175 (17)	0.0015 (15)
O4	0.0414 (19)	0.0292 (17)	0.047 (2)	0.0059 (15)	0.0204 (17)	0.0114 (15)
O5	0.044 (3)	0.065 (4)	0.058 (4)	0	-0.004 (3)	0
N1	0.032 (2)	0.029 (2)	0.026 (2)	-0.0001 (19)	0.0113 (17)	0.0008 (17)
N2	0.041 (2)	0.036 (2)	0.024 (2)	-0.0003 (19)	0.0143 (18)	-0.0007 (18)
C1	0.033 (3)	0.035 (3)	0.028 (3)	-0.006 (2)	0.011 (2)	-0.005 (2)
C2	0.041 (3)	0.073 (4)	0.054 (4)	0.004 (3)	0.014 (3)	0.014 (3)
C3	0.033 (2)	0.033 (3)	0.021 (2)	-0.001 (2)	0.0095 (19)	-0.0018 (18)
C4	0.036 (3)	0.045 (3)	0.045 (3)	-0.006 (2)	0.007 (2)	0.004 (2)
C5	0.034 (2)	0.025 (2)	0.022 (2)	0.0006 (19)	0.002 (2)	0.0044 (17)
C6	0.029 (2)	0.030(2)	0.027 (2)	-0.0059 (19)	0.002 (2)	0.0020 (19)
C7	0.041 (3)	0.025 (2)	0.029 (3)	0.004 (2)	0.011 (2)	0.0054 (19)
C8	0.070 (4)	0.043 (3)	0.027 (3)	-0.020 (3)	0.013 (3)	-0.008(2)
C9	0.070 (4)	0.064 (4)	0.037 (3)	-0.041 (3)	0.009 (3)	-0.014 (3)
C10	0.044 (3)	0.052 (3)	0.035 (3)	-0.025 (2)	0.012 (2)	-0.001 (2)

Geometric parameters (Å, °)

Cd1—O3	2.275 (3)	C1—C2	1.492 (8)	
Cd1—O4 ⁱ	2.301 (3)	C2—H2A	0.98	
Cd1—N1	2.324 (4)	C2—H2B	0.98	
Cd1—O1	2.374 (4)	C2—H2C	0.98	
Cd1—N2 ⁱⁱ	2.388 (4)	C3—C4	1.506 (6)	
Cd1—O2	2.443 (4)	C4—H4A	0.98	
O1—C1	1.268 (5)	C4—H4B	0.98	
O2—C1	1.249 (5)	C4—H4C	0.98	
O3—C3	1.265 (5)	C5—C6	1.374 (6)	
O4—C3	1.250 (5)	C5—C10	1.388 (6)	
O4—Cd1 ⁱⁱⁱ	2.301 (3)	C6—C7	1.381 (6)	
O5—H5	0.808 (18)	С6—Н6	0.95	
N1C5	1.435 (6)	С7—С8	1.401 (6)	
N1—HN1A	0.859 (19)	C8—C9	1.350 (8)	
N1—HN1B	0.886 (19)	C8—H8	0.95	
N2—C7	1.425 (6)	C9—C10	1.394 (8)	
N2-Cd1 ^{iv}	2.388 (4)	С9—Н9	0.95	
N2—HN2A	0.870 (19)	C10—H10	0.95	
N2—HN2B	0.877 (19)			
O3—Cd1—O4 ⁱ	79.37 (11)	C1—C2—H2A	109.5	
O3—Cd1—N1	107.45 (13)	C1—C2—H2B	109.5	
O4 ⁱ —Cd1—N1	99.25 (13)	H2A—C2—H2B	109.5	
O3—Cd1—O1	114.63 (11)	C1—C2—H2C	109.5	
O4 ⁱ —Cd1—O1	85.82 (12)	H2A—C2—H2C	109.5	
N1—Cd1—O1	137.80 (13)	H2B—C2—H2C	109.5	
O3—Cd1—N2 ⁱⁱ	86.63 (14)	O4—C3—O3	122.3 (4)	
O4 ⁱ —Cd1—N2 ⁱⁱ	157.39 (13)	O4—C3—C4	120.5 (4)	
N1—Cd1—N2 ⁱⁱ	101.86 (14)	O3—C3—C4	117.1 (4)	

O1—Cd1—N2 ⁱⁱ	84.00 (13)	C3—C4—H4A	109.5
O3—Cd1—O2	168.71 (11)	C3—C4—H4B	109.5
O4 ⁱ —Cd1—O2	98.78 (12)	H4A—C4—H4B	109.5
N1—Cd1—O2	83.83 (13)	C3—C4—H4C	109.5
O1—Cd1—O2	54.09 (11)	H4A—C4—H4C	109.5
N2 ⁱⁱ —Cd1—O2	91.49 (13)	H4B—C4—H4C	109.5
C1	93.7 (3)	C6—C5—C10	120.3 (5)
C1	91.0 (3)	C6—C5—N1	119.4 (4)
C3—O3—Cd1	117.6 (3)	C10—C5—N1	120.3 (5)
C3—O4—Cd1 ⁱⁱⁱ	136.7 (3)	C5—C6—C7	120.4 (4)
C5—N1—Cd1	114.9 (3)	С5—С6—Н6	119.8
C5—N1—HN1A	117 (3)	С7—С6—Н6	119.8
Cd1—N1—HN1A	108 (3)	C6—C7—C8	119.4 (5)
C5—N1—HN1B	114 (3)	C6—C7—N2	120.2 (4)
Cd1—N1—HN1B	113 (3)	C8—C7—N2	120.1 (5)
HN1A—N1—HN1B	88 (4)	C9—C8—C7	119.8 (5)
C7—N2—Cd1 ^{iv}	114.3 (3)	С9—С8—Н8	120.1
C7—N2—HN2A	119 (3)	С7—С8—Н8	120.1
Cd1 ^{iv} —N2—HN2A	96 (3)	C8—C9—C10	121.4 (5)
C7—N2—HN2B	118 (4)	С8—С9—Н9	119.3
Cd1 ^{iv} —N2—HN2B	94 (3)	С10—С9—Н9	119.3
HN2A—N2—HN2B	111 (5)	C5—C10—C9	118.7 (5)
O2—C1—O1	121.0 (5)	С5—С10—Н10	120.6
O2—C1—C2	120.0 (4)	С9—С10—Н10	120.6
01—C1—C2	119.0 (4)		
Cd1—02—C1—01	-4.6 (4)	N1	178.6 (4)
Cd1—O2—C1—C2	174.9 (4)	C5—C6—C7—C8	-1.0 (7)
Cd1—O1—C1—O2	4.8 (5)	C5—C6—C7—N2	173.2 (4)
Cd1—O1—C1—C2	-174.8 (4)	Cd1 ^{iv} —N2—C7—C6	-103.9 (4)
Cd1 ⁱⁱⁱ —O4—C3—O3	-148.4 (4)	Cd1 ^{iv} —N2—C7—C8	70.2 (5)
Cd1 ⁱⁱⁱ —O4—C3—C4	34.3 (6)	C6—C7—C8—C9	1.1 (8)
Cd1—O3—C3—O4	-3.8 (6)	N2—C7—C8—C9	-173.1 (5)
Cd1—O3—C3—C4	173.5 (3)	C7—C8—C9—C10	-0.4 (9)
Cd1—N1—C5—C6	-82.6 (4)	C6—C5—C10—C9	0.6 (7)
Cd1—N1—C5—C10	95.9 (4)	N1-C5-C10-C9	-177.9 (5)
C10-C5-C6-C7	0.1 (6)	C8—C9—C10—C5	-0.5 (9)

Symmetry codes: (i) -x+3/2, y-1/2, -z+3/2; (ii) x, -y+1, z+1/2; (iii) -x+3/2, y+1/2, -z+3/2; (iv) x, -y+1, z-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
O5—H5…O2	0.81 (2)	2.06 (4)	2.788 (5)	149 (7)
N1—H <i>N</i> 1 <i>A</i> ···O5	0.86 (2)	2.34 (2)	3.183 (4)	166 (4)
N1—HN1B···O3 ⁱⁱⁱ	0.89 (2)	2.12 (2)	2.991 (5)	166 (5)
N2—HN2A····O4 ^{iv}	0.87 (2)	2.32 (4)	3.012 (6)	137 (4)

			supporting information		
N2—H <i>N2B</i> ····O1 ⁱⁱⁱ	0.88 (2)	2.17 (3)	2.994 (5)	156 (5)	
С6—Н6…О1 ^{ііі}	0.95	2.39	3.195 (5)	142	

Symmetry codes: (iii) -*x*+3/2, *y*+1/2, -*z*+3/2; (iv) *x*, -*y*+1, *z*-1/2.