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Abstract: This study investigated the diagnostic accuracy of using an artificial neural network
(ANN) for the prediction of metabolic syndrome (MetS) based on socioeconomic status and lifestyle
factors. The data of 27,415 subjects who went through examinations and answered questionnaires
during three stages from 2006 to 2014 at a health institute in Taiwan were collected and analyzed.
The repeated measurements over time were set as predictive factors and used to train and test an
ANN for MetS prediction. Among the subjects, 18.3%, 24.6%, and 30.1% were diagnosed with MetS
during the respective three stages. ANN analysis applied with an over-sampling technique performed
with an area under the curve (AUC) of up to 0.93 based on different models. The over-sampling
technique helped improve prediction performance in terms of sensitivity and F2 measures. The results
indicated that waist circumference, socioeconomic status (SES), and lifestyle factors can be utilized in
a non-invasive screening tool to assist health workers in making primary care decisions when MetS is
suspected. By predicting the occurrence of MetS, individuals or healthcare professionals can then
develop preventive strategies in time, thus enhancing the effectiveness of health promotion.
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1. Introduction

A number of cardiovascular risk factors (e.g., dyslipidemia, hypertension, and hyperglycemia)
characterize metabolic syndrome (MetS) and result in various health problems such as cardiovascular
diseases (CVD), type 2 diabetes, and fatty liver for the individuals affected by it, while also placing
substantial burdens on healthcare systems; thus, early intervention is needed. In the worldwide adult
population, the prevalence of MetS is estimated to be 20–25% [1]. A systematic study reported that
approximately 20% or more of the adults in countries in the Asia-Pacific region suffer from MetS,
with a secular increase in prevalence [2]. The potential factors underlying MetS are widely known
to consist of particular demographic characteristics, socioeconomic status (SES) factors, and lifestyle
behaviors. The assessment of such risk factors thus constitutes the initial step in the primary prevention
of the condition and also guides associated treatment strategies since such assessment allows the
strength of the preventive measures applied to be tailored to patient’s level of risk [3]. In the last
decade, artificial intelligence techniques have increasingly been utilized in the processing of electronic
health data, enabling such utilization to play an increasingly important role in clinical decision making.
Artificial neural network (ANN) models have already been used to predict cardiovascular admission [4],
coronary heart disease [5,6], and cardiovascular autonomic dysfunction [7]. Such models have also
been used in previous studies to predict MetS [8,9], although the models used in those studies still
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required either blood testing or blood pressure measurement to be performed. At the same time, health
promotion interventions cannot typically be applied to undiagnosed patients who ignore their own
physical health due to a lack of biochemical or biophysical examinations. As such, a non-invasive
screening tool could potentially offer considerable cost-benefit advantages in terms of large-scale
screening or individual management, especially for those who rarely receive medical check-ups.

In the modified National Cholesterol Education Program – Adult Treatment Panel III, (NCEP/ATP)
III criteria, there was a significant rise in the prevalence of MetS in Taiwan (from 14% to 26%) over
a period of 10–15 years [10]. Yang et al. conducted a longitudinal study with a Taiwanese health
screening population and suggested that the incidence of MetS was increased among women with
lower education levels as they became older, and that, relatedly, SES showed a greater influence on
women than on men [11]. As a chronic condition, MetS requires a patient afflicted with it not only to
receive medical treatment but also to engage in long-term efforts to improve or avoid risk factors in his
or her life course. A recent Taiwanese study found that there are associations between the incidence
rates of MetS and CVD and alterations to the SES and long-term lifestyle behaviors of individuals.
Relatedly, as the dynamic relationships between health-related outcomes and relevant factors are more
clearly elucidated over time, people can be better assisted in taking more effective disease prevention
measures [12]. Generally, physicians primarily rely on laboratory data to diagnose MetS. In this study,
however, we sought to develop an algorithm to help physicians or others predict the occurrence of
MetS over time given changes in SES factors or lifestyle factors.

2. Materials and Methods

2.1. Data Source

This study collected and analyzed data from the Major Health Screening Center in Taiwan.
The center is a private, membership-oriented institute comprising four clinics, located in different
parts of the country, at which the center’s roughly 0.6 million members receive periodic health
examinations. In this study, each member included took part in a check-up program in which
they were offered a discounted examination fee for returning repeatedly over multiple years to
undergo the examination. The results of these examinations were collected in a database called the
Major Longitudinal Health-check-up-based Population Database (MJLPD) that academic researchers
can access upon request. Owing to the usage of the data therein, entailing various ethical issues,
the protocol of this study was evaluated and agreed to by the Research Ethics Committee, National
Taiwan University (NTU-REC 201612ES009), and the Major Health Screening Center.

2.2. Study Sample

Longitudinal data were collected for participants aged ≥20 years who received a minimum of one
standard health screening at the Center during each of three three-year periods (specifically, 2006–2008,
2009–2011, and 2012–2014). All the potential participants who were found to have a cardiovascular
disease of any type in the first stage were excluded from the study. Ultimately, a total of 27,415 subjects
met the inclusion criteria for analysis. Some of the subjects underwent multiple screenings within one
or more of the three-year periods, and for those subjects, we used the final examination within the
given period for our analysis. As such, during the overall nine-year study period, for each participant,
three questionnaire and examination measurements were collected, with the intervals between any
two examinations ranging from one year to three years. In addition, there was a serious imbalance in
the dataset, as the developed models were tested using the original dataset, resulting in imbalanced
models. At the same time, a dataset was derived using an over-sampling technique, resulting in
balanced models.
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2.3. Response Variables

In the present study, MetS was defined in accordance with the modified ATP III criteria [13] and the
official criteria promulgated by the National Health Promotion Administration of Taiwan. A diagnosis
of MetS was made if the given participant met 3 or more of the following conditions: fasting glucose
≥100 mg/dL (5.55 mmol/L) or use of antidiabetic medication; fasting triglycerides ≥150 mg/dL; systolic
blood pressure (BP) ≥130 mmHg, diastolic BP ≥ 85 mmHg, or use of antihypertensive medication;
waist circumference (WC) ≥90 cm in men and ≥80 cm in women; high-density lipoprotein cholesterol
<40 mg/dL in men and <50 mg/dL in women.

2.4. Explanatory Variables

During screening, each of the study participants completed a self-administered questionnaire
regarding their sociodemographic characteristics and lifestyle habits. Aside from providing information
indicating a participant’s sex and age, the data provided covered four aspects of SES and nine
lifestyle habits well documented by previous studies to constitute risk factors for MetS. Due to
its being easy to measure, WC (in centimeters) was also included in the model used in this
study. Furthermore, medicinal treatments such as treatments consisting of antihyperglycemic,
antihyperlipidemic, or antihypertensive agents were used to identify those participants who had MetS.
Regarding SES, individual educational attainment, annual income, occupation, and marital status were
classified into three levels. Some lifestyle habits that can be estimated in a quantitative manner in terms
of frequency, such as smoking, drinking alcohol, sweetened beverage consumption, physical activity
(PA), and sleep time, were categorized into three to five levels. Other lifestyle habits, including betel
nut chewing, maintaining a vegetarian diet, and taking nutritional supplements, were categorized
in a dichotomous manner. The variables were associated with MetS, as was reported by a previous
study [12], and were all included in the current study.

2.5. Artificial Neural Network Models

The ANN utilized in this study consisted of a standard feedforward back-propagation ANN with
three hidden layers. The multilayer perceptron (MLP) neural network adopted in this study used
the RMSprop optimizer and the binary cross-entropy loss function. A 10-fold cross-validation test
of the classification models built with the MLP neural network was conducted in the present study.
To test the effects of the length of the predictor data on the model’s prediction performance, we built
predictive models that used data from one stage, two consecutive stages, and three consecutive stages.
In the one-stage models, we used stage 1, stage 2, and stage 3 predictor data to predict the target
variable (i.e., MetS) in stages 1, 2, and 3, respectively. In the two-stage models, we used stages 1–2 and
stages 2–3 predictors to predict MetS in stages 2 and 3, respectively. Finally, in the three-stage models,
we used stage 1–2–3 predictors to predict MetS in stage 3.

In addition, as there was a serious imbalance problem in the dataset, the developed models were
tested on the original dataset, resulting in imbalanced models, and on a dataset derived using an
over-sampling technique, resulting in balanced models. Networks handling inputs of longer stages
require larger hidden layers, with (200, 400, 400), (400, 800, 800), and (600, 1000, 1000) for one-stage,
two-stage, and three-stage predictions, respectively. Furthermore, in the two-stage and three-stage
networks, a dropout-layer and batch-normalization layer were used to enhance the generality of the
networks’ prediction capability.

In this study, the required number of hidden layer neurons was determined by trial and error,
with the number ultimately chosen based on the goal of producing a predictive network with the
most accurate estimation. In order to obtain the connection weights, the back-propagation learning
algorithm, which utilizes the generalized delta learning rule, was first used to train the network.
The training process is an iterative one in which the ANN computes outputs from the input datasets.
These outputs are then compared to the desired outputs, and adjustments are made to the connection
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weights based on the errors in the outputs. At the same time, the development of an over-fitting ANN
model was avoided through the test of a validation dataset with a split of 80/20, which is a separated
dataset from the training datasets. The training dataset was run using the binary cross-entropy loss
function, and with different settings of epochs and batch sizes. Our models were trained on a machine
with the following specifications: 1× Tesla T4 graphics processing unit (GPU), compute capability 3.
7, 2496 compute unified device architecture (CUDA), an integrated technology introduced by NVIDIA
cores, 12 GB GDDR5 Video RAM, 1× single core hyper threaded Xeon Processors @2.3 Ghz central
processing unit (CPU), ~12.6 GB available RAM, and 312 GB available disk space. The models took
about half an hour to complete the training tasks.

Furthermore, as the ratio of positive cases to negatives cases was highly imbalanced, different
weights for positive samples were used for the different network models. Specifically, 50 epochs,
a batch size of 100, and a weight ratio of 15:1 were used for the one-stage network prediction model;
1000 epochs, a batch size of 500, and a weight ratio of 10:1 were used for the two-stage network
prediction model; and 1000 epochs, a batch size of 500, and a weight ratio of 10:1 were used for
the three-stage network prediction model. The calculation of a probability value of was performed
for each participant based on the derived ANN models, and the validation set was used to assess
the performance in each of the developed prediction models. In the end, 10 iterations of a receiver
operating characteristic curve analysis were run on the randomized test datasets in order to obtain the
average AUC of receiver operating characteristic (ROC).

2.6. Model Evaluation

Both the calibration and discrimination of the models were measured. In this study, discrimination
referred to how effectively a model could distinguish between the participants with and without MetS.
For each model, the discriminatory power was analyzed according to a ROC curve and AUC, with the
ROC curves used in this study being determined by plotting the false positive fraction against the
true positives. For each cutoff score, the specificity (that is, the odds of a negative result given that
the individual does not have MetS) and sensitivity (that is, the odds of a positive result given that the
individual does have MetS) were calculated, with the cutoff score yielding the greatest sum of the
sensitivity and specificity values being considered optimal.

Due to the nature of the problem, we were more interested in the models’ ability to detect the
positive cases (i.e., MetS). To this end, we used F2 measurements, which assign a heavier weight to
recall relative to precision and consist of sums calculated by assigning a weight to sensitivity that is
two times heavier relative to specificity, to estimate the accuracy of the prediction model. Meanwhile,
calibration referred, in this study, to the ability of a model to make accurate predictions over the entire
range. For each prediction model, the overall accuracy (which consisted of the ratio of the sum of
the number of true negative and true positive results to the overall sample size) also was calculated
and compared. The Hosmer–Lemeshow (HL) test was used to compute the calibration of the models,
with the HL statistic providing a single summary measure of calibration resulting from a comparison of
the observed and estimated prevalence rates of MetS, grouped according to the estimated prevalence.
The HL statistic has a χ2 distribution, with the degrees of freedom being less than the number of
groups by two.

3. Results

Tables 1 and 2 present the data for the lifestyle habits, sociodemographic factors, and biochemical
and physical examination items over the three study stages. MetS prevalence rates in men and women
during the first stage were 26.9% and 9.7%, respectively. There was an increase in the overall MetS
prevalence observed during the subsequent stages. The MetS prevalence rate for those with waist
obesity increased from 67.0% at the first measurement to 80.6% at the last measurement. On the other
hand, the rates of MetS prevalence differed less among those with normal and abnormal high-density
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lipoprotein levels, although the prevalence did increase among those with abnormal levels over the
three stages.

Table 1. Metabolic syndrome (MetS)-related explanatory variables across the three study stages.

Characteristics
MetS in 2006–2008 MetS in 2009–2011 MetS in 2012–2014

n (%) n (%) n (%)

Sex
Male 3699 (26.9) 4822 (35.1) 5689 (41.4)

Female 1323 (9.7) 1924 (14.1) 2553 (18.7)
Age (yrs)

30–39 1672 (12.2) 1675 (15.9) 1454 (18.7)
40–64 3004 (23.3) 4444 (28.4) 5825 (32.6)
≥65 346 (41.7) 627 (50.9) 963 (54.4)

Marital status
Unmarried 797 (13.2) 900 (18.2) 1006 (23.8)

Married 3779 (19.9) 5197 (26.1) 6387 (31.4)
Divorced 135 (17.8) 178 (20.8) 245 (27.1)

Education (yrs)
<12 854 (32.3) 1083 (41.8) 1252 (48.9)

12–15 2106 (17.6) 2820 (24.3) 3371 (30.0)
≥16 1941 (15.8) 2670 (21.1) 3290 (26.1)

Income (NTD/yr)
<400,000 660 (19.8) 825 (27.0) 1045 (35.1)

400,000–799,999 1138 (16.5) 1397 (22.3) 1575 (27.5)
800,000–1,200,000 1333 (17.8) 1774 (23.4) 2054 (28.3)

>1,200,000 1466 (19.6) 2123 (25.6) 2731 (30.3)
Occupation

Unemployed 827 (18.4) 1200 (26.4) 1573 (33.6)
Managed 645 (22.8) 859 (28.3) 1111 (35.1)

Non-managed 3115 (17.2) 4545 (22.9) 4734 (27.6)
Smoke (pack/day)

None 3447 (17.8) 4755 (24.0) 6026 (29.6)
Ever 295 (19.6) 465 (25.4) 674 (31.1)

Exposed to passive smoke 172 (17.1) 201 (26.7) 239 (30.3)
≤1 698 (19.9) 781 (25.8) 911 (32.0)
>1 171 (20.5) 180 (26.2) 195 (29.2)

Alcohol (cup/day)
None 3508 (16.2) 4707 (22.1) 6256 (27.7)
Ever 106 (25.2) 148 (39.4) 194 (42.0)

1 452 (24.6) 611 (33.1) 722 (37.1)
2 395 (31.3) 482 (38.2) 554 (44.4)
≥3 202 (34.8) 210 (38.4) 297 (49.9)

Sweetened beverage (cup/wk)
None 1521 (18.6) 2967 (26.3) 4071 (31.2)
1–3 1552 (18.6) 1929 (23.9) 2161 (28.5)
4–6 809 (17.9) 757 (23.1) 779 (29.0)
≥7 1047 (17.6) 936 (22.1) 996 (28.6)

Chewing of betel nuts
No 4387 (17.3) 5824 (23.4) 7490 (29.0)
Yes 483 (35.5) 509 (45.2) 583 (49.9)

Physical activity (h/wk)
<1 1755 (16.0) 2483 (22.2) 2811 (28.2)
1–6 2771 (19.0) 2647 (24.7) 3525 (29.8)
≥7 290 (27.4) 573 (29.6) 743 (36.2)
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Table 1. Cont.

Characteristics
MetS in 2006–2008 MetS in 2009–2011 MetS in 2012–2014

n (%) n (%) n (%)

Sleep (h/day)
<6 1054 (19.7) 1650 (26.3) 2447 (32.0)
6 3363 (17.6) 3299 (24.8) 3984 (29.7)
≥7 329 (19.0) 1586 (22.4) 1852 (28.2)

Vegetarian diet
Yes 114 (15.1) 159 (18.6) 218 (22.7)
No 4868 (18.4) 6534 (24.8) 7928 (30.0)

Vitamin C and E intake
Yes 763 (15.8) 888 (21.1) 1065 (27.0)
No 4259 (18.9) 5858 (25.3) 7177 (30.6)

Fish oil intake
Yes 379 (23.0) 574 (30.4) 877 (34.7)
No 4643 (18.0) 6172 (24.2) 7365 (29.6)

Related medication intake
Yes 369 (100.0) 1205 (100.0) 1977 (100.0)
No 4653 (17.3) 5554 (21.2) 6265 (24.6)

Waist circumference in cm (sd) 86.00 (8.97) 85.59 (8.76) 85.80 (9.15)

Table 2. Components of metabolic syndrome (MetS) over the three study stages.

Components MetS in 2006–2008 MetS in 2009–2011 MetS in 2012–2014
n (%) n (%) n (%)

Waist (cm)
<80 (F); 90 (M) 2585 (10.9) 3580 (15.3) 4243 (18.9)
Otherwise 2437 (67.0) 3166 (77.5) 3999 (80.6)

Fasting glucose (mg/dL)
<100 979 (5.3) 1157 (7.0) 1369 (9.3)
≥100 4043 (46.0) 5589 (51.4) 6873 (54.5)

Triglyceride (mg/dL)
<150 2335 (10.3) 3259 (14.7) 4231 (19.4)
≥150 2687 (57.6) 3487 (67.4) 4011 (72.0)

High-density lipoprotein (mg/dL)
≥40 (M); ≥50 (F) 722 (15.0) 658 (23.8) 791 (28.3)
Otherwise 4300 (19.0) 6088 (24.7) 7451 (30.3)

Hypertension
Normal 2092 (9.2) 3041 (13.6) 3707 (17.3)
Abnormal * 2930 (63.9) 3705 (74.1) 4535 (76.4)

* Abnormal refers to having a systolic blood pressure (BP) ≥ 130 mmHg or a diastolic BP ≥ 85 mmHg.

Exploratory and validation sets were applied to the ANN, and three ANN models were developed
to provide predictions based on one-stage, two-stage, and three-stage information. Three validation
sets were randomly chosen from the data source, with 20% of the overall dataset chosen for each of these
test sets. The AUC values were 0.892, 0.916, and 0.930 for the one-stage, two-stage, and the three-stage
balanced ANN models, respectively, while the AUCs were 0.880, 0.885, and 0.888 for the one-stage,
two-stage, and the three-stage imbalanced ANN models, respectively (Table 3). When the respective
optimal cutoff points (0.4) were applied to the validation sets, the specificity and sensitivity were 82.3%
and 80.7%, respectively, for the one-stage balanced ANN model; 86.7% and 80.4%, respectively, for the
two-stage balanced ANN model; and 85.8% and 84.0%, respectively, for the three-stage balanced ANN
model. When comparing between models, the oversampling technique helped to improve prediction
performance by about 20% in terms of sensitivity with respect to the prediction performance of the
critical class. The F2 value of the three-stage balanced ANN model was about 0.85. Meanwhile, the HL
statistic values for all of the prediction models using ANN analysis were <15.0, results which indicated
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that the prediction models all showed good fit. Finally, the AUC/ROC curves of the balanced models
are presented in Figure 1a–c.

Table 3. Model predictions using an artificial neural network.

Stage Length Model Sensitivity Specificity F2 OA AUC

One Imbalanced 58.8% 95.7% 63.7% 88.5% 0.880
Two Imbalanced 63.3% 96.7% 68.0% 89.3% 0.885

Three Imbalanced 64.9% 95.5% 69.3% 88.1% 0.888
One Balanced 80.7% 82.3% 81.0% 81.9% 0.892
Two Balanced 80.4% 86.7% 81.5% 85.1% 0.916

Three Balanced 84.0% 85.8% 84.3% 84.3% 0.930

OA: overall accuracy; AUC: area under the curve.

Figure 1. (a) AUC/receiver operating characteristic (ROC) curve of the balanced one-stage model;
(b) AUC/ROC curve of the balanced two-stage model; (c) AUC/ROC curve of the balanced
three-stage model.

4. Discussion

This study was conducted to apply ANN analyses to a dataset obtained from a large-scale
longitudinal study in order to develop prediction models for MetS. The study’s key finding was that
the developed prediction models are of high value in terms of their capacity to predict MetS in the
clinical population. In our study, the mean AUC was 0.892 for the developed ANN models in the first
stage (baseline), and the mean AUCs were 0.916 and 0.930 for two-stage and three-stage ANN models,
respectively. Additionally, the sensitivity and specificity rates of the balanced models were >80%.
This indicates that more than 80% of the MetS cases and non-MetS cases were successfully predicted
by the balanced ANN models. These models, based on the large-scale dataset, were, thus, good-fit
models (HL statistics <15.0). The average accuracy of the optimal predictive models could be up to
0.85. In comparing among the models, the over-sampling technique helped improve the prediction
performance in terms of sensitivity and F2 measures. This is consistent with the results of Zhou and
Liu, who found that over-sampling was helpful for improved prediction of the critical classes [14].

WC is a component of MetS and can be measured easily without any anthropometric device.
According to the HANDLS study, for the prediction of MetS among adults, WC is the most powerful
tool. Nonetheless, the appropriate index for predicting MetS and its accuracy may depend, to some
degree, on gender, age, and ethnicity [15]. Yu et al. considered WC to be superior to weight-to-height
ratio (WHR) and body mass index (BMI) in predicting MetS in men, while considering WHR to be
superior to WC and BMI for the prediction of MetS in women [16]. A Chinese prospective cohort study
reported that WC had a large AUC for the prediction of adult MetS after making adjustments for age,
drinking, smoking, physical activity, and education level [17]. Using WC as one of the input variables,
our study suggests that ANN tools developed with a time sequence design can provide good capacity
for the prediction of MetS, irrespective of gender.

Traditionally, linear combinations of variables are used in the LR model, such that the model is not
effective at modeling grossly nonlinear complex interactions [18]. ANNs, meanwhile, constitute flexible
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nonlinear systems, and as such, they may be more suitable than LR-based models for the prediction of
outcomes when the associations between the variables are nonlinear, complex, and multidimensional,
as is the case for the relationships among variables in complex biological systems [19]. ANNs can be
applied to the modeling of complex or unclear relationships, though it should also be recognized that
good performance may be caused by an over-fitting model [20]. Prior knowledge of the underlying data
is still required, and the current study used features that have been explored in previous research [12],
which may make the results more reliable.

In a past study, Hirose et al. predicted the 6-year incidence rate of MetS by using a multiple logistic
regression (MLR) analysis based on clinical factors in combination with an ANN system [9]. Applying a
fuzzy neural network with a bioinformatics approach in subsequent study, Ushida et al. collected a
sample of health examination data and searched for complex risk characteristics that are associated
with MetS [21]. Nonetheless, these previous approaches both required the use of an invasive process
to collect specimens (e.g., blood specimens) to determine biochemical or biophysical parameters.
Instead of taking such inconvenient biochemical measurements, Lin et al. collected psychiatric patients’
demographic and anthropometric (i.e., BMI, blood pressure, and WC) data to predict the probability of
MetS for patients treated with antipsychotics by means of an ANN and MLR. They found that both the
ANN and MLR had high accuracy (88.3% vs. 83.6%, respectively) [8]. In addition to applying neural
networks, two recent studies explored if applying the MetS standard definition to specific population
groups by using decision tree tools is appropriate [22,23]. However, most of the aforementioned studies
used a cross-sectional design, meaning that the cause–effect association needs to be further investigated.

In recent years, various web-based healthy lifestyle programs have been developed and contributed
to the reduction in MetS components [24,25]. A capable MetS prediction tool which does not require
blood drawing or anthropometric measurements could potentially provide convenient and timely
individual performance measurements for people with or without MetS taking part in such web-based
health programs. Questionnaires regarding SES factors and lifestyle behaviors can be utilized as
non-invasive screening tools that can assist health workers in making primary care decisions when
MetS is suspected. By avoiding the need for data from clinical laboratory examinations, our models can
provide inexpensive, non-invasive, and easy methods for identifying MetS that are not only feasible
for use in assisting physicians with evaluating the health status of patients without blood draws but
also for self-monitoring one’s own MetS condition when not making clinical visits.

Here are the strengths of the present study. First, it was possible, due to the use of a large sample,
to explore a greater number of potential factors in the analysis while also ensuring that the amount of
variance was limited, particularly with regard to the stratified sample data. Second, the time sequence
design of the study made it possible to observe the changes in the outcomes and relevant factors over
time in a simultaneous manner, which, in turn, allowed them to be analyzed for temporal associations
between the various risk factors and outcomes that had not been as fully investigated in previous
studies. Since the data sample size is quite large and a longitudinal method that we designed was
used, we believe that the data can represent the real population and reduce the potential target leakage
effect. Third, with respect to the artificial neural network, the over-fitting problem was addressed
using validated training and by evaluating the models using test data. The potential problems posed
by outliers can be treated as noise which can be tolerated by the computation models of the neural
networks. The increasing prediction performance of the neural models over the sequential data
demonstrates the potential of using non-invasive lifestyle factors in predicting MetS conditions.

Nonetheless, the approach of the current study had a major limitation. As members of the
membership-oriented medical facility that collected the study data used, the participants could have
been more health conscious or received better medical services over time than the general population.
Relatedly, the participants may have had more opportunities than members of the general population
to alter their adverse lifestyle habits, such as by quitting smoking, lowering their sweet beverage intake,
or exercising more. They may also have been treated with or prescribed various medicines as disease
interventions during their several clinic visits. In short, the effects of using the selected institution
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could limit the generalizability of our model to different populations. Further analyses with data from
other sources are needed to ensure better generalizability.

5. Conclusions

In the present study, ANN models for the prediction of MetS in a clinical population were
developed by using a longitudinal dataset. The developed models effectively utilized WC, SES,
and lifestyle behavior data in order to serve as non-invasive screening tools to guide health workers
or individuals in health decision making once MetS is suspected. By predicting the occurrence
of MetS, individuals or healthcare professionals can then develop preventive strategies in time,
thus enhancing the effectiveness of health promotion. However, the models’ predictive performance
among different populations still needs to be investigated, such that further clarification of the external
validity of the ANN models can be provided. Going forward, variable importance analysis could be
conducted to identify the most prominent and influential variables and their potential theoretical and
practical implications.
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