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Tumor necrosis factor (TNF)-stimulated nuclear factor-kappa B (NF-kB) signaling plays
very crucial roles in cancer development and progression, and represents a potential
target for drug discovery. Roburic acid is a newly discovered tetracyclic triterpene acid
isolated from oak galls and exhibits anti-inflammatory activity. However, whether roburic
acid exerts antitumor effects through inhibition of TNF-induced NF-kB signaling remains
unknown. Here, we demonstrated that roburic acid bound directly to TNF with high affinity
(KD = 7.066 mM), blocked the interaction between TNF and its receptor (TNF-R1), and
significantly inhibited TNF-induced NF-kB activation. Roburic acid exhibited antitumor
activity in numerous cancer cells and could effectively induce G0/G1 cell cycle arrest and
apoptosis in colorectal cancer cells. Importantly, roburic acid inhibited the TNF-induced
phosphorylation of IKKa/b, IkBa, and p65, degradation of IkBa, nuclear translocation of
p65, and NF-kB-target gene expression, including that of XIAP, Mcl-1, and Survivin, in
colorectal cancer cells. Moreover, roburic acid suppressed tumor growth by blocking
NF-kB signaling in a xenograft nude mouse model of colorectal cancer. Taken together,
our findings showed that roburic acid directly binds to TNF with high affinity, thereby
disrupting its interaction with TNF-R1 and leading to the inhibition of the NF-kB signaling
pathway, both in vitro and in vivo. The results indicated that roburic acid is a novel
TNF-targeting therapeutics agent in colorectal cancer as well as other cancer types.

Keywords: roburic acid, TNF, TNF-R1, NF-kB signaling, colorectal cancer
Abbreviations: BLI, biolayer interferometry; BSA, bovine serum albumin; DMSO, dimethyl sulfoxide; FBS, fetal bovine serum;
IC50, half-maximal inhibitory concentration; KD, binding affinity; Koff, dissociation constant; Kon, association constant; MTT,
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NF-kB, nuclear factor-kappa B; PARP, poly (ADP-ribose)
polymerase; PBS, phosphate-buffered saline; PI, propidium iodide; PMSF, phenylmethylsulfonyl fluoride; P/S, penicillin–
streptomycin solution; PVDF, polyvinylidene fluoride; RIPA, radioactive immunoprecipitation assay; SEM, standard error of
the mean; SPR, surface plasmon resonance; SSA, super streptavidin; TNF, tumor necrosis factor; TNF-R1, TNF receptor 1.
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INTRODUCTION

Colorectal cancer, a malignant disease of the digestive system, is
the third most common cause of new cancer cases in both men
and women and the second most frequent cause of cancer deaths
(1, 2). Globally, approximately 1.4 million new cases of colorectal
cancer are diagnosed and over 690,000 people die from this
condition every year (3). The pathophysiology of colorectal
cancer is very complex, and its development is a multistage
process. Interactions between multiple genetic alterations, the
host immune system, and environmental carcinogens have been
implicated in the development of human colorectal cancer,
which eventually leads to the uncontrolled growth of
transformed cells and poor prognosis for patients (4, 5). Under
normal conditions, surgical resection provides a possibility for
cure in early-stage patients, whereas several anticancer drugs,
such as oxaliplatin, 5-fluorouracil, and leucovorin, are
recommended for treating advanced colorectal cancer (6, 7).
However, current therapy regimens are not always effective at
treating advanced colorectal cancer because of drug resistance
and adverse side effects and toxicity (3). Consequently, there is
an urgent need to identify potential therapeutic targets and
discover drugs with greater specificity and less adverse effects
from natural resources to treat colorectal cancer, as well as
elucidate the underlying molecular mechanisms.

Considerable accumulated evidence has shown that chronic
inflammation is closely associated with cancer development and
progression (8). In particular, colorectal cancer patients exhibit
extensive inflammatory infiltrates with high expression levels
of cytokines in the tumor microenvironment (9). The
proinflammatory cytokine tumor necrosis factor (TNF)-
induced nuclear factor-kappa B (NF-kB) signaling pathway is
the most intensively investigated pathway in most cell types (10).
It represents a canonical NF-kB activation pathway that links
inflammation and immunity to cancer development and
progression and promotes tumorigenesis (8, 10, 11). Moreover,
the TNF-induced NF-kB signaling pathway is a precisely
regulated and therapeutically relevant pathway and a potential
target for drug discovery (12, 13). The binding of TNF to its
cognate receptor (TNF-R1) directly activates the canonical
NF-kB signaling pathway, leading to the transcription of
antiapoptotic genes (12, 14). Cancer cells can evade apoptosis
via upregulating the expression levels of antiapoptotic proteins
such as XIAP, Mcl-1, and Survivin (10). Consequently, there is
increasing interest in identifying natural compounds that can
inhibit this pathway (13, 15–17).

It is well known that new natural products isolated from
medicinal plants are excellent and reliable sources of new
anticancer drugs (16, 18–20). Roburic acid (molecular formula:
C30H48O2; Figure 1A) is a newly identified tetracyclic triterpene
acid originally isolated from oak galls, and later also found in
Gentiana macrophylla Pall (21). Roburic acid has been shown to
exert anti-inflammatory effects (21–23); however, whether it
exhibits additionally bioactivities, especially anticancer effects,
remains unknown. Given the anti-inflammatory properties of
roburic acid and the critical role of TNF/TNF-R1-mediated NF-
kB signaling in colorectal cancer development and progression,
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we speculated that roburic acid might disrupt TNF/TNF-R1-
mediated NF-kB signaling and suppress the growth of human
colorectal cancer cells. In the present study, we provide evidence
that roburic acid binds to TNF with high affinity, which disrupts
its interaction with TNF-R1 and leads to inhibition of the NF-kB
signaling pathway, both in vitro and in vivo.
MATERIALS AND METHODS

Chemicals and Reagents
Roburic acid of high purity grade (≥99%) was purchased from
Chengdu Biopurify Phytochemicals Ltd (Chengdu, China).
Purified cremophor (>98%) and crystal violet were purchased
from Calbiochem, Inc. (San Diego, CA, USA) and Aladdin Bio-
Chem Technology Co., Ltd (Shanghai, China), respectively.
Dimethyl sulfoxide (DMSO) and 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) were obtained from
Sigma-Aldrich (Saint Louis, MO, USA). RPMI-1640 medium
(Gibco) and fetal bovine serum (FBS) were obtained from
ThermoFisher Biochemical Products (Beijing) Co., Ltd and
Biological Industries (Kibbutz Beit Haemek, Israel),
respectively. Phosphate-buffered saline (PBS), a mixed
penicillin–streptomycin solution (P/S), 4% paraformaldehyde,
Triton X-100, antifade mounting medium with DAPI,
radioactive immunoprecipitation assay (RIPA) buffer,
phenylmethylsulfonyl fluoride (PMSF), and the nuclear protein
extraction kit were purchased from Solarbio (Beijing, China).
The BeyoClick EdU cell proliferation kit with Alexa Fluor 488
was purchased from Beyotime Biotechnology (Shanghai, China).
Propidium Iodide (PI) and the Annexin V–FITC/PI detection kit
were purchased from Beijing 4A Biotech Co., Ltd (Beijing,
China). Anti-TNF-R1 antibody was purchased from HuaAn
Biotechnology Co., Ltd (Hangzhou, China). Specific primary
antibodies against Bcl-xL, Survivin, Cyclin B1, and Cyclin D1
were purchased from Abcam (Cambridge, MA, USA). Anti-
Cyclin E1 and anti-XIAP antibodies were obtained from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Antibodies against
PARP, cleaved Caspase3, Caspase7, Caspase9, Bcl-2, Bax, Mcl-1,
c-Myc, phospho (p)-IKKa/b, IKKa, IKKb, p-IkBa, IkBa, p-p65
(Ser536), p65, p-JNK, JNK, p-ERK, ERK, p-p38, p38, p-AKT,
AKT, p-STAT3, STAT3, Histone H3, b-tubulin, Ki-67, and
rabbit IgG (H+L), F(ab’)2 Fragment (Alexa Fluor 594
conjugate) were purchased from Cell Signaling Technology
(Beverly, MA, USA). Recombinant human TNF protein and
horseradish peroxidase-conjugated secondary antibodies were
obtained from R&D Systems (Minneapolis, MN, USA).

Molecular Interaction Assay
Interactions between human TNF and TNF-R1 proteins and
roburic acid were investigated using surface plasmon resonance
(SPR) analysis. The human TNF soluble form (NP-000585.2)
N-terminal fragment (Val 77–Leu 233) and the TNF-R1 (NP-
001056.1) extracellular domain (Met 1–Thr 211) (Sino Biological
Inc; Beijing, China) were prepared. SPR studies were performed
using a Biacore S200 instrument (GE Healthcare, Sweden) at 25°
C. Briefly, 50 mg/mL TNF-R1 and TNF in 10 mM sodium acetate
February 2022 | Volume 13 | Article 853165
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buffer (pH 5.0) were respectively immobilized in flow cell-2 and
-4 of the Series S CM5 Sensor Chip using an amine coupling kit
(GE Healthcare), according to the standard Immobilization
Wizard program. Roburic acid was double-diluted in PBS-P
buffer (GE Healthcare) supplemented with 5% DMSO to
concentrations ranging from 0.195 to 6.24 mM. The analytes
were then injected to flow over the reference and active chip
surfaces at a flow rate of 30 µL/min and the response units were
measured. The association and dissociation times were both 90 s.
The binding kinetics of TNF-R1 and TNF to roburic acid were
analyzed with Biacore S200 Evaluation Software Version 1.1
using a 1:1 binding model.

In addition, solution competition biolayer interferometry (BLI)
analysis was performed using an Octet Red 96 instrument
(ForteBio, USA) at 25°C, as previously described (24). Briefly,
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TNF-R1 was biotinylated using amine-PEG3-biotin and then
desalted using a Zeba Spin desalting column. The biotinylated
TNF-R1 protein was loaded onto the surface of Super Streptavidin
(SSA) biosensors (ForteBio). Roburic acid (0 or 20 mM) was
preincubated with the immobilized TNF-R1 for 180 s.
Subsequently, a 1 mM TNF solution supplemented with 0 or
20 mM roburic acid was allowed to interact with the immobilized
TNF-R1 for 180 s, and dissociation was followed for 180 s in 0 or
20 mM roburic acid. Kinetic parameters and affinities were
calculated from a non-linear global fit of the monitored binding
curves using Octet Data Analysis software version 7.0 (Fortebio).

Luciferase Reporter Assays
293-TNF Res (NF-kB) cell line purchased from Novoprotein
Technology Co., Ltd (Shanghai, China) was used for luciferase
A B

C

E

D

FIGURE 1 | Roburic acid disrupts the interaction between TNF and TNF-R1 and blocks TNF-induced NF-kB activation. (A) The chemical structure of roburic acid.
Direct interactions between roburic acid and TNF-R1 (B) and TNF (C) were detected using SPR analysis. (D) Roburic acid disrupts the interaction between TNF and
TNF-R1, as determined by a BLI-based solution competition assay. (E) Roburic acid blocks TNF-induced NF-kB activation. Luciferase reporter assays were used to
detect the NF-kB activity in 293-TNF Res (NF-kB) cells. Data are shown as means ± SEM of three independent replicates. ***P < 0.001 compared with the control;
##P < 0.01 and ###P < 0.001 compared with TNF treatment only.
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reporter assays. The cells were cultured in serum free DMEM
with or without roburic acid in the presence of TNF for 4 h.
Luciferase activities were measured consecutively using the firefly
luciferase reporter assay kit (Meilunbio, Dalian, China) with the
GloMax® 96 Microplate Luminometer (Promega, Madison, WI).

Cell Lines and Cell Culture
All the cell lines (HCT-116, HCT-15, HT29, Colo205, SK-BR-3,
BT549, BT-474, U251, 786-O, ACHN, A498, A549, NCI-H460,
NCI-H226, NCI-H23, OVCAR-3, SK-OV-3, DU145, PC-3, and
CCRF-CEM) used in this study were purchased from the
American Type Culture Collection (ATCC; Manassas, VA,
USA). All the cells were cultured in RPMI-1640 medium
supplemented with 10% FBS and 1% P/S. Cells were cultured
in an incubator (BINDER GmbH; Tuttlingen, Germany) with
95% air and 5% CO2 at 37°C.

Cell Viability Assay
Cell viability was determined using the MTT method as
previously described (25). For all the cancer cell lines, 2 × 104

cells/well were seeded into 96-well plates and allowed to adhere
for 24 h. The following day, the cells were treated with various
concentrations of roburic acid (0–20 mM). After 48 h, MTT
solution (5 mg/mL) was added to the cells. After 4 h, the
supernatant was aspirated and 200 mL of DMSO was added to
dissolve the formazan crystals. The optical density at 492 nm was
then detected using a FlexStation 3 Multi-Mode Microplate
Reader (Molecular Devices; Sunnyvale, CA, USA) and IC50

values were calculated.

Colony Formation Assay
For clonogenicity analysis, 4 × 103 viable HCT-116 and HCT-15
cells were seeded into 60-mm plates and incubated overnight.
Then, vehicle or roburic acid was added to each plate at the
respective concentrations (4, 8, or 16 mM) and the culture
medium was changed every 2 days. After 8 days of incubation,
the cells were fixed in 4% paraformaldehyde and then stained
with a 1% crystal violet solution. The colonies were imaged and
the number of colonies counted.

Cell Proliferation Assay
HCT-116 and HCT-15 cells (5 × 104 cells/well) were seeded into
12-well plates and allowed to adhere overnight. The following
day, the cells were treated with various concentrations of roburic
acid (0, 4, 8, or 16 mM) for 24 h. Then, HCT-116 and HCT-15
proliferation was determined using a BeyoClick EdU cell
proliferation kit with Alexa Fluor 488 according to the
manufacturer’s instructions. Briefly, the cells were treated with
10 mM EdU for 2 h, fixed in 4% paraformaldehyde for 20 min,
washed twice with PBS, and permeabilized with 0.5% Triton X-
100 for 30 min. Subsequently, the cells were incubated in 200 mL
of click reaction buffer at room temperature for 30 min and then
washed twice with PBS. Finally, the cells were mounted using
antifade mounting medium with DAPI and observed under a
fluorescence microscope (Leica). Images were captured at ×200
magnification and merged using ImageJ software (National
Institutes of Health, Bethesda, MD, USA).
Frontiers in Immunology | www.frontiersin.org 4
Cell Cycle Analysis
HCT-116 and HCT-15 cells (2 × 105 cells per plate) were seeded
into 60-mm plates and incubated overnight. Subsequently, the
cells were treated with various concentrations of roburic acid as
described above. After incubation for 24 h, the cells were
harvested, washed with PBS, and then fixed in 70% ethanol at
−20°C overnight. After fixation, the cells were washed twice with
pre-cooled PBS and incubated with binding buffer containing
100 mg/mL PI and 25 mg/mL RNase A in the dark for 30 min at
37°C. Finally, the fluorescence intensities of these samples were
detected by BD FACSCalibur flow cytometry (BD Biosciences;
San Jose, CA, USA) and FlowJo v.X.7.6.5 software was used to
determine the cell cycle phase distributions.

Cell Apoptosis Analysis
Cell apoptosis was analyzed using the Annexin V–FITC/PI
detection kit according to the manufacturer’s instructions.
Briefly, HCT-116 and HCT-15 cells (3 × 105 cells per plate)
were treated with different concentrations of roburic acid in
serum-free medium for 24 h. The harvested cells were then
incubated with 100 mL of binding buffer containing 5 mL of
Annexin V–FITC and 10 mL of PI (20 mg/mL) in the dark for
5 min at room temperature. Subsequently, the prepared samples
were analyzed by BD FACSCalibur flow cytometry within 1 h
and the percentage of apoptotic cells was determined using
FlowJo software.

Immunoblotting Analysis
For protein extraction, after the corresponding treatments, HCT-
116 and HCT-15 cells, as well as tumor tissues, were washed
twice with pre-cooled PBS and lysed on ice using RIPA lysis
buffer containing 1 mM PMSF. Cell lysates were quantified using
an Enhanced BCA Protein Assay Kit (Beyotime Biotechnology)
according to the manufacturer’s protocol. Subsequently, equal
amounts of proteins were separated by 10% SDS–PAGE and
electrophoretically transferred onto polyvinylidene fluoride
(PVDF) membranes (Millipore). After blocking with 5%
nonfat milk in PBST, the membranes were incubated with
diluted specific primary antibodies at 4°C overnight, followed
by incubation with the corresponding rabbit or mouse IgG
horseradish peroxidase-conjugated secondary antibodies
(diluted 1:5,000). Protein bands were detected with an Ultra-
sensitive Enhanced Chemiluminescent Substrate Kit (4A
Biotech) and visualized using a FluorChem E System
(ProteinSimple, San Jose, CA, USA). The protein expression
level was detected using AlphaView software (Cell Biosciences,
Santa Clara, CA, USA).

Nuclear and Cytoplasmic
Protein Extraction
HCT-116 and HCT-15 cells (2.5 × 106 cells per plate) were
seeded into 100-mm plates and allowed to adhere overnight. The
following day, cells were cultured in serum-free medium for 12 h
and then pretreated with or without roburic acid (8 mM) for 4 h,
followed by stimulation with TNF (10 ng/mL) for the indicated
times. A nuclear protein extraction kit was used to isolate and
February 2022 | Volume 13 | Article 853165
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extract nuclear and cytoplasmic proteins, according to the
manufacturer’s protocol. In brief, the collected cells were
incubated in cytoplasm lysis buffer containing 1 mM PMSF on
ice for 10 min. The supernatants collected after centrifugation at
16,000 × g for 10 min at 4°C were considered cytoplasmic protein
extracts. The pellets were then dissolved in nuclear lysis
buffer containing 1 mM PMSF on ice for 10 min, and the
supernatants obtained by centrifuging were regarded as the
nuclear protein fractions. Finally, the cytoplasmic and nuclear
protein extracts were subjected to immunoblotting analysis with
the corresponding primary antibodies.

Immunofluorescence Staining
HCT-116 and HCT-15 cells (5 × 104 cells/well) were seeded into
12-well plates and allowed to adhere overnight. Cells were
treated with or without roburic acid (8 mM) for 4 h and
subsequently stimulated with TNF (10 ng/mL) for 30 min in
serum-free medium. Then, the cells were washed twice with pre-
cooled PBS, fixed in 4% paraformaldehyde for 20 min, washed
twice with PBS, blocked with 1% bovine serum albumin (BSA)
for 1 h at room temperature, incubated with anti-p65 antibody at
4°C overnight, gently washed twice with PBS, and incubated with
Alexa Fluor 594-conjugated secondary antibody for 1 h at
temperature in the dark. Subsequently, the slides were washed
twice with PBS and mounted using antifade mounting medium
with DAPI. Images were taken at ×400 magnification using a
fluorescence microscope, and merged using ImageJ software.

In Vivo Xenograft Studies
All animal experiments were carried out in accordance with the
National Institutes of Health’s Guidelines for the Care and Use of
Laboratory Animals and were approved by the Yunnan
Agricultural University institutional ethics committee. Care
was taken to minimize the discomfort, distress, and pain of the
experimental animals. Eighteen 5-week-old male BALB/c nude
mice were purchased from Cawens Lab Animal Co. (Changzhou,
China) and allowed to acclimate for 1 week. The animals were
housed in polypropylene cages with sterile paddy husk and were
maintained under standard pathogen-free conditions (ambient
temperature 24 ± 1°C, humidity 50–60%, 12 h light/dark cycle)
with free access to a standard laboratory diet and water. HCT-
116 (5 × 106) and HCT-15 (4 × 106) cells were harvested and
suspended in 200 mL of a physiological saline solution, and
injected subcutaneously into the left and right flanks of each
mouse, respectively. One week after xenotransplantation, mice
with tumors of approximately 100 mm3 were randomly and
averagely divided into three groups. The tumor-bearing mice
started daily intraperitoneal injection with either a vehicle (10%
DMSO, 70% cremophor/ethanol (3:1), and 20% PBS) as
previously described (18), or 5 or 10 mg/kg body weight
roburic acid for 18 days. Body weight was recorded and tumor
size was determined using electronic calipers every 2 days, and
tumor volume was calculated in an unblinded manner according
to the formula (L × W2) × 0.5, where L is the length and W the
width. At the end of the treatments, mice were euthanized by
cervical dislocation and the isolated tumors were weighed,
Frontiers in Immunology | www.frontiersin.org 5
photographed, and used for immunoblotting analysis and
immunohistochemical staining.

Immunohistochemical Staining
Immunohistochemistry was performed according to standard
methods. Paraffin-embedded xenograft tumor tissues were cut
into 3-mm sections, deparaffinized, and rehydrated in different
percentages (100, 95, 85, 75, and 65%) of ethanol. For antigen
retrieval and to quench endogenous peroxidases, sections were
incubated with 10 mM citric buffer (pH 6.0) and BLOXALL
Blocking Solution (Vector Laboratories; Burlingame, CA, USA),
respectively. The slides were incubated overnight at 4°C with
primary antibodies against p-p65, cleaved Caspase3, and Ki-67.
Detection was performed using the VECTASTAIN Elite ABC-
Peroxidase Kit (Vector Laboratories) and an Enhanced HRP–
DAB Chromogenic Kit (TIANGEN Biotech Co., Ltd; Beijing,
China) according to the manufacturer’s instructions, followed by
counterstaining with Mayer’s hematoxylin (Sigma–Aldrich). The
slides were dehydrated with different concentrations of ethanol
(65, 75, 85, 95, and 100%) and then mounted in Permount
Mounting Medium (Fisher Scientific). Images were captured at
×400 magnification under a CKX41 microscope (Olympus,
Tokyo, Japan).

Statistical Analysis
Data are shown as means ± the standard error of the mean
(SEM). All experiments were performed at least three times and
representative images are shown. The Student’s t-test was
performed using SPSS v17.0 (IBM, Armonk, NY, USA). A
value of P < 0.05 was considered significant. The statistical
parameters of quantitative data are reported in the
corresponding figure legends.
RESULTS

Roburic Acid Disrupts the Interaction
Between TNF and TNF-R1 and Blocks
TNF-Induced NF-kB Activation
Protein-protein interactions between TNF and its receptor TNF-
R1 are known to regulate the canonical TNF-induced NF-kB
pathway and are therefore considered a pivotal therapeutic target
for the treatment of TNF-associated autoimmune diseases,
including cancer (10, 26, 27). Given that roburic acid can
exhibit anti-inflammatory activity and the underlying
molecular mechanism is still unknown (21, 23), we
investigated whether roburic acid could directly disrupt the
interaction between TNF and TNF-R1.

We first detected the direct interactions between roburic acid
and TNF-R1 and TNF using SPR analysis. The results showed
that roburic acid could directly interact with TNF, but not with
TNF-R1 (Figures 1B, C). The apparent association (Kon) and
dissociation (Koff) constants of roburic acid were calculated as
4.21 × 103 M−1s−1 and 2.97 × 10−2 s−1, respectively, and the TNF-
binding affinity (KD) was calculated as 7.066 mM, suggesting that
the TNF-roburic acid complex is relatively stable.
February 2022 | Volume 13 | Article 853165
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Importantly, the BLI-based solution competition assay
showed that roburic acid could compete with TNF-R1 for TNF
binding (Figure 1D), indicating that roburic acid disrupts the
interaction between the two proteins. Analysis of the intrinsic
kinetic parameters indicated that roburic acid inhibited the
association between TNF and TNF-R1, with the Kon value
decreasing from 2.94 × 104 to 1.30 × 104 M−1s−1; roburic acid
also promoted the dissociation between TNF and TNF-R1, with
the Koff value increasing from 2.16 × 10−4 to 2.74 × 10−3 s−1. This
demonstrated that roburic acid disrupted the interaction
between TNF and TNF-R1, with the binding affinity (KD)
decreasing from 7.33 × 10−9 to 2.11 × 10−7 M.

To further identify whether roburic acid could inhibit TNF-
inducedNF-kB activation, we directly performedNF-kB luciferase
reporter assays in vitro. TNF significantly increased the NF-kB
luciferase activity in a concentration-dependent manner, and
roburic acid significantly blocked TNF-induced NF-kB activation
in a concentration-dependent manner (Figure 1E).

Collectively, these results indicated that roburic acid directly
binds to TNF with high affinity, blocks the interaction between
TNF and TNF-R1, and inhibits TNF-induced NF-kB activation.
This demonstrates that TNF is a direct target of roburic acid in
the inhibition of the TNF-induced NF-kB activation, which
prompted us to investigate whether roburic acid exerts
antitumor effects through inhibition of TNF-induced NF-
kB signaling.

The HCT-116 and HCT-15 Cell Lines
Showed the Greatest Sensitivity to
Roburic Acid Treatment
To evaluate the potential cytotoxicity of roburic acid against
human colorectal cancer cells, HCT-116, HCT-15, HT29, and
Colo205 cells were treated with various concentrations of roburic
acid for 2 days in vitro and cell viability was determined by the
standard MTT method. As shown in Figures 2A–D, roburic acid
greatly inhibited the viability of HCT-116, HCT-15, HT29, and
Colo205 cells, with half-maximal inhibitory concentration (IC50)
values of 3.90, 4.77, 5.35, and 14.54 mM, respectively. To further
investigate whether roburic acid exhibits cytotoxicity against
other types of cancer cells, we determined the IC50 values for
three breast cancer cell lines (SK-BR-3, BT549, and BT-474), one
central nervous system cancer cell line (U251), three kidney
cancer cell lines (786-O, ACHN, and A498), four lung cancer cell
lines (A549, NCI-H460, NCI-H226, and NCI-H23), two ovarian
cancer cell lines (OVCAR-3 and SK-OV-3), two prostate cancer
cell lines (DU145 and PC-3), and one leukemia cancer cell line
(CCRF-CEM). As shown in Supplementary Table S1, the IC50

values for roburic acid ranged from 5–15 mM in these seven
human cancer cell types. Taken together, the above results
indicated that the HCT-116 and HCT-15 cell lines were the
most sensitive to roburic acid cytotoxicity.

Notably, colorectal cancer has been shown to exhibit
extensive inflammatory infiltrates with high levels of cytokine
expression in the tumor microenvironment and TNF can
activate NF-kB to promote colorectal cancer cell growth (9).
Consistently, the high expression levels of TNF-R1 were detected
Frontiers in Immunology | www.frontiersin.org 6
in the HCT-116 and HCT-15 cell lines and TNF could effectively
promote the growth of these cells in a concentration-dependent
manner (Supplementary Figure S1). Therefore, we selected
HCT-116 and HCT-15 cell lines for further studies. As
expected, the flat plate colony formation assays showed that
roburic acid could significantly inhibit HCT-116 and HCT-15
colony formation in a concentration-dependent manner
(Figures 2E–G).

Roburic Acid Suppressed DNA Synthesis
in HCT-116 and HCT-15 Cells
To provide direct evidence for the cytotoxic response to roburic
acid treatment in human colorectal cancer cell lines, we further
investigated whether roburic acid could inhibit DNA synthesis in
these cells. EdU incorporation assays showed that roburic acid
treatment (4–16 mM) markedly suppressed DNA synthesis in
both colorectal cancer cell lines (Supplementary Figure S2).

Roburic Acid Treatment Triggered G0/G1
Cell Cycle Arrest in HCT-116 and HCT-15
Cells
Given that roburic acid could effectively suppress DNA synthesis
in colorectal cancer cells, we speculated that it might induce cell
cycle arrest. To test this, we treated HCT-116 and HCT-15 cells
with different concentrations of roburic acid (4–16 mM) for 24 h
and detected the cell cycle phase distribution using flow
cytometry. As expected, roburic acid significantly increased the
percentage of G0/G1 phase cells in both cell lines, and this effect
was concentration-dependent (Figure 3). In addition, the
percentages of cells in the S and G2 phases were significantly
decreased in roburic acid-treated colorectal cancer cells (data
not shown).

Roburic Acid Triggered Apoptosis in
HCT-116 and HCT-15 Cells
Because we found that roburic acid could significantly inhibit the
viability of HCT-116 and HCT-15 cells within 2 days, we
speculated that roburic acid triggers cell death in addition to
disrupting cell cycle distribution. Interestingly, we observed that
HCT-116 and HCT-15 cells treated with roburic acid (8 mM) for
24 h exhibited a shrunk morphology, detached, and died
(Figure 4A). We further determined the proapoptotic effect of
roburic acid on HCT-116 and HCT-15 cells using Annexin V–
FITC/PI staining and flow cytometric analysis. After treatment
with roburic acid (4–16 mM) for 24 h, the number of Annexin V–
FITC-positive (apoptotic) HCT-116 and HCT-15 cells exhibited
a significant, concentration-dependent increase (Figures 4B–D).
These results demonstrated that roburic acid triggers cell death
through the induction of cell cycle arrest and apoptosis.

Roburic Acid Modulated the Expression
Levels of Multiple Cell Cycle- and
Apoptosis-Related Regulators in
Colorectal Cancer Cells
Because roburic acid markedly induced cell cycle arrest and
apoptosis in colorectal cancer cells, we further investigated the
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FIGURE 2 | Roburic acid inhibits the viability of human colorectal cancer cells. (A–D) The cytotoxicity of roburic acid against human colorectal cancer cells. HCT-
116 (A), HCT-15 (B), HT29 (C), and Colo205 (D) cells were treated with roburic acid at the indicated concentrations for 48 h. An MTT assay was performed to
evaluate cell viability and the IC50 values were calculated. (E) Flat plate colony formation assay of HCT-116 and HCT-15 cells treated with various concentrations of
roburic acid (4, 8, or 16 mM). (F, G) Colony formation rates of the HCT-116 (F) and HCT-15 (G) cells are expressed as fold change. Representative images are
displayed. Data are shown as means ± SEM of three independent replicates. **P < 0.01 and ***P < 0.001 compared with the control.
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protein levels of multiple cell cycle- and apoptosis-related
regulators in HCT-116 and HCT-15 cells treated with roburic
acid (4–16 mM) for 24 h. As expected, roburic acid treatment led to
a significant decrease in the protein expression levels of cell cycle-
related markers, including Cyclin B1, Cyclin D1, and Cyclin E1, in
both HCT-116 and HCT-15 cells (Supplementary Figure S3). In
addition, roburic acid treatment greatly enhanced the cleavage of
poly (ADP-ribose) polymerase (PARP), Caspase3, Caspase7, and
Caspase9 in these colorectal cancer cells in a concentration-
dependent manner (Supplementary Figure S3). Importantly,
roburic acid treatment also reduced the expression levels of
several antiapoptotic proteins in both cell lines, including that of
Bcl-2, Bcl-xL, XIAP, Mcl-1, and Survivin, in a concentration-
dependent manner (Supplementary Figure S3). c-Myc is an
oncogenic transcription factor that is highly expressed through
different mechanisms in many cancer types, and is closely
associated with promotion of the transition from the G0/G1
phase to the S phase of the cell cycle (28). Interestingly, we
found that treatment with roburic acid significantly decreased
the protein expression level of c-Myc in human colorectal cancer
Frontiers in Immunology | www.frontiersin.org 8
cells in a concentration-dependent manner (Supplementary
Figure S3).

Roburic Acid Inhibited the TNF-Induced
NF-kB Signaling Pathway in Colorectal
Cancer Cells
Several studies have indicated that roburic acid inhibits the NF-
kB and MAPK signaling pathways and exerts anti-inflammatory
effects (21, 23). Recently, it has become clear that TNF-induced
NF-kB signaling also plays a critical role in colorectal cancer
development and progression, and is a potential therapeutic
target for the treatment of these conditions (9, 29, 30).
Notably, pathways that activate NF-kB signaling can inhibit
apoptosis through upregulation of the expression of
antiapoptotic proteins such as XIAP, Mcl-1, and Survivin (16).

To further explore the molecular mechanisms by which roburic
acid suppresses the expression of antiapoptotic proteins, we
investigated whether roburic acid could block TNF-induced NF-
kB signaling. As expected, TNF (10 ng/mL) treatment led to
a marked activation of the NF-kB signaling pathway in both
A

B C

FIGURE 3 | Roburic acid induces G0/G1 cell cycle arrest in HCT-116 and HCT-15 cells. (A) HCT-116 and HCT-15 cells were treated with roburic acid (4, 8, or 16
mM) for 24 h, the cell cycle phase distribution was assessed by BD FACSCalibur flow cytometry. (B, C) The percentage of G0/G1-phase cells in HCT-116 (B) and
HCT-15 (C) cells was evaluated using FlowJo v.X.7.6.5 software. Representative images are displayed. Data are shown as means ± SEM of three independent
replicates. *P < 0.05, **P < 0.01 and ***P < 0.001 compared with the control.
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HCT-116andHCT-15 cells, as determinedby theobserved increase
in the levels of IKKa/b, IkBa, and p65 phosphorylation,
degradation of IkBa, and induction of the protein expression of
XIAP, Mcl-1, and Survivin (Figure 5). However, these effects
were significantly inhibited by roburic acid treatment (8 mM)
(Figure 5), which was consistent with the results of the BLI-based
solution competition assay and NF-kB luciferase reporter assays
(Figures 1D, E). Notably, roburic acid treatment had no effect
on the protein expression level of p65 in either cell line (Figure 5).
Frontiers in Immunology | www.frontiersin.org 9
NF-kB can transactivate the expression ofCyclinD1 and c-Myc,
which promotes cell proliferation, and suppress the expression of
the proliferation factor JNK (10). As expected, roburic acid
treatment significantly suppressed the expression of Cyclin D1
and c-Myc (Figure 5), and increased the levels of phosphorylated
JNK in both HCT-116 and HCT-15 cells (Supplementary Figure
S4). Moreover, the TNF-stimulated phosphorylation of ERK, p38,
AKT, and STAT3 was decreased in both colorectal cancer cell lines
(Supplementary Figure S4). Collectively, these results indicated
A

B

C D

FIGURE 4 | Roburic acid induces apoptosis in HCT-116 and HCT-15 cells. (A) The cell morphology of HCT-116 and HCT-15 cells changed markedly after
treatment with roburic acid (8 mM) for 24 h (original magnification ×200). (B) HCT-116 and HCT-15 cells were treated with roburic acid (4, 8, or 16 mM) in serum-free
medium for 24 h, and then stained with Annexin V–FITC/PI and analyzed by flow cytometry. (C, D) The percentages of Annexin V–FITC-positive apoptotic HCT-116
(C) and HCT-15 (D) cells were evaluated using FlowJo software. Representative images are displayed. Data are shown as means ± SEM of three independent
replicates. **P < 0.01 and ***P < 0.001 compared with the control.
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A

B C

FIGURE 5 | Roburic acid inhibits the TNF-induced NF-kB signaling pathway and antiapoptotic protein expression in colorectal cancer cells. (A) HCT-116 and HCT-
15 cells were cultured in serum-free medium for 12 h and then pretreated with or without roburic acid (8 mM) for 4 h, followed by stimulation with TNF (10 ng/mL) for
the indicated times. The cell lysates were used for immunoblotting analysis to measure the expression levels of the indicated proteins. Beta-tubulin was used as the
loading control. The gray densities of the bands corresponding to the indicated proteins in HCT-116 (B) and HCT-15 (C) cells were quantified using AlphaView
software. Representative images are displayed. Data are shown as means ± SEM of three independent replicates. Asterisks indicate significant differences compared
with the TNF treatment at the same time point (*P < 0.05, **P < 0.01, and ***P < 0.001).
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that roburic acid inhibits TNF-induced NF-kB signaling in
colorectal cancer cells.

Roburic Acid Inhibited TNF-Induced P65
Nuclear Translocation in Colorectal
Cancer Cells
Nuclear translocation of p65 is a pivotal event in TNF-induced
NF-kB pathway activation. We further investigated whether
roburic acid could block the TNF-stimulated p65 nuclear
translocation in HCT-116 and HCT-15 cells. As expected,
roburic acid significantly inhibited p65 nuclear translocation at
0 to 30 min in HCT-116 cells and at 30 to 60 min in HCT-15 cells
(Figure 6A). To further confirm this result, we performed
immunofluorescence staining for p65 in HCT-116 and HCT-
15 cells. As shown in Figure 6B, TNF (10 ng/mL) treatment
greatly stimulated p65 nuclear translocation in both cell lines at
30 min; however, this effect was significantly inhibited by roburic
acid (8 mM).

Roburic Acid Reduced Tumor Growth by
Blocking NF-kB Signaling in a Xenograft
Mouse Model of Colorectal Cancer
Having established the inhibitory effects of roburic acid on
human colorectal cancer cells in vitro, we next investigated
whether roburic acid could suppress cancer cell growth in vivo
using a xenograft mouse model of colorectal cancer. Initially,
HCT-116 and HCT-15 cells were injected subcutaneously into
nude mice. One week after the xenotransplantation, the tumor-
bearing mice were randomized into three groups and treated as
described in the “Materials and methods” section. We found that
roburic acid treatment effectively suppressed the growth of the
xenografted colorectal tumors, as indicated by the significantly
decreased tumor volume and weight (Figures 7A–F), and was
consistent with the results of the in vitro experiments. In
addition, treatment with roburic acid at the concentrations
tested over 18 days did not affect the body weight of mice
(Figure 7G), suggesting that roburic acid treatment had no
side effects at the tested concentrations.

To further investigate whether roburic acid suppresses tumor
growth by inhibiting the NF-kB signaling pathway in vivo, we
performed western blotting analysis and immunohistochemical
staining for the xenografted HCT-116 and HCT-15 tumor
tissues. Consistent with the molecular findings in vitro, western
blotting analysis showed that treatment with roburic acid
inhibited the phosphorylation of p65, promoted the cleavage of
Caspase3, and suppressed the protein expression of Bcl-xL,
XIAP, and Cyclin D1 in the xenografted colorectal tumor
tissues (Figure 7H). Furthermore, immunohistochemical
staining of the tumor sections indicated that roburic acid
treatment downregulated the expression of p-p65, while
increasing the level of cleaved Caspase3 (Figure 7I and
Supplementary Figure S5). These results were consistent with
those of the immunoblotting analysis. Ki-67 is a specific marker
for cell proliferation in vivo. As expected, we found that the
expression of Ki-67 was decreased in the roburic acid-treated
group compared with the control group (Figure 7I and
Frontiers in Immunology | www.frontiersin.org 11
Supplementary Figure S5). Taken together, these results
demonstrated that roburic acid can suppress tumor growth by
blocking NF-kB signaling in a xenograft mouse model of
colorectal cancer.
DISCUSSION

Cancer remains a major public health problem worldwide,
affecting millions of individuals and resulting in extensive
morbidity and mortality (31–33). Approximately 18 million
new cancer cases and 9 million cancer deaths were reported in
2018 (1). Although a substantial amount of work has been
undertaken on cancer research and development of numerous
drugs for cancer treatment, further investigation is urgently
required to identify more specific therapeutic targets as well as
drugs with reduced side effects. Currently, extracting new
antitumor compounds from traditional medicinal plants is
recognized as one of the main cancer treatment strategies (18).
However, to date, no study has elucidated whether roburic acid
isolated from oak galls exhibits antitumor activity, nor have its
interact ion target and the underlying mechanisms
been identified.

In the present study, we investigated the cytotoxicity of
roburic acid in 24 cancer cell lines comprising eight cancer
types and identified the colorectal cancer cell lines HCT-116
and HCT-15 as being the most sensitive to roburic acid
treatment, with IC50 values of 3.90 and 4.77 mM, respectively.
These cell lines were then used to further investigate the
anticancer effects of roburic acid in vitro and in vivo. Our
results demonstrated that roburic acid effectively suppressed
colorectal cancer cell proliferation by inducing G0/G1 cell cycle
arrest and downregulating the protein expression of Cyclin B1,
Cyclin D1, and Cyclin E1. In addition, roburic acid induced the
apoptosis of colorectal cancer cells by promoting the cleavage of
PARP, Caspase3, Caspase7, and Caspase9, as well as
downregulating the levels of the antiapoptotic proteins Bcl-2,
Bcl-xL, XIAP, Mcl-1, and Survivin. Importantly, roburic acid
inhibited the TNF-induced NF-kB signaling pathway and
suppressed the expression of these antiapoptotic proteins in
colorectal cancer cells. Molecular interaction studies further
demonstrated that roburic acid directly bound to TNF with
high affinity (KD = 7.066 mM) and blocked the interaction
between TNF and its receptor, TNF-R1. Consistent with the in
vitro results, roburic acid also suppressed tumor growth by
blocking NF-kB signaling in a xenograft mouse model of
colorectal cancer.

Recent studies have shown that most natural compounds with
anti-inflammatory properties exhibit excellent antitumor activity
by inhibiting NF-kB pathway activation (15, 34, 35). The NF-kB
signaling pathway is aberrantly activated in many tumor cells,
contributing to cancer cell survival, proliferation, differentiation,
apoptosis, inflammation, and cell signaling transduction (11, 36,
37). Interestingly, roburic acid was detected in the resin fraction
that is secreted when plants are attacked by insects, and it was
shown to exhibit anti-inflammatory properties (21, 23),
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B

FIGURE 6 | Roburic acid inhibits TNF-induced p65 nuclear translocation in colorectal cancer cells. (A) HCT-116 and HCT-15 cells were treated with roburic acid
and TNF as described in Figure 5, except that the TNF treatment time points were different. Nuclear and cytoplasmic fractions were isolated and subjected to
western blotting using an anti-p65 antibody. Beta-tubulin and Histone H3 were respectively used as loading control for the nuclear and cytoplasmic fractions. The
gray densities of the bands corresponding to the indicated proteins in HCT-116 and HCT-15 cells were quantified using AlphaView software. (B) p65 nuclear
translocation in HCT-116 and HCT-15 cells was determined by immunofluorescence staining. HCT-116 and HCT-15 cells were treated with TNF for 30 min. p65
was detected using the corresponding primary antibody and nuclei were stained with DAPI. The corresponding images (original magnification ×400) were merged
using ImageJ software. Representative images are displayed. Data are shown as means ± SEM of three independent replicates. Asterisks indicate significant
differences compared with the TNF treatment at the same time point (***P < 0.001).
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suggesting that it can serve as an insect repellant and might exert
protective effects on human health (38). In this study, roburic
acid exhibited marked cytotoxic effects in different types of
cancer cells (IC50 <15 mM), including colorectal, breast, central
Frontiers in Immunology | www.frontiersin.org 13
nervous system, kidney, lung, ovarian, prostate, and leukemia
cancer cells. Based on these findings, we speculated that roburic
acid likely suppresses cancer cell growth by inhibiting the
activation of the NF-kB pathway.
A B
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FIGURE 7 | Roburic acid inhibits tumor growth by blocking NF-kB signaling in a xenograft mouse model of colorectal cancer. Roburic acid treatment inhibits tumor
growth and weight of HCT-116 (A–C) and HCT-15 (D–F) human colorectal cancer xenografts in nude mice, but does not affect the body weight (G) of either group.
(H) Tumor tissues from HCT-116 and HCT-15 xenografts were used for immunoblotting analysis to assess the protein expression of p-p65, p65, cleaved Caspase3
(cl-Caspase3), Bcl-xL, XIAP, and Cyclin D1. Beta-tubulin was used as loading control. (I) Paraffin-embedded HCT-116 and HCT-15 tumor tissue sections were
immunostained with antibodies against p-p65, cl-Caspase3, and Ki-67 (original magnification ×400). Representative images are displayed. Data are shown as means
± SEM of six mice per group. *P < 0.05, **P < 0.01, and ***P < 0.001, low-dose roburic acid group vs the control group; #P < 0.05, ##P < 0.01, and ###P < 0.001,
high-dose roburic acid group vs the control group.
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It is well established that a dynamic and complex network of
interacting proteins regulates cellular behavior (13). Interactions
between TNF with TNF-R1 activate the NF-kB signaling
pathway, which plays important roles in cancer development
and progression (39). Consequently, targeting protein–protein
interactions is a promising strategy for the treatment of cancer
(40, 41). TNF is an inflammatory cytokine that initiates dynamic
intracellular signals through binding to its receptor TNF-R1 (13).
Upon TNF binding, TNF-R1 forms a trimer, which then
becomes a key regulator of inflammation-dependent NF-kB
signaling. The NF-kB inhibitor protein (IkB) is degraded soon
after phosphorylation by activated IkB kinase (IKK), and the p65
transcription factor translocates into the nucleus to activate
TNF-induced NF-kB signaling (12, 13). In this study, we
found that roburic acid treatment significantly inhibited the
TNF-induced phosphorylation of IKKa/b, IkBa, and p65,
degradation of IkBa, and nuclear translocation of p65 in
human colorectal cancer cells. Regarding the detailed
molecular mechanisms, molecular interaction studies
demonstrated that roburic acid can directly bind to TNF with
high affinity (KD = 7.066 mM), but not to its receptor, TNF-R1.
Interestingly, roburic acid also blocked the interaction between
TNF and TNF-R1, with a decrease in binding affinity (KD) from
7.33 to 211 nM, which explains why roburic acid can inhibit the
TNF-induced NF-kB signaling pathway. However, the
mechanisms underlying how roburic acid binds to TNF remain
unclear and require further investigation.

Apoptosis is the process of programmed cell death, and plays
a pivotal role in the development and progression of cancer
(16). Excessive NF-kB signaling in cancer cells can suppress
apoptosis via inducing the expression of apoptosis inhibitors such
as XIAP, Mcl-1, and Survivin (10, 12). In this study, we
demonstrated that roburic acid suppressed the TNF-induced
expression of antiapoptotic proteins, including XIAP, Mcl-1, and
Survivin. Without exogenous TNF stimulation, roburic acid
also inhibited the expression of these antiapoptotic proteins in
colorectal cancer cells. NF-kB can promote cell proliferation by
transactivating the expression of Cyclin D1 and c-Myc (10). In the
current study, we found that roburic acid could significantly
downregulate Cyclin D1 and c-Myc protein levels in colorectal
cancer cells, with or without TNF stimulation. In vitro studies have
established that roburic acid can effectively suppress human
colorectal cancer cell growth through inhibition of the NF-kB
signaling pathway; however, whether roburic acid also exhibited
antitumor activity in vivo through the same mechanism has not
been clarified. In the present study, we further demonstrated that
roburic acid can also inhibit tumor growth in vivo by blocking NF-
kB signaling in a xenograft mouse model of colorectal cancer.

Roburic acid is a natural small-molecule compound isolated
from medicinal plants, and its biological activities and
mechanism of action have not been thoroughly studied.
Additionally, roburic acid may have many limitations, such as
poor water solubility and bioavailability, and potential side
effects. Therefore, these issues need to be urgently solved
before roburic acid can be used clinically in the treatment of
patients with colorectal cancer. Notably, in addition to
Frontiers in Immunology | www.frontiersin.org 14
contributing to cancer development and progression, TNF/
TNF-R1-mediated NF-kB signaling has crucial roles in many
other autoimmune diseases such as rheumatoid arthritis and
Crohn’s disease (17, 42, 43). Based on the findings in this study,
we speculate that roburic acid could also be used in the treatment
of other TNF-related diseases. However, further investigation is
urgently needed to test this hypothesis, which is the subject of
ongoing work in our laboratory.
CONCLUSIONS

Taken together, our findings showed that roburic acid directly
binds to TNF with high affinity, thereby disrupting the
interaction between TNF and TNF-R1 and leading to
inhibition of the NF-kB signaling pathway, both in vitro and
in vivo. The results indicated that roburic acid is a novel TNF-
targeting therapeutics agent in colorectal cancer as well as other
cancer types.
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