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Abstract

Cystic fibrosis (CF) is characterised by respiratory and pancreatic deficiencies that stem from the loss
of fully functional CFTR (CF transmembrane conductance regulator) at the membrane of epithelial
cells. Current treatment modalities aim to delay the deterioration in lung function, which is mostly
responsible for the relatively short life expectancy of CF sufferers; however none have so far success-
fully dealt with the underlying molecular defect. Novel pharmacological approaches to ameliorate the
lack of active CFTR in respiratory epithelial cells are beginning to address more of the pathophysio-
logical defects caused by CFTR mutations. However, CFTR gene replacement by gene therapy
remains the most likely option for addressing the basic defects, including ion transport and inflam-
matory functions of CFTR. In this chapter, we will review the latest preclinical and clinical advances
in pharmacotherapy and gene therapy for CF lung disease.

Introduction

Cystic fibrosis (CF) is the most common lethal autosomal recessive disorder
among Caucasians. It is caused by mutations in the cystic fibrosis transmem-
brane conductance regulator (CFTR) gene identified by positional cloning in
1989 [1–3], which encodes a chloride (Cl–) channel expressed in the epithelia
of many tissues. The gene encodes a single polypeptide chain of 1480 amino
acids, with a predicted molecular weight of around 168 kDa [1]. The CFTR
protein is embedded in the apical membrane of epithelial cells and is made up
of distinct structural domains, including two membrane spanning domains
(MSDs), two nucleotide binding domains (NBD) containing conserved motifs
for ATP binding and hydrolysis, and a regulatory domain (R) [4]. The CFTR
protein, a member of the ABC family of proteins, normally functions as a
cAMP-activated Cl– channel [5], and has been shown to interact with other ion
channels and transporters, such as the amiloride-sensitive epithelial sodium
channel, ENaC (recently reviewed by Berdiev et al. [6]) and the outwardly rec-
tifying chloride channel (ORCC) (reviewed by Kunzelmann, [7]).
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CFTR mutations

The Cystic Fibrosis Mutation Database (http://www.genet.sickkids.on.ca) cur-
rently lists 1604 mutations located throughout the gene and affecting all
domains of the protein. The most common mutation ΔF508, is found in 70%
of disease alleles [2], and is caused by a deletion of three consecutive base
pairs, resulting in the loss of a phenylalanine (F508) [1]. Mutations in the
CFTR gene are grouped into five classes, based on their effect on CFTR pro-
tein expression and/or function: Class I–III mutations commonly cause severe
disease phenotypes, Class IV and V mutations tend to be associated with
milder disease, although not systematically for lung disease which can be
highly variable even within identical genetic backgrounds [8, 9].

Pathophysiology of CF lung disease

Mutations in CFTR disrupt transport in the epithelium of several tissues,
which results in the production of abnormally thick, sticky mucus. The main
cause of morbidity in CF is lung disease [10], with deterioration of lung func-
tion and pulmonary failure being the cause of death for the majority (>90%)
of patients. The production of thick, sticky mucus in the lumen of the lung
impedes mucociliary clearance [11], a consequence of which is chronic in -
flamm ation and recurrent bacterial infections (typically Pseudomonas aerugi-
nosa and Burkholderia cepacia complex), in a self-perpetuating cycle that
leads to the progressive destruction of lung tissue [10]. In severe cases, P.
aeruginosa can form antibiotic resistant biofilms in the lumen of the airways,
the presence of which correlates with a decline in lung function [12].

Airway epithelial cells (AEC) are covered in air surface liquid (ASL), made
up of a mucus layer that traps potentially harmful particulate matter that is
inhaled, and the periciliary liquid (PCL) layer. The PCL provides a less vis-
cous layer for the cilia to beat and remove the mucus (containing the trapped
particles) from the airways by mucociliary clearance. The PCL also acts as a
lubricant between the mucus layer and the mucins tethered to the cell surface
to facilitate cough clearance [13, 14]. Finally PCL contains antimicrobial pep-
tides and proteins (e.g., defensins, lysozyme, lactoferrin and anti-microbial
surfactant proteins) to fight pathogens [15]. In CF these processes are disrupt-
ed, causing dysregulation of liquid movement, and lung infection and inflam-
mation [16].

The low volume hypothesis to explain CF lung disease

The low volume hypothesis [17], also know as the ‘isotonic volume trans-
port/mucus clearance’ theory, implicates reduced ASL volume as the initiating
event in CF lung pathology. The airway epithelium is thought to regulate ASL
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volume so that the height of the PCL layer is approximately the same as that
of the extended cilia on the cell surface of the epithelium (around 7 μm) [18],
allowing them to beat efficiently. In CF airways, the ASL volume and hence
PCL height is decreased, making the mucus layer sticky and harder to move
[18]. The resulting flattening of the cilia prevents them from beating [19],
causing mucus to adhere to cells [14]. Together these events lead to defective
mucociliary clearance, initiating the chronic cycle of infection and inflamma-
tion characteristic of CF lungs (reviewed by Boucher, 2007 [20]).

There is now a significant amount of evidence to support the low volume
hypothesis in primary human cell culture and mouse models. Most recently,
accelerated Na+ absorption, leading to a decrease in PCL height and reduced
mucociliary clearance was demonstrated in vivo in the ENaCβ over-expressing
mouse (reviewed by Mall, 2008 [21]) and in primary air-liquid interface (ALI)
cultures from CF patients [18, 19].

The recent availability of the ENaCβ over-expressing mouse, with its lung
pathology that closely mirrors that of CF patients, has provided a powerful tool
for understanding the links between CFTR deficiencies and the complex
pathophysiology of CF. For example sterile inflammation is also observed in
these mice [22], supporting the hypothesis that inflammation can occur inde-
pendently of infection.

Pharmacological approaches to treat CF lung disease

Pharmacological processes that restore effective ASL height and mucociliary
clearance in CF patients could be targeted to upregulate CFTR activity, modi-
fy alternative channels (ENaC, Calcium-activated Cl– channel (CaCC)), or
rehydrate the ASL with hyperosmotic agents such as inhaled mannitol and
hypertonic saline [23, 24]. Current approaches to pharmacological correction
of CFTR include: 1) drugs that increase the level of CFTR protein synthesised,
2) CFTR correctors to increase trafficking out of the ER, and 3) CFTR poten-
tiators that correct gating defects of CFTR at the membrane (Fig. 1).

Drugs that increase CFTR protein levels

Several strategies to increase the amount of CFTR at the cell surface have been
investigated, including increasing overall transcription levels with butyrate
[25] or sodium 4-phenylbutyrate (4-PBA) [26], although neither has had an
impact in clinical trials. Several drugs that promote read-through of nonsense
stop codons have been shown to produce full-length CFTR, including amino-
glycoside antibiotics (e.g., gentamicin) [27, 28] or the recently developed
PTC124 [29]. The latter appears capable of improving electrophysiological
features of nasal epithelium and several clinically relevant outcome measures
(FEV1, FVC, circulating neutrophils) [30–32]. Interestingly it has been
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reported that a drug such as PTC124 may not be effective in all cases of pre-
mature stop codons, due to exonic skipping which removes the early stop
codon from the mature mRNA [33].

CFTR correctors, drugs to increase trafficking of CFTR

Enhancing trafficking of CFTR using chemical chaperones can increase CFTR
levels in the membrane in preclinical studies [34–36]. Recent efforts to identi-
fy more CFTR-specific correctors have involved high-throughput screening
[37–40]. The phosphodiesterase-5 (PDE-5) inhibitor, sildenafil, shows promis-
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Figure 1. Schematic representation of sites of action for pharmacological correction of CFTR defi-
ciency. Pharmacological drugs that are being investigated for the correction of CFTR deficiency may
act by increasing the level of mRNA by enhancing transcription or translation (‘Transcriptional and
Translational Activators’), correcting the trafficking defect through the endoplasmic reticulum
(‘CFTR Correctors’), increasing activity of CFTR at the membrane (‘CFTR Potentiators’), or regu-
lating other ion channels such as Epithelial Na+ Channel (ENaC) (‘ENaC inhibitors’) or Ca2+-activat-
ed Cl channel (CaCC). Sites of action of these drugs in an airway epithelial cell are indicated by the
white arrows, relative to CFTR biosynthesis and ATP-dependent channel activity, and relative to the
pathways for activation and inhibition of CaCC and ENaC respectively.



ing correction of the CF defect in vitro [41] and is currently in Phase I/II clin-
ical studies expected to conclude in 2010. KM1160, a much more potent ana-
logue of sildenafil, is in early stages of development [42]. A different correc-
tor, Miglustat, functions through inhibition of α-1,2-glucosidase, thus prevent-
ing rapid degradation of ΔF508 in the ER, and has shown promise in multiple
preclinical studies [43–47]. Miglustat is now in a Phase II trial (Actelion). VX-
809 is a ΔF508 CFTR corrector that was discovered through a collaborative
programme, between Vertex and Cystic Fibrosis Foundation Therapeutics Inc.
It recently entered a Phase II safety/efficacy study [48]. Results of both these
studies are eagerly awaited.

CFTR potentiators, drugs that increase conductance at the apical
membrane

Other potential drug therapies have been based on increasing the activation of
CFTR, by increasing the level of cyclic nucleotides in the cell using phospho-
diesterase (PDE) inhibitors such as milrinone [49, 50], or by direct activation
with curcumin [51], genistein or 8-cyclopentyl-1,3-dipropylxanthine (CPX)
[52]. The most promising advances involve Vertex compound VX-770 [53], a
drug that increases the open probability and Cl– conductance of CFTR; it has
completed a Phase IIa trial [54] and entered the FDA registration programme
in 2009.

Modulation of other ion channels

Upregulation of CaCC (Ca2+-activated Cl– channel) by Denufosol and Moli1901
(Lancovutide®) was recently demonstrated to be a safe and tolerable way of
inducing some Cl– transport via non-CFTR channels [55–58]. Further evalua-
tion of efficacy in CF patients for both drugs is ongoing.

Alternatively, ENaC activity could be inhibited in order to decrease the ele-
vated Na+ absorption seen in CF airways. The Parion compound 552-02 [59]
is a recent improvement on the ENaC inhibitor, amiloride, and has already
entered clinical trials, including one for CF, which is currently under way.

Inhibition of serine proteases can prevent activation of ENaC, but most can-
didates have not yet proceeded beyond preclinical studies [60]. A recent small-
molecule inhibitor of proteases involved in ENaC regulation, Camostat, was
tested with some success in sheep aerosol studies, improving mucociliary
clear ance for several hours after administration [61]. Partial correction (75%
towards normal) of the Na2+ transport defect in the nose of CF patients was
reported [62], confirming that this is a promising candidate for evaluation in
the clinic for CF lung disease.

Although these data are encouraging, the majority of these new drug treat-
ments have only modest ability to correct the CF defect, do not act on all
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CFTR mutations, and even if successful, may only benefit a small proportion
of patients depending on their genotype. It is also likely that the pharmaco-
logical approaches discussed here could require use in combination with each
other for optimal correction of the CF ion transport defects, for example a cor-
rector with a potentiator, and simultaneously adjusting ENaC activity with a
third component; this may limit their use in the clinic and will certainly take
time to evaluate in trials.

Gene therapy clinical trials

The basic concept of gene therapy involves introducing a gene into target cells
to prevent or slow the progression of a disease. CF is a good candidate for this
technology as it is primarily caused by mutations in a single gene, a normal
copy of which could be delivered to patients via topical delivery to the lung,
without invasive techniques or surgery. Moreover, a gene complementation
approach would directly target the cause of the disease and could correct many
aspects of the complex lung pathology. A single therapy to treat the underly-
ing defect could greatly reduce the high therapeutic burden that CF patients
currently have to endure. In addition, one therapy might be suitable to treat
subjects with a wide variety of mutations, meaning that a single treatment
strategy could be relevant to all patients. Proof of principle for both viral and
non-viral CFTR gene transfer was quickly established in CF patients [63] and
to date, 25 trials have been completed involving approximately 450 CF indi-
viduals (see Griesenbach, 2009 [64]).

Adenovirus and Adeno-Associated Virus

Two DNA viral vectors, adenovirus (Ad) and adeno-associated virus (AAV),
have been evaluated in CF gene therapy clinical trials. Trials with Ad vectors
have been disappointing, compared with preclinical studies, both in terms of
persistence of gene expression and the level of gene transfer in the human air-
ways. Gutless adenovirus (also referred to as helper-dependent Ad), in which
all of the viral genome is removed (apart from the inverted terminal repeats
(ITRs) and the viral packaging sequence) [65] have shown extended duration
of transgene expression, with reduced toxicity and immunogenicity in mice
compared with previous generations of Ad [66], but re-administration remains
problematic due to the presence of viral capsid proteins [67].

An alternative viral vector that has been investigated in CF clinical studies
is the non-pathogenic AAV. Phase I and II clinical trials administering a single
dose of AAV2 expressing CFTR to the nose [68–71] and lungs [72, 73] of CF
patients were deemed safe and resulted in consistent detection of vector-
derived DNA for between 30 days and 10 weeks after delivery. CFTR mRNA
was very rarely detected in the trials, although two studies reported transient
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correction of the Cl– conductance defect in the nose for up to 2 weeks after
delivery [69, 70]. Treatment did not result in any detectable clinical benefit in
lung function [71] and neutralising antibodies against the vector were detect-
ed in the serum [72, 73]. Two trials to re-administer the virus have been per-
formed, with a similar lack of clinical benefit [74, 75]. Once again, this has
been disappointing in comparison with preclinical studies in mice in particu-
lar, but is partly attributable to a paucity of AAV2 receptors on the apical mem-
brane of human cells [76].

Thus, alternative serotypes with potentially improved tropism for airway
epithelial cells are being investigated. AAV5 and AAV6 appear to transduce
airway epithelial cells more efficiently than AAV2 [77, 78], and up to 90%
transduction efficiency was recently reported in mouse airways with AAV6
using the hybrid chicken β-actin/rabbit β globin promoter/intron with the
human CMV immediate early enhancer (CAG) [79].

The lack of efficiency in the repeat administration clinical studies [74, 75]
is in keeping with some preclinical studies showing an inability to re-adminis-
ter AAV2 and AAV5 in airways of animals, unless genotypes were switched
for re-administration [80–83]. Interestingly, it has been demonstrated that
AAV9 serotype virus could be re-administered successfully to murine airways
1 month after the initial dose [84].

In addition to difficulties with tropism and immune responses, the utility of
AAV for CF has been hampered by the limited packaging capacity of most
rAAV vectors (<5 kb). Advances in this field have included development of
miniCFTR genes that may be packaged more efficiently [85–88], including
safety studies in non-human primates [89] and functional studies in mice [90],
and the discovery that AAV2/5 could in fact package large genomes (up to
8.9 kb) with a reasonably yield compared with other rAAV pseudotypes (1 to
4 and 7 to 9) [91]. Together with evidence suggesting that AAV vectors may
be able to target progenitor cells of the mouse lung [92], thus avoiding the need
for repeat administration, this work continues to make incremental improve-
ments.

Negative strand RNA viruses

The murine parainfluenza virus type 1 [or Sendai virus (SeV)], the human res-
piratory syncytial virus (RSV) and the human parainfluenza virus type 3
(PIV3) are negative strand RNA viruses whose life cycle is completed in the
cytoplasm. They have all been shown to transfect AECs efficiently via the api-
cal membrane [93, 94], and express functional CFTR channels in vivo [95], but
elicit an immune response that currently inhibits repeated administration [96].
Although such viruses may be useful for acute diseases that require only tran-
sient gene expression, in the context of CF their use is for now restricted to
preclinical proof of principle studies, until the immunological barriers to
repeat administration can be resolved.

Gene therapy for cystic fibrosis lung disease 53



Lentiviruses

Lentiviruses are retroviruses that transduce non-dividing cells including termi-
nally differentiated AECs. The viral dsDNA genome stably integrates into the
genome of transduced cells after its RNA has been reverse transcribed, so
expression is likely to last for the lifetime of the cell (approximately 17 months
for AECs, [97]). VSVG-pseudotyped HIV-derived lentivirus carrying the
CFTR gene transiently and partially corrected the Cl– defect in CF knockout
mouse nose for up to 46 days, although pre-treatment with the tight junction
opener lysophosphatidylcholine was necessary [98]. There have been attempts
to improve the tropism of lentivirus by pseudotyping with envelope glycopro-
teins from the filoviruses Ebola or Marburg [99], GP64 of baculovirus [100],
the spike envelope glycoprotein of the SARS virus [101] and the F and HN
proteins of SeV [102]. This latter vector, F/HN-SIV, was able to transduce
polarised epithelial cells from both the apical and basolateral side and impor-
tantly, murine AEC in vivo without the need for pre-conditioning, with gene
expression in vivo persisting for at least 17 months, i.e., the lifetime of AECs
[97, 103]. This is consistent with gene expression for up to 12 months in
mouse nose with GP64-FIV [100]. As with other viruses, it will be important
that researchers address the challenge of multiple repeat administrations with-
out loss of efficacy, or find ways of targeting stem cell populations of the air-
ways, to treat the chronic aspects of CF lung diseases.

Non-viral vectors for CF gene therapy

The need for effective long-term repeated administration to treat CF lung dis-
ease had led to the investigation of non-viral vectors, which take the form of
circular plasmid DNA (pDNA) delivered to cells as naked pDNA in diluents
such as PBS, saline or water, or complexed with agents such as lipids or poly-
cations as protection from extracellular degradation and to aid cellular entry.
The relative lack of efficiency compared with viral vectors is counterbalanced
by reduced safety concerns regarding integration, more flexible and easier pro-
duction methodology, extended storage and an unlimited packaging capacity
[104, 105].

Non-viral Phase I clinical trials to deliver pDNA expressing CFTR began in
the mid 1990s, with a variety of cationic liposome formulations delivered to
the nose and/or lungs of CF patients. In general, gene transfer was well toler-
ated and evidence of CFTR gene transfer (as measured by vector-specific
mRNA or CFTR-mediated chloride transport) has been established in some,
but not all, studies (reviewed in Rosenecker et al., 2006 [106]).

One side effect of lipid formulations has been the transient mild flu-like
symptoms reported by Ruiz and Alton in the lung trials of GL67:DOPE:DMPE-
PEG/pDNA [107, 108]. This inflammation may be related to the stimulation of
the Toll-like receptor 9 by bacterially-derived CpG dinucleotides in the formu-
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lation [109, 110]. In a bid to reduce this response, the UK CFGT Consortium
has generated a CpG-free pDNA [111], for CF clinical trials now under way.
The deletion of CpG motifs is one of the latest aspects of plasmid development
programmes in the field of CF gene therapy. A common feature of previous tri-
als has been the transient nature of any correction that was measured. Persist -
ence of expression has been improved in preclinical studies by swapping viral
promoters such as CMV (cytomegalovirus) for human promoters including
UbC (polyubiquitin C) and EF-1α (elongation factor 1-α) [112, 113]. Similarly
specificity has been improved in mice using the human cytokeratin (K18) and
FOXJ1 promoters which both directed epithelial cell-specific transgene expres-
sion in mice [114, 115]. Clinical trial data will confirm whether the modifica-
tions to the DNA construct have improved the duration and tolerability of gene
transfer in the nose and lungs of CF patients. Table 1 summarises the features
of recent non-viral vector developments in the context of airway gene therapy.

Cationic polymers as mediators for CF plasmid DNA gene therapy

A particular polycation that has shown promise for lung gene therapy is poly-
ethylenimine (PEI), the most commonly used forms of which are 25 kDa
branched PEI and 22 kDa linear PEI. Although not used in lung gene therapy
clinical trials to date, PEI/pDNA complexes have led to successful gene deliv-
ery in a clinically relevant model of aerosol gene delivery [116], and work
towards improving the formulation by concentrating the particles has shown
promising results in murine airway studies [117]. Following comparison of
over 25 different non-viral formulations, concentrated 25 kDa PEI has been
selected as a ‘Wave 2’ product by the UK CFGT Consortium. Additional
improvements may also come from the field of integrases, with the recent
demonstration that mice treated with integrase-encoding and reporter con-
structs complexed with PEI expressed the reporter protein longer than those
treated with a non-integrase-encoding construct [118].

The only cationic polymers used in clinical trials for CF gene therapy to date
have been compacted DNA nanoparticles, which consist of a single molecule of
pDNA compacted with a 30-mer lysine polymer covalently linked to polyeth-
ylene glycol (PEG) [119]. The advantage of this gene transfer agent is the iden-
tification of its receptor for cell uptake, nucleolin [120] and nuclear transloca-
tion bypassing the endosomal pathway. A Phase I study resulted in detection of
vector-derived DNA 3 days after dosing in nasal epithelium of CF patients, and
partial to complete correction of the Cl– transport defect in some patients [121].

Modifier genes and future directions

It is clear that the genotype of CF patients does not entirely predict the course
of disease, particularly the rate of decline in lung function. A number of stud-
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ies have attempted to identify modifier genes for different aspects of CF, as
reviewed by Collaco and Cutting (2008) [122]. Lead candidates include
inflammatory mediators and cytokines [122], and most recently IFRD1 [123],
as well as gene polymorphisms that affect the response to bacterial infection
(beta-defensins [124, 125], 8.1 ancestral MHC haplotype [126] and IL10 [127,
128]). In a disease such as CF where many factors influence the course of dis-
ease, with different clinical parameters to take into account (lung function,
bacterial burden, inflammation), the identification of significant modifier
genes will require large population studies. Ultimately this could provide new
targets for anti-inflammatory drugs or gene silencing by RNAi strategies [129]
to ameliorate disease.

Indeed it is likely that gene silencing therapies, including shRNA in pDNA
constructs, will be evaluated that are not directly based on modifier genes, but
on the general pathophysiology of CF. For example, a reduction in the tran-
scription factor nuclear factor kappa B (NFκB), which regulates many pro-
inflammatory cytokines and plays a central role in the exaggerated innate
immune response in CF [130], or the ER-membrane protein BAP31, involved
in blocking misfolded ΔF508 CFTR [131], may be beneficial. With further
improvements in non-viral gene transfer, gene silencing may become a realis-
tic treatment option.

Conclusion

No single, novel, therapeutic approach to CF treatment has yet shown suffi-
cient promise to stand out in the field. However as our understanding of the
molecular processes in the CF lung deepens with better preclinical models to
evaluate them, it is becoming clearer that early and broad intervention will be
necessary to prevent the multifaceted defects that accompany CFTR muta-
tions. Pharmacological approaches are heading into clinical trials at a regular
pace, with some preclinical studies showing correction of several major
defects. Although the challenges of finding a safe and effective formulation
permit only slow progress, gene therapy still provides a great opportunity for
an ‘all-round’ therapeutic intervention.
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