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Gene amplification is a collection of processes whereby a DNA segment is reiterated to multiple copies per genome. It is
important in carcinogenesis and resistance to chemotherapeutic agents, and can underlie adaptive evolution via
increased expression of an amplified gene, evolution of new gene functions, and genome evolution. Though first
described in the model organism Escherichia coli in the early 1960s, only scant information on the mechanism(s) of
amplification in this system has been obtained, and many models for mechanism(s) were possible. More recently, some
gene amplifications in E. coli were shown to be stress-inducible and to confer a selective advantage to cells under stress
(adaptive amplifications), potentially accelerating evolution specifically when cells are poorly adapted to their
environment. We focus on stress-induced amplification in E. coli and report several findings that indicate a novel
molecular mechanism, and we suggest that most amplifications might be stress-induced, not spontaneous. First, as
often hypothesized, but not shown previously, certain proteins used for DNA double-strand-break repair and
homologous recombination are required for amplification. Second, in contrast with previous models in which
homologous recombination between repeated sequences caused duplications that lead to amplification, the amplified
DNAs are present in situ as tandem, direct repeats of 7–32 kilobases bordered by only 4 to 15 base pairs of G-rich
homology, indicating an initial non-homologous recombination event. Sequences at the rearrangement junctions
suggest nonhomologous recombination mechanisms that occur via template switching during DNA replication, but
unlike previously described template switching events, these must occur over long distances. Third, we provide
evidence that 39-single-strand DNA ends are intermediates in the process, supporting a template-switching mechanism.
Fourth, we provide evidence that lagging-strand templates are involved. Finally, we propose a novel, long-distance
template-switching model for the mechanism of adaptive amplification that suggests how stress induces the
amplifications. We outline its possible applicability to amplification in humans and other organisms and circumstances.
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Introduction

Gene amplification is the reiteration of a segment of a
genome. It is a manifestation of genomic instability that is
found in many tumors, notably some cases of neuroblastoma
and some breast cancer in which it is associated with poor
prognosis [1,2], and that arises during tumor progression in
many others [1,2]. Amplification (and reduction) of genomic
segments is now also appreciated to be among the most
common of sequence variations, both pathogenic and
polymorphic, between individual human genomes [3–5].
Amplification also occurs in microbes, in which it is
implicated in the evolution of pathogenesis and antibiotic
resistance [6]. In eukaryotic cells, at least some amplification
appears to arise by a breakage–fusion–bridge cycle [7–12], or
by formation by an over-replication mechanism of extrac-
hromosomal replicons (double minutes) that then multiply or
reintegrate ectopically [13,14]. There is also a mechanism that
appears to reiterate a genomic segment in situ [15], as also
seen in bacteria (see [16]). The molecular mechanism under-
lying each of these amplifications remains obscure [15].

Amplification was described in the model organism
Escherichia coli more than forty years ago, as unstable genetic
changes linked to the lac locus that caused overproduction of
the lac-encoded beta-galactosidase [17,18]. Subsequently,
amplified lac DNA was shown to occur as direct repeats and

to manifest instability dependent on homologous recombi-
nation protein, RecA [16], as predicted by the idea that
unequal recombination of the repeats produced instability
[17,18]. Recombination was hypothesized to be part of the
amplification mechanism itself, but whether or not it was had
not been determined. The only other clue about the
mechanism for these E. coli amplifications was that the
directly oriented, amplified genomic sequences were bor-
dered by regions of very short homology, indicating an initial
‘‘nonhomologous’’ recombination event [19,20]. Because the
amplifications studied were selected as specific fusions of
promoterless genes to functional promoters, and so could
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occur in limited DNA regions, it was not clear how general
this structure might have been. Surprisingly, little else has
been revealed since then about how amplification in E. coli
might arise. These amplifications were thought to arise
spontaneously and to be merely revealed by selection of
colonies with gene activity, although the authors recognized
that amplification might occur only or preferentially under
selection for the amplification [16], i.e., adaptively. Later work
on mammalian amplification revealed the clear existence of
spontaneous amplifications in culture cells [21]. By contrast,
methotrexate resistance mediated by amplification of the
dihydrofolate reductase locus appears to be induced by the
drug treatment [22,23].

More recently, tandem gene amplification in E. coli has been
shown to occur adaptively, as a response to conditions in which
increased activity of the lac gene is selected [24]. These
amplifications are formed after selection for many gene copies
has begun, during starvation of cells with a weakly-functional
(promoter-containing) lac gene on lactose medium. These
appear to be stress-induced amplifications—induced by the
starvation-stress condition—and indeed, their formation
requires the cell’s major starvation- and general-stress re-
sponse [25], although which component(s) of that response are
required is not known. This stress inducibility may facilitate
genetic change specifically when organisms are poorly adapted
to their environment, potentially accelerating evolution. As
one of very few experimental systems in any organism in which
adaptive, stress-induced amplification has been demonstrated
rigorously, this system provides an important model for many
instances of (particularly tandem) gene amplifications that
might also include stress-inducible–mechanism components.
Adaptive, stress inducibility could be important in amplifica-
tions that promote resistance to antibiotics [26] and chemo-
therapy [27], both of which stress cells, and amplifications that
lead to loss of growth control or promote tumor progression
[1], both of which can be viewed as selected events at the
cellular level [28]. Moreover, human genomes are replete with
structural variations between individuals [3,4,29], and these
variations might have arisen by a stress-inducible mechanism.

On an evolutionary scale, chromosomal structural differences
between primates have been associated with microhomology-
mediated events, similar to those described below [30], possibly
implying an origin similar to that causing amplification in this
system. Comparison of plant genomes between rice species
shows the same phenomenon [31].
Little is known about the mechanism of the stress-induced

amplifications in E. coli. The amplifications occur in situ, not
extrachromosomally or ectopically, and are tandem repeats
of varying sizes [24]. Stress-induced amplification requires
induction of component(s) of the general- and starvation-
stress response of E. coli [25]; it also requires some activity of
the E. coli DNA-repair and lagging-strand DNA polymerase,
Pol I [32]. That is nearly all that was known that bears on the
mechanism of formation.
In the same starving cultures that produce stress-induced

lac amplifications, a different pathway occurs, leading to
reversion of the leaky lac frameshift allele (called ‘‘point
mutagenesis’’ to distinguish it from genome rearrangements
like amplification). The point mutations also allow growth on
lactose medium and are also stress-induced [25,33–35]. The
mutations were thought initially to be derived from gene
amplifications [36], although recent work supports models in
which stress-induced amplification and point mutagenesis are
independent outcomes and mechanisms [32,37] (see below).
In either model, amplification occurs, and its mechanism of
formation is poorly understood.
Here we report several features of the mechanism of stress-

induced amplification in E. coli that suggest a novel
mechanism for tandem amplification induced under stress
and for how stress induces genome rearrangement. First, we
show that certain homologous recombination proteins
function in amplification. Specifically, those that carry out
DNA double-strand break repair (DSBR) are required.
Second, contrary to a previous model (see [38]), however,
repeats are not formed by an initial homologous recombina-
tion event between dispersed repeated sequences. Rather, the
novel junctions at the sites of the repeats result from
nonhomologous recombination in direct repeats of G-rich
microhomologies of only 4 to 15 base pairs (bp). These are
similar to sequences implicated previously in template-
switching reactions during DNA replication that generate
other nonhomologous recombination events (reviewed in
[39]). However, the microhomologies reported here are
separated by 7 to 32 kilobases (kb), a distance much greater
than previously observed in template-switching events. Third,
we propose a novel, long-distance template-switching model
for the mechanism of formation of the repeated DNA that
leads to stress-induced amplification. Fourth we support this
model with evidence that 39-single-strand (SS) DNA ends are
molecular intermediates in the process, and fifth, provide
evidence that lagging-strand templates are involved. The
long-distance template-switch model suggests a possible
molecular basis of the stress inducibility of these and other
genome rearrangements. Similar models could explain some
human genome segmental amplifications and other rear-
rangements [5,15,29,30], and other cases of tandem amplifi-
cation. Finally, the similarity of the repeat borders to those
seen previously in E. coli amplifications thought to be
spontaneous suggests that perhaps most amplifications in E.
coli are stress-induced, provoking genome evolution prefer-
entially during poor adaptation to the environment.
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Synopsis

A common change in genomes of all organisms is the reiteration of
segments of DNA to multiple copies. DNA amplification can allow
rapid evolution by changing the amounts of proteins made, and is
instrumental in cancer formation, variation between human
genomes, and antibiotic resistance and pathogenicity in microbes.
Yet little is known about how amplification occurs, even in simple
organisms. DNA amplification can occur in response to stress. In
Escherichia coli bacteria, starvation stress provokes amplifications
that can allow E. coli ultimately to adjust to the starvation condition.
This study elucidates several aspects of the mechanism underlying
these stress-provoked amplifications. The data suggest a new model
in which DNA replication stalls during starvation, and the end of the
new DNA jumps to another stalled replication fork to create a
duplicated DNA segment. The duplication can then amplify to many
copies by genetic recombination. This model, if correct, can explain
how stress provokes these genome rearrangements—by replication
stalling. The general model may be useful for other long-distance
genome rearrangements in many organisms. Stress can cause rapid
and profound changes in the genome, some of which can give cells
an advantage—this paper helps to explain how.



Results/Discussion

DSBR/Homologous Recombination Proteins in Stress-
Induced Amplification

In the E. coli Lac assay [33], cells carrying a chromosomal lac
deletion and a lac frameshift allele on an F9 conjugative
plasmid are spread onto solid, minimal lactose medium. Lacþ

colonies arise continuously over time during starvation.
Those appearing during the first week are mostly compensa-
tory frameshift revertants [40,41], whereas those appearing
later consist of an increasingly larger fraction of stress-
induced lac-amplified clones, with day-8 colonies represented
by about 40% lac-amplification bearers (as observed pre-
viously [24,42]; see Figure 1).

Loss of components of the RecBC system of homologous
recombinational DSBR, specifically, RecBC, RuvABC, and
RecA, causes dramatic reduction in stress-induced total Lacþ

colonies [43–45] (Figure 1). These include both stress-induced
point mutants and lac-amplified clones. There is also a strong
requirement for TraI, a single-strand endonuclease required
for plasmid transfer [37] (Figure 1). TraI can be substituted
for by a double-strand endonucleolytic cut delivered by the I-
SceI restriction enzyme in vivo [37], implying that the role of
TraI is in generating DNA breaks that become double-strand
ends (DSEs), which promote point mutation, (and not by
promoting transfer, which cannot occur with a linearized
conjugative plasmid).

Whether these genetic requirements for DSBR proteins
and TraI apply to the amplification mechanism cannot always
be determined directly by assaying mutant strains for
reduced numbers of late lac-amplified colonies, because some
of the mutant strains are defective in deamplification [16], for
example recA (below; Figure 1, legend). Deamplification gives
rise to visible colony-color sectoring, which is how lac
amplification is usually scored. This problem prevented
others previously from determining whether homologous
recombination proteins were required for lac amplifications
thought to be spontaneous [16]. For stress-induced lac
amplification, the magnitude of the reduction of total late
Lacþ colonies in strains lacking RecA, RecB, RuvC, or TraI
implies that both point mutation and amplification have been
reduced or eliminated (Figure 1A). However, because even
recþ–amplified isolates grow slowly and at variable rates on
lactose medium [24], and rec and ruv mutants are slow
growing, it was possible that the failure to see lac-amplified
colonies in these mutant strains was caused by their slow
growth rather than because amplification does not occur.

To distinguish these possibilities, we performed recon-
struction experiments to determine how quickly or slowly lac-
amplified strains lacking DSBR or TraI proteins form
colonies. F9 factors carrying five different amplified arrays
were transferred by conjugation into F� strains carrying
mutations in genes of the RecBC system. TraI cells carrying
the same arrays were obtained by transducing DtraI into the
amplified isolates. lac-amplified cells of these genotypes were
then plated under exact reconstructions of the conditions of
an adaptive mutation experiment, and the time taken to form
visible colonies was scored.

The greatest delay observed in colony formation for these
genotypes relative to the Recþ TraIþ parental strains was 2 d
(Figure 1B). This is not sufficient to explain the observation of
extremely low yield of lac-amplified colonies in these experi-

ments (Figure 1A). Therefore, we can conclude that adaptive
amplification, like adaptive point mutation, requires proteins
of the RecBC DSBR pathway, including RecA, and the F-
factor-encoded endonuclease, TraI.

Direct Repeats/Microhomologies in Novel Junction
Sequences
We identified the novel junction sequences between repeat

units of 31 different stress-induced amplified isolates (Table
1). The positions of representative examples of the junctions
with the lengths of their repeat units (amplicons) and some

Figure 1. Homologous Recombination/DSBR Proteins Are Required for

Adaptive Amplification

These graphs, and similar ones below, show cumulative plots of Lacþ

colonies arising per day in three or four parallel cultures under starvation
on lactose minimal medium. The error bars show 1 SEM. See Table 2 for a
list of all strains used.
(A) recA, recB, ruvC, and traI mutants show severe depression of both
point mutation and amplification under starvation. ‘‘Total’’ wild-type
colonies (squares) are all Lacþ colonies, whether point mutant or lac
amplified. lac-amplified colonies (diamonds) are distinguished from point
mutants among the total colonies as previously described (see
[16,24,32]) by picking total colonies from the lactose selection plates
and streaking onto rich medium with X-gal dye on which lac-amplified
clones form sectored blue and white colonies (see Figure 7), whereas
point mutants form solid blue colonies. Strains used are as follows: ‘‘wild-
type’’ (recþ) (squares and diamonds), SMR4562; recA (circles), SMR624;
recB (triangles), SMR593; ruvC (inverted triangles), SMR789; and traI
(lowercase phi), SMR5232. Many of the symbols for mutant strains are
obscured by others.
(B) A reconstruction experiment. Mutant strains of the same five F9
factors carrying lac amplifications of various lengths were replated on
lactose minimal medium with neighbor cells to determine growth rate
[24], expressed as the average number of days (6 SEM) taken to form
visible colonies. This shows that the slow growth rate of mutant cells
carrying amplification is not sufficient to explain the very low yield of
amplified colonies seen in (A). Mutant lac-amplified strains are PJH428–
PJH447 and PJH453–PJH457.
DOI: 10.1371/journal.pgen.0020048.g001
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surrounding sequence are shown in Figure 2, and this
information for all 31 junctions is given in Table S1.

First, with one exception, there was a only a single, unique
novel junction present, and all amplifications were oriented
as direct repeats. One isolate has two novel junctions per
amplification, with each amplicon having a direct repeat of
16 kb that includes the lac region, and an inverted repeat of
about 8 kb that overlaps the 16 kb length (Figure 2C).

Second, many sites are used for these rearrangements, and
the sequences of the junctions revealed a 4- to 15-bp length of
sequence identity (Table 1; Figure 2, letters in bold). Some,
but not all, of the junctions had further short identical
regions separated from the junction identity by mismatches
(‘‘microhomologies’’; Figure 2, uppercase letters; Table S1).
There are 28 different junctions, three of which were isolated
twice. In two of these three cases, the repeats came from
different cultures and are therefore known to be independ-
ent. The junction sequence of four nucleotides that was
isolated twice (Table 1, Figure 2B) has two further three-
nucleotide lengths of identity separated by 1- or 2-bp
mismatches. Microhomology junctions occurring more than
once that were reported before for possible spontaneous
amplifications [19] were at least ten nucleotides long if
mismatches are allowed. Such a sequence is not expected to
be repeated within 32 kb. On the other hand, we can see that

such long sequence identity is not needed at other junctions;
one of the junction sequences of only five nucleotides has no
other identity nearby (Figure 2A). The E. coli genome contains
repeated sequences, which were proposed to be sites of
duplication via homologous recombination, leading to
amplification [38]. However, the only repeat family repre-
sented, in only four of the junction sequences, is the REP
sequence. REPs are non-identical 38-bp imperfect palin-
dromes [46]. We found that the REP sequences involved are
from different families [46], and that the length of perfect
homology used in these recombination events was less than
the length of the REP sequences. Thus, neither homologous
recombination nor repeated elements is the most common
precursor of duplications.
Two isolates showed point mutations adjacent to and to the

left of the junction sequence. In one (PJH69, Table S1), the
junction was associated with a 3-bp deletion, whereas the
other (PJH83, Table S1) showed a 1-bp (cytosine) insertion.
The meaning of these observed point mutations associated
with rearrangement is not known.
Whereas the small imperfect homologies at the junctions

are characteristic of rearrangements thought to occur by
template switching during DNA replication, the distance
between the microhomologies is far greater than the usual
few hundred to few thousand bp of such rearrangements [39],
which are thought to occur within a single replication fork.
This leads us to suggest a novel kind of template-switching
mechanism.

DNA Intermediates: 39-SS Ends Implicated
Template switching is a property of 39-SS DNA ends. The

major 39-SS–specific exonuclease in E. coli is ExoI, encoded by
xonA. ExoI has been shown to influence deletion formation
between short direct repeats in E. coli [47]. We find that
deletion of xonA causes an increase in adaptive amplification
of between 2- and 6-fold (Figure 3A). The mean of three
experiments, plus or minus the standard error of the mean
(SEM), is 4.0 6 1.2. This implies that increasing cellular levels
of 39-SS ends increases stress-induced amplification. Muta-
tion in recJ, which encodes the major 59-SS–specific exonu-
clease, has no effect on amplification (Figure 3A). Moreover,
in Figure 3B, we show that overproduction of ExoI leads to a
2-fold decline in the level of adaptive amplification (2.1-fold
and 2.3-fold in two experiments), and an approximately 10-
fold decline in the DxonA background. This supports the idea
that decreasing cellular levels of 39-SS ends below normal
amounts decreases stress-induced amplification, and thus
implies that 3-SS ends are a normal molecular intermediate
in the stress-induced amplification process.

Role of DNA Polymerase I, and Not Pols II, IV, or V: Lagging
Strands Implicated
The novel junction sequences (Table 1, Figure 2) suggest a

template-switching mechanism for formation of repeats in
stress-induced amplifications, which is further supported by
the evidence that 39-SS ends are intermediates in stress-
induced amplification (Figure 3). Because template switching
might involve DNA polymerases other than the main
replicative polymerase Pol III, we investigated the involve-
ment of the remaining four E. coli DNA polymerases in stress-
induced amplification. We found previously that the error-
prone polymerase Pol IV, which is required for adaptive

Table 1. Sequences of 31 Novel Junctions from Stress-Induced
Amplifications

Junction Sequence

GTGG

GGCG X2

GTGGC

TCGCG

GCGCGG

TGGTGG

CGCGCCA

GGAATGG

GTGGGAT

GCGCTTC

GGCCTAC

TGCAGGCC

GTGGCTGG

GTGGCGCG

CACTCTCC

GTTCCAGCT

ATGTTTGCC

TCTGGCTGGA

CGGCGCACAT

GGCGGTGCAG

GCGCTGGCGAC

CTGCTGGCGGG

CGCCACCGCCA and GCTGGCG

CGGATAAGGCG X2

GATTCTGGCGGT

GGCGGGCGATGCC

GTAGGCCTGATAAG

CTGATGGGCGGCGGT X2

The sequences, shown 59 to 39, are the regions of identity between distant regions at
which joining took place, leading to formation of a direct repeat. See Table S1 for full
sequence context of each junction and the lengths of amplicons with which each is
associated; Figure 2 shows representative examples of these. Three of the sequences were
repeated, labeled ‘‘X2’’, and two of these are known to have originated independently.
One amplified array contained two novel junctions in all amplicons (Figure 2C).
DOI: 10.1371/journal.pgen.0020048.t001
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point mutation, is not required for amplification in this
system [48]. We also reported a requirement for Pol I encoded
by polA [32]. A polA temperature-sensitive mutant showed a 2-
to 6-fold reduction in amplification at a semi-permissive
temperature in repeated experiments. At the same time,
adaptive point mutation was increased about 2-fold. We
excluded the possibility that events were being channeled
from the amplification pathway to the point-mutation path-
way, via the known polA(Ts) phenotype of chronic induction
of the SOS DNA-damage response [49], by showing that
mutation of dinB (encoding Pol IV), the main cause of SOS-
induced mutation in this system [48], does not affect the
reduction in amplification seen in polA(Ts) strains [32]. Thus
Pol I is required for adaptive amplification and not for point
mutation, confirming that these are the endpoints of
independent pathways.

Pol I consists of three main domains: an N-terminal flap-
endonuclease domain (also called a 59 exonuclease) homol-
ogous to human FEN1, a polymerase domain, and a C-
terminal 39-exonuclease editing domain. We dissected the
roles of Pol I by using mutant alleles of polA that lack specific
activities. Figure 4A shows a 5-fold reduction in amplification
in the polA107mutant, which lacks only the flap-endonuclease
activity [50], although point mutation is unchanged (Figure
4B). Previously, Nagata et al. [51] showed an effect of polA107
onþ1 but not�1 frameshift mutation, in agreement with our
finding of no effect of this allele on�1 point mutations in the
Lac system. In repeated experiments, the reduction in
amplification in the polA107 strain was 3.8-fold 6 0.6 (mean
6 SEM for three experiments). We showed that the lower
amplification was not caused by a reduced ability of polA107
strains to form colonies in the timescale of the experiment by
performing a reconstruction experiment (as above for rec and
ruvC strains). For polA107, the mean time to colony formation
for five different amplicons was 3.8 6 0.1 d, whereas the time
for Polþ strains was 3.6 6 0.06 d. We demonstrated a similar

absence of growth delay during adaptive mutation experi-
ments for a polA12Ts strain previously [32]. The depression in
amplification in polA107 is also not caused by loss of viability
of the mutant cells under starvation. The number of viable
cells on the plates on day 5 relative to day 1 of the starvation
was 1.1 6 0.3 (mean 6 SEM of three experiments) with the
lowest value being 0.8. Amplification is unchanged in a polA1
mutant, which lacks all domains except the flap endonuclease
[52] (Figure 4C), whereas point mutation shows an approx-
imately 3-fold increase (Figure 4D). Thus, the flap endonu-
clease, which acts in processing Okazaki fragments, is the only
activity of Pol I required for adaptive amplification. Also,
different activities of Pol I affect point mutation and
amplification, confirming that Pol I does not channel
intermediates from one pathway to another [32], but acts
separately and differently in each separate pathway.
Pol II and Pol V are controlled by the SOS DNA damage

response, and Pol II is also expressed constitutively [53]. Pol
II, encoded by polB, is not required for amplification (Figure
5A). (For effects of these polymerases on point mutagenesis,
see [33,35,54].) Because the SOS response is not required for
adaptive amplification [48], Pol V is not expected to be
required. We found that Pol V, encoded by umuCD, does not
affect total adaptive Lacþ colony formation [35], and when
amplification was analyzed separately, we found only a very
slight decrease (Figure 5B).Thus, although the lagging-strand
processing activity of Pol I is required for amplification, the
DNA synthesis activities of Pols I, II, IV, and V are not.

No Involvement of Excision Repair Pathways
The main roles of Pol I flap endonuclease are in the

removal of RNA primers and the processing of Okazaki
fragments during lagging-strand synthesis, and in two DNA-
repair pathways: nucleotide excision repair (NER) and base
excision repair (BER). Using deletions of uvrA and uvrC, we
show that NER (reviewed by [55]) is not required for

Figure 2. Examples of Novel Junction Sequences in Their Context

See Table S1 for similar context information for all 31 junctions sequenced. One parental sequence with its gene designation is in red on the top line,
the other in blue on the bottom line. The novel sequence is in the middle, with the junction sequence shown in black. Bold uppercase letters indicate
identity between the parental sequences. The distances between the junction sequences on the parental chromosome are given in kb. REP repeated
sequence elements are underlined. Strains used are as follows: (A) PJH4; (B) PJH23 and PJH37; (C) PJH39, the only complex amplicon, containing a direct
and an inverted repeat, and hence two junctions; and (D) PJH32, an isolate with a REP repeated sequence element at the junction.
DOI: 10.1371/journal.pgen.0020048.g002
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amplification or point mutation (Figure 6A and 6B). An
alternative enzyme to UvrC, encoded by cho, is unlikely to be
involved because it is SOS inducible, and its activity requires
UvrA [56]. Mutations in genes encoding the two major AP
endonucleases ExoIII and EndoIV (reviewed by [53]) sepa-
rately or together, have no effect on amplification, showing
that BER is also not required for adaptive amplification
(Figure 6C). This supports a role in lagging-strand processing
for Pol I in adaptive amplification.

To Which Phase of the Amplification Process Do Genetic
Requirements Apply?
A plausible mechanism of amplification formation involves

an initial tandem duplication event, followed by expansion of
the duplication to form an amplified array of many copies of
the repeat unit. For the stress-induced amplifications
described here, the initial duplication event must be a non-
homologous recombination event, because the junctions
contain only microhomologies (Table 1 and Figure 2), and
we propose below that this occurs by a template-switching
mechanism (Results/Discussion). Any given genetic require-
ment for amplification might pertain to either or both of
these phases. To attribute the involvement of Pol I and ExoI
to the duplication formation (non-homologous recombina-
tion) phase, we therefore need evidence that their involve-
ment is not exclusively at the expansion (homologous
recombination) phase. Some data to this effect already exist.
First, as discussed below (Results/Discussion) ExoI 39-SS
exonuclease affects homologous recombination oppositely
to that shown here for amplification; ExoI is a requirement
that is partially redundant with 59-SS exonucleases in
homologous recombination [57,58], and not an inhibitor of
the process as seen here for amplification (Figure 3). This
argues that 39-ends are most important here in formation of
the initial duplication. Following the suggestion [16] that
expansion and breakdown of the amplified array occur by the
same mechanism, possibly by unequal crossing-over, we can
obtain further evidence by studying the instability of the
amplification in different genetic backgrounds.
It was reported previously that when amplified isolates are

engineered to become recA-defective, sectoring of amplified
colonies is strongly reduced [16]. This is taken to mean that
RecA is required for breakdown of the array, and therefore
also for expansion of the array. This does not exclude an
involvement of RecA at other stages. Figure 7A shows the
degree of sectoring observed for each of the mutant
backgrounds that were shown here to affect amplification,
for two different amplified arrays. We find that components
of the RecBC double-strand break-repair system (RecA,
RecBC and RuvC) are needed for sectoring. Thus we postulate
that these are involved in expansion, which is supported by
their known protein functions in homologous recombination.
They could also act in events leading to the initial duplication
(discussed below). Importantly, strains with the polA107
mutation, which lacks Okazaki-fragment-processing flap-
endonuclease activity, and strains that overproduce ExoI 39-
SS exonuclease, are positive for sectoring (Figure 7A), and so
presumably also for the expansion phase of amplification.
This implies that that both of these defects in amplification
occur at the stage of non-homologous recombination to form
an initial duplication.
As a more rigorous, quantitative measure, we show for both

a polA107 strain and for a strain over-producing ExoI, that
their ability to expand a duplication into amplification is at
least as good as that of the isogenic polAþ and vector carrying
control strains. We did this by providing a duplication and
following the ability of various strains to form colonies on
lactose minimal medium, which requires amplification of the
duplication. As seen Figure 7B and 7C, the polA107 strain
expands slightly better than the Polþ strain, while expansion
in the strain overproducing ExoI from a plasmid is

Figure 3. 39-SS DNA Ends Promote Stress-Induced Amplification

(A) Deletion of xonA, encoding exonuclease I, causes a 2- to 6-fold
increase in amplification. Disruption of recJ, encoding a 59 exonuclease
has no effect. Thus, increasing cellular levels of 39-SS DNA ends increases
stress-induced amplification. The associated strains are as follows: Exoþ

(squares), SMR4562; xonA (diamonds), SMR3070; and recJ (circles),
SMR690.
(B) A plasmid carrying a wild-type xonA gene reduces amplification 2-fold
below the level seen with vector alone, and approximately 10-fold below
that in the DxonA background. Therefore 39-SS DNA ends are required
for, and thus appear to be intermediates in, the stress-induced
amplification mechanism. The strains associated with each mutant are
as follows: xonA pVector (diamonds), PJH247; xonA pxonA (circles),
PJH248; Exoþ pVector (squares), PJH249; and Exoþ pxonA (triangles),
PJH246. The overall reduction caused by ColE1-based plasmids generally
is as observed previously [74].
DOI: 10.1371/journal.pgen.0020048.g003
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indistinguishable from that of the strain carrying the control
plasmid (pVector). These results imply that both the polA107-
and ExoI-overproduction-caused defects in amplification
occur at the stage of non-homologous recombination to
form an initial duplication.

Further Discussion
The findings reported strongly constrain possible molec-

ular mechanisms for stress-induced amplification. In aggre-
gate, our results imply the involvement of three specific DNA
intermediates—double-strand DNA ends, 39-single-strand
ends, and lagging-strands—and suggest a particular long-
distance template-switch model, which we propose below. We
also found that stress-induced lac amplifications are similar to
previous specially-selected promoter-fusion amplifications
[19], thought to be spontaneous. This supports the ideas
both that those previous results are general, and that the
amplification observed might have been stress-induced
amplification, potentially formed by the same mechanism
being described here. This would suggest that most genome
rearrangements might occur during stress, provoking genome
evolution most often when cells are poorly adapted to their
environments. This property, and the mechanism, may apply
to many organisms and circumstances.

Molecular Mechanism: Previous General Models Excluded
Many (but not all, see [6]) models for the mechanism of

tandem gene amplifications include an initial recombination
event to generate a duplicated DNA segment, followed by
unequal crossing over between sister DNA molecules to
expand the repeat to high-level amplification (reviewed [6]).
First, some have suggested that the initial duplications in
stress-induced amplification would form by homologous
recombination between repeated sequence elements present
in the E. coli genome [38]. We find no evidence to support this
model. The only repetitive DNA sequence that is represented
among the junctions is the REP sequences, which comprise
families of 38 bp imperfect intergenic palindromes [59], and
these appear not to be represented preferentially or to have
undergone homologous exchanges (Results/Discussion, Figure
2, Table S1).
Second, several other possible models involve use of

particular DNA sequences in the initial recombination event
that generates a duplication [39]. We found no similarity to
known consensus sequences such as topoisomerase binding
sites, or palindromes, at which the rearrangements might be
initiated. There is also no other strong consensus among the
junction sequences, except for their guanine-richness (38.5%
versus 27.6% in this region generally) and the frequent, but
not universal association with the 59GTGG39 and 59CTGG39

sequences, discussed below.

DNA Intermediates: 39-Single-Strand Ends Implicated
39-SS-DNA ends, and not 59-SS ends, are implicated as

intermediates in stress-induced amplification by the findings
that amplification increases in strains lacking ExoI 39-SS-
specific exonuclease, decreases when ExoI is overproduced,
and is unaffected by 59-SS exonuclease RecJ (Figure 3). The
increase implies that ExoI normally prevents some amplifi-
cation that would have been provoked had 39-SS ends not
been removed by ExoI. The decrease upon ExoI over-
production implies that in wild-type cells, 39-SS ends are
critical intermediates in stress-induced amplifications.
39-SS ends could be critical either in formation of the

initial duplication by ‘‘nonhomologous’’ recombination, or

Figure 4. The Flap-Endonuclease Activity of DNA Polymerase I Promotes

Adaptive Amplification with No Effect on Point Mutation: Lagging

Strands Implicated

(A and B) polA107, defective in the flap-endonuclease function of DNA
polymerase I (Pol I), causes an approximately 5-fold depression of
amplification and no effect on point mutation. Strains used are as
follows: Polþ (squares), PJH356; and polA107 (diamonds), PJH363.
(C and D) polA1, which has the flap endonuclease, but lacks polymerase
and editing functions, has no effect on adaptive amplification, and shows
an approximately 3-fold increase in point mutation. Thus, the flap
endonuclease promotes amplification, and the function that depresses
point mutation is either polymerase or editing. Results of two
independent isolates and two independent isogenic wild-type control
strains are shown. Strains used are as follows: Polþ (triangles, and squares
with crosses), PJH356 and PJH401; and polA1 (circles and squares),
PJH353 and PJH399.
DOI: 10.1371/journal.pgen.0020048.g004

Figure 5. DNA Polymerases II and V Are Not Required for Adaptive

Amplification

(A) Deletion of polB, encoding Pol II, has no effect on amplification. The
associated strains are as follows: Polþ (squares), SMR4562; and polB
(diamonds), SMR3661.
(B) Deletion of umuCD has little or no effect on amplification. Results for
two independent isolates are shown. Strains used are as follows: Polþ

(squares), SMR4562; and umuCD (diamonds and circles), SMR3525 and
SMR3526.
DOI: 10.1371/journal.pgen.0020048.g005
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its amplification by homologous recombination, or both.
Three lines of evidence support the idea that 39-SS ends are
most important in formation of the initial duplication. First,
overproduction of ExoI 39-SS exonuclease has little or no
effect on visible sectoring of colonies carrying amplification
(Figure 7A), which is caused by homologous recombination
between the repeats. Second, overproduction of ExoI does
not effect amplification of a constructed duplication (Figure
7C). These both imply that the critical step at which 39-SS
ends are intermediates is in formation of an initial
duplication, not subsequent expansion by homologous
recombination between repeats. Third, the initial duplication
is the nonhomologous recombination event, which we will
illustrate below, is most likely to occur by a template-switch
mechanism. In previous rearrangements (deletions) ascribed
to template-switching, which occur at microhomologies very
similar to those seen here, removal of ExoI also stimulated the
events [47]. These deletions were RecA-independent and had
no component of homologous recombination. By contrast,
RecA- RecBC-dependent homologous recombination is af-
fected oppositely by loss of ExoI (and RecJ). Removal of
neither exonuclease alone stimulated recombination, where-
as removal of both simultaneously decreased recombination
[57,58]. The similarity of our results with ExoI to those with
microhomology-mediated rearrangements [47], and not with
homologous recombination [57,58], suggests that the 39-SS-

end intermediates important in stress-induced amplification
are critical at the stage of generation of the initial
duplication. We will suggest that 39-SS ends act in a
template-switch mechanism between previously non-contig-
uous DNA segments at distant replication forks.

DNA Intermediates: Lagging Strands
Lagging strands at replication forks are implicated as

intermediates in stress-induced amplification by the require-
ment for the Pol I 59-flap endonuclease function (Figure 4),
which acts in processing of Okazaki fragments, and by the fact
that Pol I-dependent NER and BER pathways are not
required for amplification (Figure 6). The possibility that
Pol I acts at formation of the initial duplication (non-
homologous recombination) rather than homologous expan-
sion is supported by the lack of a sectoring (unequal
recombination) phenotype of the polA107, flap-endonu-
clease–defective mutant strain and by the finding that in a
strain carrying a duplication at lac, Lacþ colonies form as well
or better than in the Polþ strain (Figure 7).
Second, also implicating lagging strands as intermediates in

the mechanism of stress-induced amplification is the associ-
ation of the novel junctions with the sequence 59GTGG39

(Table 1, Figure 2, Table S1). We find this sequence inside,
overlapping, or within 5 bp of the junction sequence in 16 of
the 31 sequences, and two more have it within 20 bp. Eight of
the sixteen have the sequence two or three times within 20
bp. This sequence was reported previously to be associated
with template-slippage mutation (a polymerase-error process
distinct from template switching discussed here) which occurs
in strains lacking the polymerase activity of DNA Pol I ([60]
and references therein). Although the role of the sequence is
not known, it is suggested to be a polymerase pause site,
perhaps for the endings of Okazaki fragments [60].
Third, the related sequence 59CTGG39 (found in or near 15

of the 31 junction sequences) has been implicated in sites of
nonhomologous recombination causing deletion and dupli-
cation in the human a-gal A gene [61]. The 59CTG39

trinucleotide was identified as the minimal primase binding
site in phage G4 [62], suggesting a relationship to the ends of
Okazaki fragment as in the model proposed here (Figure 8).
59CTG39 occurs 54 times among the 617 possible trinucleo-
tides in 22 of the 31 junction sequences and their flanking
sequences illustrated in Table S1. Using a figure 0.552 for the
GC content of this region, 11.4 occurrences of 59CTG39 are
expected. This difference is highly significant (contingency
chi-squared¼ 29 for one degree of freedom: p , 0.001). The
complementary trinucleotide 59CAG39 is also over-repre-
sented, occurring 27 time in 17 junctions, so that 27 of 31
junctions have either 59CTG39 or its complement. Thus there
is a strong correlation between the occurrence of this
putative primase-binding trinucleotide and the junction
sequences. This suggests that the nonhomologous recombi-
nation events occur preferentially near to the ends of
Okazaki fragments.
Finally, if the new template following the switch is a

lagging-strand template, the free 39 that switches template
must also be from a nascent lagging strand. If the nascent
leading strand were to switch templates to the lagging-strand
template, this would produce an inversion. All but one
(Figure 2C) of the 31 amplicons studied are simple direct
repeats, excluding this possibility. The isolation of one

Figure 6. NER and BER Are Not Involved in Adaptive Amplification

(A) Deletions of uvrA and uvrC, essential components of NER, do not
depress adaptive amplification, or (B) point mutation. The associated
strains are as follows: Uvrþ (circles), SMR4562; uvrA (squares), PJH357; and
uvrC (diamonds), PJH358.
(C) Inactivation, singly or together, of xthA and nfo genes encoding ExoIII
and EndoIV, redundant AP-endonucleases required for BER, does not
depress adaptive amplification, or (D) point mutation. Strains used are as
follows: Endoþ (squares), SMR4562; xthA (triangles), SMR5796; nfo
(diamonds), SMR4558; and xthA nfo (circles), SMR5952.
DOI: 10.1371/journal.pgen.0020048.g006
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amplified array carrying an inversion shows that other
configurations also occur. However, inverted template
switching is unlikely to lead to a viable Lacþ product unless
a second inversion occurs, as apparently happened in the one
case that we saw. We conclude that the majority of the
proposed template switch events would involve a switch of a
nascent lagging strand to a lagging strand template.

DNA Intermediates: Double-Strand Ends
DNA double-strand ends (DSEs) and their repair by

homologous recombination are implicated in stress-induced

amplification by its requirements for the DSE-specific DSBR
protein RecB, and the other DSBR proteins, RecA, and RuvC
(Figure 1). We show elsewhere that DSEs, induced in vivo by
the restriction enzyme I-SceI, stimulate stress-induced ampli-
fication [37]. Frequent DSEs in this assay system are likely to
originate from SS-nicks made at the transfer origin of the F9

by TraI endonuclease, which is required for stress-induced
amplification (Figure 1). These SS-nicks could become DSEs
via replication or other mechanisms (reviewed [37]). The
requirement for TraI in stress-induced amplification (and

Figure 7. Reduced Amplification in a polA107 Mutant and in Cells Overexpressing xonA Is Not Caused by an Inability to Expand from a Duplication to

Give Lacþ Colonies

(A) Colony-sectoring phenotypes of amplified DNA arrays in relevant genetic backgrounds: a qualitative measure of homologous recombination in
repeated sequences.
Phenotypes were scored by visual inspection of sectoring in 3-d-old colonies of these strains grown on M9 glucose minimal medium containing 60 lg/
ml X-gal. Use of minimal medium is preferable to rich medium because the former avoids the presence of sectors caused by loss of the F9 (F� derivatives
of these strains are proline requiring). Before plating, the cells were grown in lactose minimal medium, selecting for maintenance of the amplification.
Sectoring was scored on a five-point scale (þþþ,þþ,þ,þ/�, and�) based on the intensity of sectoring, and the occurrence of non-sectored colonies
among more than 100 colonies derived from single cells. This provides a measure of recombination that leads to loss of amplification [16]. The 11-kb
and 20-kb amplifications used are from independent, representative strains PJH18 and PJH51 carrying lac amplifications with 10.88-kb and 20.33-kb
repeat unit lengths, respectively. Strains used, containing amplicons from PJH18 and PJH51 respectively, were: Wild type; PJH428 and PJH430, recA;
PJH433 and PJH435, recB; PJH438 and PJH440, ruvC; PJH443 and PJH445, traI; PJH453 and PJH455, pxonA; PJH518 and 519, polA107; PJH520 and
PJH521.
(B and C) Quantitative measure of expansion from a duplication to amplification.
Cells of the genotypes shown carrying a 25.5-kb duplication of the lac region were plated under conditions of an adaptive mutation experiment.
(B) A duplication-carrying polA107 strain is at least as well able as the isogenic polAþ strain to amplify and form colonies. Strains used are as follows:
polA107 (diamonds), PJH522; and Polþ (squares), PJH407.
(C) The presence of xonA, encoding ExoI, expressed from a plasmid has no effect on the ability of a duplication-carrying strain to amplify and form
colonies. The associated strains are as follows: pxonA (diamonds), PJH523; and pVector (squares), PJH525.
DOI: 10.1371/journal.pgen.0020048.g007
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point mutation) can be substituted for by an I-SceI cut,
further supporting this idea [37].

Template-Switching Events
The gist of template switching models for ‘‘nonhomolo-

gous’’ recombination and genome rearrangement is that a 39-
SS primer terminus leaves its correct spot at a replication
fork and alights in a different (template) region of the
replication fork by means of base-pairing with limited
complementary base sequences. The switch produces a novel
junction and the rearrangement (deletion, duplication,
inversion, etc.).
The novel junctions associated with stress-induced ampli-

fication are predominantly guanine-rich simple direct micro-
homology repeats (Table 1, Figure 2). Such junctions have
been reported in several other instances of nonhomologous
recombination in E. coli, including spontaneous amplification
[19], duplication [20], deletion [63], and rearrangement [64].
They share many features and can be considered together as
representing the same range of mechanisms [39]. These are
considered most likely to involve template-switching [39]
based on the following features [39]: (i) The recombination
events are independent of RecA, and (ii) are altered by
conditional mutations in DNA replication genes. (iii) Muta-
tions affecting such rearrangement processes have not easily
been found by transposon-insertion mutagenesis, implying
essential functions, such as replication genes. (iv) Some of
these rearrangements were affected by changes in 39-SS
exonucleases [47], and (v) methyl-directed mismatch repair
[65]; and (vi) all previously (except amplification) have shown
a very strong distance dependence; they occurred between
sequences hundreds to a few thousand bp apart, and were
essentially never seen at distances over 10 kb (references in
[39]). The reason for this distance dependence is presumably
that a template switch is most likely to occur within a single
replication fork [39].
Our data are compatible with several aspects of previously-

described rearrangements that suggest a template-switching
event in the stress-induced amplification mechanism, except
for the distance dependence. The average length of ampli-
cons appearing from day 3 to day 9 can be estimated from
published data to be 20 kb, with a modal value estimated to be
16 kb [24], so that there is no suggestion that amplicons of less
than 10 kb are preferred. This suggests a different kind of
template-switch mechanism, which we suggest (below) may be
specific to stress-induced chromosome instability.

Molecular Mechanism: A Long-Distance Template-Switch
Model
We suggest the following model for stress-induced ampli-

fication in E. coli: double-strand breaks, resulting mainly from
the action of TraI, are repaired by DSBR via formation of
repair replication forks. We suggest that these forks are likely
to stall because the cells are starved for carbon, and that fork
stalling is favored because they are repair-replication forks.
That is, whereas controls on standard origins should disfavor

Figure 8. Long-Distance Template Switching: A Possible Molecular

Mechanism for Formation of Repeats

DNA replication forks are proposed to stall during the stress of starvation
because of insufficient dNTPs (deoxyribonucleotide triphosphates), or
uncorrected template lesions, or other conditions caused by stress-
induced depletion of resources. We propose, for two reasons, that these
replication forks might be initiated by DSBR. First, normal replication
origins are not expected to fire during starvation, when origin-specific
controls should maintain their inactivity [70]. Second, double-strand
breaks induce adaptive amplification strongly [37], implying that DSBR is
part of the mechanism, and promotes amplification at a rate-limiting
step.
(A) A nascent lagging strand from stalled replication fork I anneals to the
lagging strand template of another replication fork (II) ahead of fork I,
aided by the flap-endonuclease function of Pol I cutting at the arrow,
forming a microhomology junction. The two forks are moving in parallel
on sister molecules.
(B) The microhomology junction might be stabilized by extension by a
DNA polymerase (version I of this model, shown here). In version II of this
model (not shown), immediately after the 59-flap endonuclease removes
the strand segment needed for the 39 terminus to pair, the micro-
homology junction is stabilized by simple ligation to the 59 end of the
Okazaki fragment ahead of it.
(C) The exchange is isomerized to reveal a Holliday junction that can be
cleaved by RuvC Holliday-junction endonuclease (arrowheads). Resolu-
tion of the Holliday junction as shown yields the products shown in (D).
(D) One of the products formed by resolution of the Holliday junction
carries a duplication of the sequence ‘‘BC,’’ whereas the other carries a
reciprocal deletion. The alternative non-crossover resolution does not
yield a duplication. ‘‘A,’’ ‘‘B,’’ ‘‘C,’’ and ‘‘D’’ indicate discrete sequences
on the chromosome. ‘‘mh’’ indicates the microhomology at the novel

junction. Each line represents a single nucleotide chain or strand.
Different strands are distinguished by color. Half arrows on strands
indicate 39 ends. The gray strands are those that are not involved in the
rearrangement.
DOI: 10.1371/journal.pgen.0020048.g008
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initiation under starvation/stationary-phase conditions, re-
pair forks must operate, and so could be more prone to
stalling for want of a sufficient supply of dNTPs or because of
unrepaired lesions in the templates. This induces the
rearrangement specifically under stress. Fork stalling results
in the production of free 39-DNA ends by dissociation of
nascent DNA ends. A possible sequence of events for how
these ends might lead to duplication then expansion is
depicted in Figure 8.

In Figure 8, a free 39-DNA end from the lagging strand
might alight on a template strand present in a nearby fork,
thus switching template (see Figure 8A). In this model, the
switch occurs between different sequence regions in two
replication forks running in parallel on sister molecules
(Figure 8A). The microhomology is sufficient to allow the 39

end to form a stable joint only if the Pol I 59-flap
endonuclease is present (see Figure 8A) to remove the 59-
flap of the next Okazaki fragment in the fork onto which the
primer has switched, so that this 59 end does not compete
with the switching 39 end for binding to the template (Figure
8A). In version I of this model (Figure 8B), the switched strand
might need to be extended after the Pol I flap endonuclease
removes the competing 59 end of the next Okazaki fragment,
in order to stabilize the nonhomologous joint. In version II of
this model, not shown, extension synthesis might not be
necessary; simple ligation of the primer-39 end to the 59 end
of the Okazaki fragment in front of it will also work. This
could explain the lack of requirement for the Pol I synthesis
domain (Figure 4C), which normally works with the 59-flap
endonuclease function in nick translation of Okazaki frag-
ments (nick translation is 59-flap endonuclease coupled to 39-
extension synthesis), and the lack of need for Pols IV [48], II,
and V (Figure 5). Versions I and II both lead to Figure 8C in
which the switched-strand intermediate can be isomerized to
reveal a Holliday junction. Endonucleolytic resolution of that
junction by the Ruv system (Figure 8C) can produce products,
one of which carries the duplication, which can be of any size
(Figure 8D), depending on where the primer terminus joins
the second fork.

The model illustrated in Figure 8 achieves duplication of a
length of the genome essentially by capture of a segment of
DNA from a sister molecule. Other possible models could
achieve duplication by re-replication of a length of DNA: for
example, by replicating a segment that was already synthe-
sized, in the switching strand, after it switches to the new
template. If one adheres to the premise (above) that both the
switching strand and the new template molecule are lagging
strands/lagging-strand templates, then models of the re-
replication type are more complex than the mechanism
illustrated.

The unique property of this model that allows relative
distance independence of recombination between the micro-
homologies is that the switch occurs between templates at two
replication forks at different positions, instead of at one fork
(in previous rearrangements/models [39]). This, and the need
for subsequent homologous recombination to complete the
amplification event, distinguishes this from the mechanisms
of previously described microhomology-mediated rearrange-
ments in E. coli, which are distance dependent and so
probably occur within a single replication fork, and occur
independently of homologous recombination proteins.

Predictions for Other Rearrangements
The scale of the rearrangements found in human cancers

precludes events confined to a single replication fork; so it is
likely that, if template-switching underlies such changes in
mammalian cells, switching between forks is the norm. Recent
characterization of double-minute chromosomes in human
gliomas showed all amplicons to be in the megabase range,
and six of seven analyzed showed microhomology of 2, 3, or 5
bp at the novel junctions [14], suggesting a similarity to the
mechanism studied here. Similarly, some copy number
variations in the human genome show junction sequences
similar to those seen here, coupled with repeat lengths too
long to be caused by template switching within a single
replication fork (see [30]). These, as well as the many
ubiquitous copy number variations not yet examined for
junction sequences (see [3–5]), could form similarly to the
bacterial amplifications studied here.
In contrast with the requirement for the flap endonuclease

for stress-induced amplification (Figure 4), deletion of the
flap-endonuclease domain of polA [66], or analogous flap
endonuclease functions from yeast (rad27) [67], or human
(fen1) [68], are associated with increased microsatellite (oligo-
nucleotide repeat) instability. Microsatellite instability is
associated with accelerated tumor progression in mice
heterozygous for a fen1 mutation [69]. So, apparently, loss of
the flap endonuclease promotes short-range slippage reac-
tions, but its presence appears to be required for long-
distance template-switch interactions.

Stress Inducibility
An important aspect of the amplifications studied here is

their demonstrated stress inducibility. They occur after
prolonged starvation [24], and require some function(s) induced
in the RpoS general-, stationary-phase- and starvation-stress
response [25]. These amplificationsmay represent an important
mechanism for inducible adaptation to environmental stress,
potentially accelerating evolution specifically when cells are
poorly adapted to their environments or under stress.
Our data make plausible the possibility that the majority of

amplifications in E. coli are stress induced. lac amplifications
selected as specific promoter fusions also show very similar
microhomology junctions and sizes of amplicons [19]. Our
data indicate, first, that those previous junction structures
were a general feature of E. coli amplification, not specific to
their selection. Second, the data support the possibility that
perhaps these amplifications were also induced by stress of
selection, forming only after cells experience the stress of
starvation on lactose medium, as those authors suggested.
The specific feature of the mechanism proposed that causes

the amplifications to be formed preferentially under stress is
the fork-to-fork long-distance template switch, promoted by
fork stalling. We suggest that ‘‘unscheduled’’ (origin-inde-
pendent) repair replication might be particularly prone to
fork stalling during starvation and stress because of lack of
controls exerted on replication origins that prevent repli-
cation initiation during starvation/stress [70].
Stress-induced amplification, and the stress-induced as-

pects of it in particular, may provide important models for
genomic instability in general [24]. Enhanced rearrangement
under stress, via mechanisms similar to that discussed here,
might underlie genome instabilities such as seen in cancers
[1,2] and experienced in tumor microenvironments [71]. The
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enzymatic DNA repair activities are very well conserved [72],
and similar mechanisms may probably underlie observed
amplification and chromosomal instability events common in
many cancers. Such mechanisms may pertain also to the
origins of rearrangements that create the copy number
variations, both pathogenic and polymorphic, frequently
observed in human genomes [3–5,29] .

Materials and Methods

All strains used are derivatives of FC40 [33] or the isogenic strain
SMR4562 [35]. Except as described below, mutations were moved into
FC40 or SMR4562 from other strains by standard phage P1–mediated
transduction. Where a linked transposon was used to move a mutant
allele, the isogenic ‘‘wild-type’’ control strains used carry the same
transposon. The strains used, and their origins, are listed in Table 2.

Table 2. Origins of E. coli Strains Used

Strains Relevant Genotype Origin

SMR593 recB21 [43]

SMR624 D(srlR-recA)306::Tn10 [43]

SMR690 recJ284::Tn10 [43]

SMR789 ruvC53 eda-51::Tn10 [45]

SMR3070 DxonA300::cat [74]

SMR3525 DumuCD595::cat [35]

SMR3526 DumuCD595::cat [35], independent construct of SMR3525

SMR3661 DpolB100::SmSc SM Rosenberg Lab collection, see [76]

SMR4481 malB476::Tn10 SM Rosenberg Lab collection

SMR4558 nfo-1::Kan SM Rosenberg Lab collectiona

SMR4562 FC36[F9 lacI33XlacZ proABþ] Independent construction [35] of FC40 [33]

SMR5232 [F9 DtraI::dhfr] SM Rosenberg Lab collectionb

SMR5796 DxthA40::Gm This studyc

SMR5952 DxthA40::Gm nfo-1::Kan SMR5796 3 P1 (RPC500 [77])

PJH246 [pDPK20 xonAþ] SMR4562 3 pDPK20xonAþ [78]

PJH247 DxonA300::cat [pBR322] SMR3070 3 pBR322

PJH248 DxonA300::cat [pDPK20xonAþ] SMR30703 pDPK20xonAþ [78]

PJH249 [pBR322] SMR4562 3 pBR322

PJH353 polA1 zih35::Tn10 This studyd

PJH356 zih35::Tn10 This studye

PJH357 DuvrA402::Gm This studyf

PJH358 DuvrC403::Gm This studyg

PJH363 polA107 zih35::Tn10 This studyh

PJH399 polA1 zih35::Tn10 This studyd, independent construct of PJH353

PJH401 zih35::Tn10 This studye, independent construct of PJH356

PJH407 lac-duplicated malB476::Tn10 This study, see Materials and Methods for construction

PJH428–432 lac-amplified malB476::Tn10 This studyi

PJH433–437 lac-amplified D(srlR-recA)306::Tn10 This studyi

PJH438–442 lac-amplified recB21 This studyi

PJH443–447 lac-amplified ruvC53 eda-51::Tn10 This studyi

PJH453–457 lac-amplified DtraI This studyj

PJH518 lac-amplified #PJH18 [pxonAþ] PJH18 3 pDPK20xonAþ [78]

PJH519 lac-amplified #PJH51 [pxonAþ] PJH51 3 pDPK20xonAþ [78]

PJH520 lac-amplified #PJH18 polA107 This studyk

PJH521 lac-amplified #PJH51 polA107 This studyk

PJH522 lac-duplicated polA107 This studyl

PJH523 lac-duplicated [pxonA] This studym

PJH525 lac-duplicated [pBR322] This studyn

All strains listed are derivatives of FC40 (D(lac proB)XIII thi ara RifR [F9 proABþ lacIq lacI33XlacZ]) [33] or the isogenic SMR4562 [35].
anfo-1::Kan from RPC500 [77] moved to SMR4562 by P1 transduction.
bDtraI::dhfr derived from pOXDtraI [79] by PCR inserted into SMR4562 by linear replacement [80]; allele described in [79].
cDxthA40::Gm inserted by linear replacement with gentamycin resistance from pBBR1MCS-5 [81], replacing from 44 bp upstream of xthA start codon to codon 272 of the 272–amino acid
gene.
dpolA1 from H560 [82] marked with zih35::Tn10 from CAG18495 [83] by P1 transduction, then transduced into SMR4562. Ultraviolet-sensitive isolate.
eAs above, ultraviolet-resistant isolate. All polA1 and Polþ isolates were confirmed by DNA sequencing.
fDuvrA402::Gm, which replaces uvrA codons 1–941 in strain SMR8547 (M. D. Blankschien and S. M. Rosenberg, personal communication), was made by linear replacement [80] and
transduced into SMR4562 using P1.
gAs above, DuvrC403::Gm, which replaces uvrC codons 23–589, was obtained from SMR8548 (M. D. Blankschien and S. M. Rosenberg, personal communication) and transduced into
SMR4562.
hzih35::Tn10 as above linked to polA107 in KMBL1789 [84] by transduction and then transduced into SMR4562. The genotype was confirmed by sequencing. We find polA107 to be a
transition mutation A to G at base 230, giving the amino acid change Y77C.
ilac-amplified F9s used were from PJH18, PJH33, PJH51, PJH64, and PJH83 [24]. These were conjugated into F� derivatives of Recþ SMR4481 (PJH268); recA, SMR624 (PJH269); recB, SMR593
(PJH270); and ruvC, SMR789 (PJH272) to produce PJH428–PJH447.
jP1 lysate from SMR5232 (F9 DtraI::dhfr) was used to transduce the lac-amplified isolates PJH18, PJH33, PJH51, PJH64, and PJH83 to produce PJH453–PJH457.
kA spontaneous F� derivative of PJH363 was conjugated with PJH18 to give PJH520, and with PJH51 to give PJH521.
lAn F9 from SMR4562 carrying a duplication of the lac region (prpC to mhpT), constructed as described in Materials and Methods, was transferred to an F� derivative of PJH363 (PJH517) by
conjugation.
mPJH407 3 pDPK20 xonAþ [78].
nPJH407 3 pBR322.
DOI: 10.1371/journal.pgen.0020048.t002
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Genotypes were confirmed by phenotypic tests and, where necessary,
by sequencing.

The novel junctions of amplified arrays were localized by PCR with
a series of outward-facing primers. The location of the junction was
further refined by restriction analysis of the PCR product, and finally
identified by sequencing. Sequencing was performed by Lone Star
Labs (Houston, Texas, United States).

A duplication of the lac region consisting of 25,429 bp from prpC to
mhpT including a cat gene from pACYC184 was made by the
technique of Slechta et al. [73]. To determine the ability of strains
to expand the duplication into an amplified array, very pale colonies
from rich medium with chloramphenicol and X-gal were grown for 2
d in minimal medium with glycerol and chloramphenicol, then plated
to lactose minimal medium as in an adaptive mutation experiment,
and colonies were counted daily.

Media and experimental procedures were as described [32]. In the
experiments reported, the number of Lac� viable cells did not change
by a factor of two or more during the relevant time period. All
amplification experiments have been repeated with comparable
results. Error bars on the graphs of amplification rates are SEM of
three or four cultures.

Supporting Information

Table S1. Novel Junction Sequences in Their Contexts

Found at DOI: 10.1371/journal.pgen.0020048.st001 (40 KB DOC).
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