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Abstract

To what extent do domain-general and domain-specific neural network

engagement generalize across interactions with human and artificial agents?

In this exploratory study, we analysed a publicly available functional MRI

(fMRI) data set (n = 22) to probe the similarities and dissimilarities in neural

architecture while participants conversed with another person or a robot.

Incorporating trial-by-trial dynamics of the interactions, listening and speak-

ing, we used whole-brain, region-of-interest and functional connectivity ana-

lyses to test response profiles within and across social or non-social, domain-

specific and domain-general networks, that is, the person perception, theory-

of-mind, object-specific, language and multiple-demand networks. Listening to

a robot compared to a human resulted in higher activation in the language

network, especially in areas associated with listening comprehension, and in

the person perception network. No differences in activity of the theory-of-mind

network were found. Results from the functional connectivity analysis showed

no difference between interactions with a human or robot in within- and

between-network connectivity. Together, these results suggest that although

largely similar regions are activated when speaking to a human and to a robot,

activity profiles during listening point to a dissociation at a lower level or per-

ceptual level, but not higher order cognitive level.
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1 | INTRODUCTION

An intricate collection of brain networks supports inter-
actions between people. Although some of these net-
works show distinct response profiles dedicated to
specific tasks, for example, understanding hidden mental
states, other networks are domain-general and are active
during a wide variety of tasks. Together activity in these

networks influences the quality and outcome of an inter-
action (Feng et al., 2021; Redcay & Schilbach, 2019), for
example, the level of affiliation and degree of trust. In
recent years, studies have begun to ask if these networks
extent to other social agents and support engagements
with robots (Hortensius & Cross, 2018; Wykowska, 2021).
Although most studies have been focussing on activity
during the perception of robots in a small number of
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regions, mostly within the social domain, a careful assess-
ment of the functional architecture during interactions
with robots is warranted.

Moving away from passive perception of individuals
presented on a screen, recent studies mapped the func-
tional neural architecture during interactions between
individuals (Hari et al., 2015; Schilbach et al., 2013).
These studies show subtle difference in neural activation
between screen-based and embodied interactions, sug-
gesting that screen-based interactions only capture some
aspects of human social behaviour. In parallel, a shift
from the sole focus on domain-specific neurocognitive
processes supporting social interactions to a focus that
includes domain-general neurocognitive processes has
been taking place (Barrett & Satpute, 2013; Lockwood
et al., 2020; Ramsey & Ward, 2020; Spunt &
Adolphs, 2017). According to these perspectives, social
interaction can be viewed as being built on specialized,
for example, theory of mind, and general neurocognitive
processes, for example, control mechanisms. This notion
has entered the field of interactions with artificial agents
(Cross & Ramsey, 2021), probing the question if and how
interactions with artificial agents that can or cannot be
seen as social, such as robots, are supported by social and
non-social, domain-specific and domain-general
networks.

Studies on the perception and interaction with artifi-
cial agents, such as social robots, suggest that activity
profiles across brain regions can be divided across two
levels of neurocognitive processes (Agnieszka et al., 2016;
Hortensius et al., 2018; Hortensius & Cross, 2018). Most
of these regions that show a similar response profile dur-
ing human–robot interaction (HRI) as during interac-
tions with other people map onto networks that are
related to our perception of other agents, such as the per-
son perception network (Hortensius et al., 2018). Regions
that show attenuated activity are associated with higher
order neurocognitive processes, mainly theory of mind
(Hortensius & Cross, 2018). For example, Chaminade
et al. (2010) showed increased activity in the fusiform
face area (FFA) and decreased activity in the temporopar-
ietal junction (TPJ) during the perception of emotions
displayed by a robot compared to emotions expressed by
a human. Similarly, Rauchbauer et al. (2019) showed that
during interactions with an embodied social robot, activ-
ity in the TPJ decreased compared to interactions with
another person.

These past studies focussed on only a few brain
regions and networks mostly associated with social pro-
cesses, thereby only providing a glimpse into the neuro-
cognition of HRIs. This focus on the person perception
and theory-of-mind networks potentially biases the
assessment of the similarities and differences in

neurocognitive processes between interactions with
human and artificial agents (Cross & Ramsey, 2021;
Henschel et al., 2020). Indeed, engagement with robots,
from passive observations of emotions and actions to
ongoing interactions, consistently activates object-specific
regions in the brain (Henschel et al., 2020), thereby sug-
gesting that a wider net needs to be cast in order to
understand the underlying mechanism of these new
forms of communication. Similar to the potential overlap
between robots and humans in terms of neurocognitive
profile, the potential overlap between robots and objects
should be considered (Cross & Ramsey, 2021; Henschel
et al., 2020). Recently, Cross and Ramsey (2021) called
for the inclusion of domain-general cognition, beyond
human-based and self-oriented social cognition. In this
perspective, a combination of domain-specific and
domain-general cognition, including their associated
neural networks, should be investigated to probe the neu-
rocognition of HRI. HRI could rely on domain-general
cognition such as memory and semantics, beyond or
instead of specialized social cognitive processes, such as
theory of mind. Indeed, the behavioural and neural
mechanisms supporting understanding the mind of a
robot do not completely overlap with those supporting
the understanding of human minds (Hortensius
et al., 2021).

Here, we close this gap and systematically test social
and non-social, domain-specific and domain-general neu-
ral network engagement during HRIs using whole-brain,
region-of-interest (ROI) and functional connectivity ana-
lyses. Moving beyond passive observation, we consider
the ongoing and natural dynamics during social interac-
tions with an embodied robot (Henschel et al., 2020) and
particularly focus on networks related to both perception,
for example, person and object perception networks, and
cognition, for example, the theory-of-mind and multiple-
demand networks. This exploratory network approach
allows for a more data-driven and complete assessment
potentially uncovering hidden patterns, by considering
networks that are related to social and non-social pro-
cesses, as well as domain-specific and domain-general
processes, which might play a role during social interac-
tion with robots (Cross & Ramsey, 2021; Henschel
et al., 2020).

2 | MATERIALS AND METHODS

2.1 | Data statement

The publicly available data set from Rauchbauer et al.
(2019) was used for analyses and extracted from Open-
Neuro (Poldrack & Gorgolewski, 2017; ds001740, https://
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openneuro.org/datasets/ds001740/versions/2.2.0). This
data set is part of a multimodal corpus collected during
the conversation with a human and robotic agent, con-
sisting of behavioural, physiological and functional MRI
(fMRI) data. As the authors report the details of this cor-
pus elsewhere (Rauchbauer et al., 2019, 2020), we
describe the relevant details related to the acquisition of
fMRI data and the processing of the conversational data
(https://hdl.handle.net/11403/convers/v2), and the data
processing and analyses performed in the current study.

2.2 | Participants

Twenty-five participants completed the experiment. All
had normal or corrected-to-normal vision and no history
of psychiatric or neurological disorders. Participants
received information prior to the study but remained
naïve to the goal of the study, provided written informed
consent and were reimbursed upon completion of the
study. Following Rauchbauer et al. (2019), three partici-
pants were excluded from the final analysis. One partici-
pant was excluded for not following the task instructions
correctly, whereas two other participants were excluded

due to technical issues during data acquisition. The final
sample comprised 15 females and 7 males, between
18 and 49 years old.

2.3 | Experimental paradigm

As part of a cover story, participants were invited to dis-
cuss a marketing campaign on fruit and vegetables. The
task involved a real-life bidirectional conversation with a
person or a conversational robot on images of the mar-
keting campaign via a live video feed (Figure 1). Besides
gender-matched confederates, participants conversed
with a social robot called Furhat (Furhat Robotics, Al
Moubayed et al., 2012). Participants were told that as an
autonomous conversational agent, this robot had infor-
mation on the marketing campaign. The Furhat robot is
an embodied agent with a human form and contains a
semi-transparent mask on which a human face is back
projected. To increase the comparability between the two
conversational agents, the authors added a wig, glasses
and clothes that resembled the gender-matched human
confederate. The robot was controlled through a Wizard
of Oz set-up by the same confederate as in the human–

F I GURE 1 Task and procedure. (a) Participants had a real-life bidirectional conversation with a human and Furhat robot and

(b) discussed a marketing campaign on fruit and vegetables. We used the transcripts from each 60 s conversation to recode audible speech

segments into speaking (when the participants spoke) and listening events (when the agent spoke and the participant listened).

(c) Translated example conversations are taken from Rauchbauer et al. (2019).
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human conversations. The confederate used a web inter-
face to select the appropriate pre-recorded vocal response.
These conversational responses were partly based on pre-
vious acquired data on human–human interactions
(HHIs) (Chaminade, 2017). About 30 conversational
responses were scripted for each image. The order of the
conversational agents was not randomized but alternated
through each run. Each participant engaged in 12 conser-
vations of 60 s with each conversational agent, resulting
in 24 min of recorded conversations in total. As reported
in Rauchbauer et al. (2019), all participants were
unaware of the Wizard of Oz set-up and believed the
cover story.

2.4 | fMRI data acquisition

Functional and structural MRI data were extracted from
the data set. Whole-brain MRI data were acquired with a
3 T Siemens Prisma MRI scanner using a 20-channel coil
(Siemens Medical, Erlangen, Germany) at the Centre
IRM-INT in Marseille, France. Functional images were
acquired using an echo-planar imaging sequence (repeti-
tion time: 1205 ms; echo time: 30 ms; number of slices
[axial, co-planar to anterior/posterior commissure plan]
per volume: 54; 2.5 mm isotropic resolution; flip angle:
65�; field of view: 210 � 210 mm2; matrix size:
84 � 84 mm2; multiband acquisition factor: 3; and num-
ber of volumes per run: 385). A high-resolution structural
image was collected for each participant using a GR_IR
sequence (repetition time: 2.4 ms; echo time: .00228 ms;
.8 mm isotropic resolution; 320 sagittal slices; and field of
view: 204.8 � 256 � 256 mm). A field map was collected
in the same session (repetition time: 7060 ms; echo time:
59 ms; 2.5 mm isotropic resolution; flip angle: 90�; and
field of view: 210 � 210 mm2).

2.5 | fMRI preprocessing

Data quality was assessed before further preprocessing
using imaging quality metrics calculated using MRIQC

(Version 0.15.2; Esteban et al., 2017). Signal-to-noise ratio
ranged from 1.89 to 2.64 across the data set, whereas
mean � standard deviation (SD) framewise displacement
(Power et al., 2014) was .23 � .11. After this initial quality
check, further steps were taken in form of preprocessing
the raw images. The results included in this manuscript
come from preprocessing performed using FMRIPREP 20.2.1
(Esteban et al., 2019; Esteban, Markiewicz, Goncalves,
et al., 2020; RRID:SCR_016216), which is based on nipype

1.5.1 (Esteban, Markiewicz, Burns, et al., 2020; RRID:
SCR_002502; Gorgolewski et al., 2011).

2.6 | Anatomical data preprocessing

A total of 2 T1-weighted (T1w) images were found within
the input BIDS data set. All of them were corrected for
intensity non-uniformity with N4BiasFieldCorrection
(Tustison et al., 2010), distributed with ANTS 2.3.3 (Avants
et al., 2008; RRID:SCR_004757). The T1w reference was
then skull stripped with a NIPYPE implementation of the
antsBrainExtraction.sh workflow (from ANTS), using
OASIS30ANTs as target template. Brain tissue segmenta-
tion of cerebrospinal fluid, white matter and grey matter
was performed on the brain-extracted T1w using fast (FSL
5.0.9, RRID:SCR_002823; Zhang et al., 2001). A T1w-
reference map was computed after registration of 2 T1w
images (after intensity non-uniformity correction) using
mri_robust_template (FREESURFER 6.0.1; Reuter
et al., 2010). Volume-based spatial normalization to two
standard spaces (MNI152NLin2009cAsym and MNI152N-
Lin6Asym) was performed through non-linear registra-
tion with antsRegistration (ANTS 2.3.3), using brain-
extracted versions of both T1w reference and the T1w
template. The following templates were selected for spa-
tial normalization: ICBM 152 Nonlinear Asymmetrical
template Version 2009c ([Fonov et al., 2009], RRID:SCR_
008796; TemplateFlow ID: MNI152NLin2009cAsym) and
FSL’s MNI ICBM 152 non-linear 6th Generation Asym-
metric Average Brain Stereotaxic Registration Model
([Evans et al., 2012], RRID:SCR_002823; TemplateFlow
ID: MNI152NLin6Asym).

2.7 | Functional data preprocessing

For each of the four BOLD runs found per subject (across
all tasks and sessions), the following preprocessing steps
were performed. First, a reference volume and its skull-
stripped version were generated using a custom method-
ology of FMRIPREP. A B0-non-uniformity map (or field
map) was directly measured with an MRI scheme
designed with that purpose (typically, a spiral pulse
sequence). The field map was then co-registered to the
target echo-planar imaging reference run and converted
to a displacements field map (amenable to registration
tools such as ANTS) with FSL’s fugue and other SDCflows
tools. Based on the estimated susceptibility distortion, a
corrected echo-planar imaging reference was calculated
for a more accurate co-registration with the anatomical
reference. The BOLD reference was then co-registered to
the T1w reference using flirt (FSL 5.0.9, Jenkinson &
Smith, 2001) with the boundary-based registration
(Greve & Fischl, 2009) cost function. Co-registration was
configured with nine degrees of freedom to account
for distortions remaining in the BOLD reference.
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Head-motion parameters with respect to the BOLD refer-
ence (transformation matrices and six corresponding
rotation and translation parameters) are estimated before
any spatiotemporal filtering using mcflirt (FSL 5.0.9;
Jenkinson et al., 2002). BOLD runs were slice-time cor-
rected using 3dTshift from AFNI 20160207 (Cox &
Hyde, 1997; RRID:SCR_005927). The BOLD time series
(including slice-timing correction when applied) were
resampled onto their original, native space by applying a
single, composite transform to correct for head-motion
and susceptibility distortions. These resampled BOLD
time series will be referred to as preprocessed BOLD in
original space, or just preprocessed BOLD. The BOLD
time series were resampled into standard space, generat-
ing a preprocessed BOLD run in MNI152NLin2009cAsym
space. First, a reference volume and its skull-stripped ver-
sion were generated using a custom methodology of FMRI-

PREP. Automatic removal of motion artefacts using
independent component analysis (ICA-AROMA; Pruim
et al., 2015) was performed on the preprocessed BOLD on
MNI space time series after removal of non-steady state
volumes and spatial smoothing with an isotropic, Gauss-
ian kernel of 6 mm full width at half maximum. Corre-
sponding ‘non-aggressively’ denoised runs were
produced after such smoothing. Additionally, the ‘aggres-
sive’ noise-regressors were collected and placed in the
corresponding confounds file. Several confounding time
series were calculated based on the preprocessed BOLD:
framewise displacement, DVARS and three region-wise
global signals. Framewise displacement was computed
using two formulations following Power (absolute sum of
relative motions; Power et al., 2014) and Jenkinson (rela-
tive root-mean-square displacement between affines;
Jenkinson et al., 2002). Framewise displacement and
DVARS were calculated for each functional run, both
using their implementations in NIPYPE (following the defi-
nitions by Power et al., 2014). The three global signals are
extracted within the cerebrospinal fluid, white-matter
and whole-brain masks. Additionally, a set of physiologi-
cal regressors were extracted to allow for component-
based noise correction (CompCor; Behzadi et al., 2007).
Principal components were estimated after high-pass fil-
tering the preprocessed BOLD time series (using a dis-
crete cosine filter with 128 s cut-off) for the two
CompCor variants: temporal (tCompCor) and anatomical
(aCompCor). tCompCor components were then calcu-
lated from the top 2% variable voxels within the brain
mask. For aCompCor, three probabilistic masks (cerebro-
spinal fluid, white matter and combined cerebrospinal
fluid + white matter) are generated in anatomical space.
The implementation differed from that of Behzadi et al.,
in that instead of eroding the masks by two pixels on

BOLD space, the aCompCor masks have subtracted a
mask of pixels that likely contain a volume fraction of
grey matter. This mask was obtained by thresholding the
corresponding partial volume map at .05, and it ensures
that components are not extracted from voxels containing
a minimal fraction of grey matter. Finally, these masks
were resampled into BOLD space and binarized
by thresholding it at .99 (as in the original
implementation). Components were calculated separately
within the white-matter and cerebrospinal fluid masks.
For each CompCor decomposition, the ‘k’ components
with the largest singular values were retained, such that
the retained components’ time series are sufficient to
explain 50% of variance across the nuisance mask
(cerebrospinal fluid, white matter, combined or tempo-
ral). The remaining components were dropped from con-
sideration. The head-motion estimates calculated in the
correction step were placed within the corresponding
confounds file. The confound time series derived from
head-motion estimates and global signals were expanded
with the inclusion of temporal derivatives and quadratic
terms for each (Satterthwaite et al., 2013). Frames that
exceeded a threshold of .5 mm framewise displacement
or 1.5 standardized DVARS were annotated as motion
outliers. All resamplings can be performed with a single
interpolation step by composing all the pertinent trans-
formations (i.e., head-motion transform matrices,
susceptibility distortion correction when available and
co-registrations to anatomical and output spaces).
Gridded (volumetric) resamplings were performed
using antsApplyTransforms (ANTS), configured with Lanc-
zos interpolation to minimize the smoothing effects of
other kernels (Lanczos, 1964). Non-gridded (surface)
resamplings were performed using mri_vol2surf
(FREESURFER).

Many internal operations of FMRIPREP use NILEARN

(Abraham et al., 2014, RRID:SCR_001362), principally
within the BOLD-processing workflow. For more details
of the pipeline, see the section corresponding to work-
flows in FMRIPREP’s documentation.

The preprocessed BOLD images were used for the
first-level and second-level analyses, whereas functional
correlation analysis was performed on the ICA-AROMA
non-aggressively denoised images. Final nuisance regres-
sion was conducted on the ICA-AROMA non-
aggressively denoised images using the DENOISER toolbox
(Tambini & Gorgolewski, 2020). Besides nuisance signal
removal from white-matter, cerebrospinal fluid and
global signal sources, the data were high-pass filtered
(.01). To validate the functional correlation analysis, final
nuisance regression was performed with and without
global signal regression (Liu et al., 2017).
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2.8 | fMRI data analysis

First-level and second-level analyses were carried out
using SPM12 (Wellcome Trust Centre for Neuroimaging,
London) in MATLAB 2018a and 2021a (MathWorks, Natick,
MA, USA). Besides the original events from Rauchbauer
et al. (2019), events for HHI and HRI and the presenta-
tion of the images (baseline), we created new events
based on the transcriptions of the conversations (https://
hdl.handle.net/11403/convers/v2). These events corre-
spond to when the participant spoke and when they lis-
tened to the agent (human or robot). One transcript was
missing for one run for a participant. Only audible speech
segments were used, laughter, inaudible speech segments
or scanner noise were not coded in this analysis. More lis-
tening events were coded during the HHI, mean � SD
number of events: 164.23 � 20.01, compared to HRI,
104.96 � 22.22, whereas a comparable number of speak-
ing events were coded for the HHI, 147.45 � 32.71, and
HRI, 155.77 � 50.56. The duration of each listening and
speaking event was shorter for HRI, 1.22 s � 1.04 and
1.37 � 1.09, respectively, compared to the HHI,
1.66 s � 1.52 and 1.54 s � 1.29. Besides these events, pre-
dictors of no interest were included (framewise displace-
ment and six head-motion parameters) and a subset of
the anatomical CompCor confounds (i.e., white-matter
and cerebrospinal fluid decompositions). Images were
masked with a grey-matter mask (threshold: .8). To cap-
ture the neural dynamics of interactions with a robot at a
trial-by-trial and network level, we ran (1) whole-brain
analysis, (2) ROI and (3) functional connectivity analyses.

Besides an initial analysis that successfully replicated
the whole-brain analysis of Rauchbauer et al. (2019)
using the following simple contrasts, interaction versus
baseline and HHI versus HRI (as well as the reversed
contrast; Figure S1), we focussed on the dynamics of the
conversation in the main whole-brain analysis. We calcu-
lated the following contrasts using the new coded events,
listening versus speaking for the interactions combined
as well as for the HHI and HRI separately, and HHI ver-
sus HRI for speaking and listening events separately. All
contrast images were smoothed using a 5 mm smoothing
kernel. For the second-level analyses, one-sample t tests
were used for each data set (initial single voxel threshold:
puncorrected < .001, k = 10, with an average grey-matter
mask applied, cluster-level threshold: pFWE-corrected ≤ .05).
Labelling of regions was based on the Anatomy Toolbox
in SPM (Eickhoff et al., 2005).

Closer inspection of the recording of the interaction
led us to believe that the ease of understanding the other
agent could potentially influence the results. For exam-
ple, if the robot is easier to understand, increased activity
in brain regions associated with listening comprehension

might reflect this confound. To control for differences in
voice quality or more general signal to noise between the
interactions, we used harmonic-to-noise ratio as a predic-
tor in a control analysis. The mean harmonic-to-noise
ratio was calculated for each interaction using
PARSELMOUTH-PRAAT (Boersma & Weenink, 2021; Jadoul
et al., 2018). Directly contrasting the HRI with the HHI
showed that the harmonic-to-noise ratio voice was higher
in the HRI compared to the HHI, t(21) = �3.48,
p = .002, Cohen’s d = �.74, 95% confidence interval
[�1.21, �.26]. The mean harmonic-to-noise ratio was
centred and scaled and used as a parametric predictor
and added to the extended whole-brain analysis that
incorporated the type as well as the dynamics of the
interaction.

For the ROI and functional connectivity analyses,
group-based ROIs (9 mm sphere) were created for the
five networks (Tables S1–S5). Literature-derived coordi-
nates were used for the theory-of-mind network (bilateral
TPJ, precuneus [PC], dorsomedial prefrontal cortex
[dMPFC], middle medial prefrontal cortex [mMPFC] and
ventromedial prefrontal cortex [vMPFC]; Richardson
et al., 2018) and person perception network (bilateral
FFA, occipital face area [OFA], extrastratiate body area
[EBA] and posterior superior temporal sulcus [pSTS];
Julian et al., 2012). Coordinates for object-selective
regions were derived from Julian et al. (2012) (bilateral
lateral occipital complex [LOC] and superior parietal lob-
ule [SPL]), as well as Henschel et al. (2020) (bilateral fusi-
form gyrus [FG], superior parietal lobule [SPL], and
middle occipital gyrus [MOG]; using independent coordi-
nates from Dubey et al., 2020). For the language
(12 regions) and multiple-demand networks (20 regions),
we used the data from Diachek et al. (2020; Experiment
1, n = 383, https://osf.io/pdtk9/) and drew spheres
around the peak voxels of the group maps masked with
the network parcels. For the ROI analysis, beta estimates
were extracted for each event for each ROI and averaged
across networks. These estimates were entered in a
2 (interaction: HHI and HRI) � 2 (dynamics: listening
and speaking) repeated-measures analysis of variance
(ANOVA) for each network separately. Given the explor-
atory nature of this study, Bonferroni correction was used
to correct for multiple comparison (p < .05/5) and η2G
was calculated as effect size measure.

To delineate the functional connectivity within and
across networks, we calculated functional correlation
indices during the interaction. Given the short duration
of each listening and speaking event during the interac-
tion, we used the entire 60 s conversation, thus speaking
and listening combined. For this functional correlation
analysis, the averaged z-transformed time course across
voxels was extracted for each ROI per subject using
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NILEARN (Abraham et al., 2014, RRID:SCR_001362).
Pearson’s correlation coefficients were calculated
between these time courses for all possible combinations
of ROIs per interaction (HHI and HRI) for each subject.
After Fisher z transformation, the average within-
network (e.g., every theory-of-mind region to every
theory-of-mind region) and between-network (e.g., every
theory-of-mind region to every language region) correla-
tions were calculated (Blank et al., 2014; Paunov
et al., 2019; Richardson, 2019; Richardson et al., 2018). A
paired-sample t test was used to test for differences in
functional correlation between HHI and HRI for each
within- and between-network combination (Bonferroni
correction p < .05/15). Lastly, we tested for temporal
effects, that is, the repeated experience of these interac-
tions, on functional connectivity by comparing the
within- and between-network correlation between the
two interactions by separating the four runs using a
2 (interaction: HHI and HRI) � 4 (run: 1–4) repeated-
measures ANOVA for each network. ROI and functional
connectivity analyses were executed in R Version 4.2.0
(2022) using the AFEX package (v1.1-1; Singmann
et al., 2021) with post hoc tests executed using the
EMMEANS package (1.7.4-1; Lenth, 2021).

To provide further evidence on the strength of the
relationship and evidence for the null and alternative
hypothesis, we used Bayesian regression models imple-
mented in the BRMS package (Version 2.21.5; Bürkner,
2017) with STAN (Version 2.21.2; Carpenter et al., 2017)
For the ROI analysis, we specified the following linear
model: value � dynamics.d * interaction.d + (1 j sub),
with value representing the beta estimates extracted for
each event for each ROI averaged across networks, and
dynamics and type of interaction as fixed effects and a
random intercept for participants (sub). To allow for
comparison with null hypothesis significance testing
(http://talklab.psy.gla.ac.uk/tvw/catpred/; e.g., Bara
et al., 2021), deviation coding was used with dynamics
and type of interaction coded as .5 (listening and HHI)
and �.5 (speaking and HRI). For the functional connec-
tivity analyses, the following model was specified:
corz � run * interaction + (run j sub), with corz repre-
senting the Fisher z-transformed Pearson’s correlation
coefficients between the time courses for all possible
combinations of ROIs within or between the network(s)
with type of interaction (HHI and HRI) and run (1–4) as
fixed effects and a random intercept and slope for partici-
pants (run j sub). The hypothesis function was used to
specify the slope for the HRI: run + run:inter-
actionhri = 0. The models were fitted with weakly infor-
mative prior, normal (0,1) and a Gaussian distribution.
Four Markov chains with 4000 iterations (and a warm-up
of 2000 iterations) were used. We calculated the posterior

distributions with 95% credible intervals for the ROI and
functional connectivity analyses. All models converged,
with Rhat values below 1.1.

3 | RESULTS

Considering the dynamics of the interaction, the whole-
brain analysis revealed patterns of activation in regions
associated with language comprehension when contrast-
ing listening to speaking and in regions associated with
language production when contrasting speaking to listen-
ing regardless of type of interaction (Figure 2a). Although
these patterns overlapped between interactions with
humans and robots, differences in activity patterns
between the type of interactions appeared when directly
contrasting the interaction type for listening and speak-
ing separately (Figure 2a and Table 1). Critically, listen-
ing to a human compared to a robot resulted in increased
activity in the superior parietal lobule and bilateral infe-
rior parietal lobule, middle frontal gyrus, paracingulate
gyrus and left middle temporal gyrus. The reversed con-
trast revealed increased activity in the bilateral Heschl’s
gyrus, lateral occipital cortex, insular cortex and inferior
frontal gyrus. More subtle differences were observed
when contrasting speaking to a human with speaking to
a robot, with more activation observed in bilateral tempo-
ral pole when speaking to human compared to robotic
agent. These results cannot be attributed to differences in
voice quality, as similar results were obtained when using
harmonic-to-noise ratio as a parametric predictor
(Figure S2).

The results of the ROI analysis revealed a significant
interaction between dynamics and type of interaction in
the person perception, F(1, 21) = 24.75, p < .001,
η2G = .09, and language networks, F(1, 21) = 51.50,
p < .001, η2G = .10 (Figure 2b,c and Table S6). In both
these networks, listening to a robot led to more activa-
tion compared to listening to a human (person percep-
tion: t(21) = �5.289, p < .001; language: t(21) = �5.022,
p = .001), whereas speaking to a human led to more
activation compared to speaking to a robot for the lan-
guage, t(21) = 3.402, p = .003, but not the person per-
ception network, t(21) = 1.12, p = .28. Other networks
did not show an interaction between dynamics and type
of interaction. A main effect of dynamic was found in
the theory-of-mind, F(1, 21) = 101.48, p < .001,
η2G = .37, and multiple-demand networks, F(1, 21)
= 18.47, p < .001, η2G = .09, with more activation
observed for listening compared to speaking. Although
a main effect of type of interaction was found in the
object-specific network, increased activation for HRI
compared to HHI, F(1, 21) = 6.69, p = .017, η2G = .07,
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this effect did not survive correction for multiple com-
parison. Bayesian estimation provided similar results,
with a bias towards increased activity for listening com-
pared to speaking for the theory-of-mind, estimated
posterior coefficient: 1.99, 95% credibility interval
[1.34–2.65], and multiple-demand networks, .44
[.08–.80] (Table S7 and Figure S3). Similarly, activity in
the person perception, �.96 [�1.60 to �.32], and
language networks, �1.14 [�1.71 to �.58], was modu-
lated by both dynamics and type of interaction. For all
other comparisons, 0 was included in the 95% credibil-
ity interval.

No differences in within-network functional connec-
tivity were found between interactions with a robot and
interactions with a human (Figure 3a,b and Table S8).
Increased functional connectivity during HHI compared
to HRI was observed between the language and theory-
of-mind, t(21) = 2.65, p = .015, language and multiple-
demand, t(21) = 2.18, p = .040, person perception and
multiple-demand, t(21) = 2.86, p = .0094, and object-

specific and multiple-demand networks, t(21) = 3.16,
p = .0047 (Figure 3c). Rerunning the pre-process and
analysis pipeline without global signal regression
revealed only increased functional connectivity during
HHI compared to HRI between the language and theory-
of-mind networks, t(21) = 2.19, p = .04 (Table S8). How-
ever, all functional connectivity results did not survive
correction for multiple comparison. These results were
corroborated by Bayesian analysis, with no robust
within- and between-network functional connectivity dif-
ferences observed between HHI compared to HRI,
including the language and theory-of-mind, �.02 [�.06
to .01], person perception and multiple-demand, �.02
[�.05 to .00], and object-specific and multiple-demand
networks, �.03 [�.06 to .00] (Table S8). Within- or
between-network connectivity did not increase or
decrease in the course of the HHI or HRI. Across ana-
lyses, no temporal effects on functional connectivity were
found across or between interaction type (Figure S3 and
Tables S9 and S10).

F I GURE 2 Neural network engagement during interactions with a human and robotic agent. (a) Whole-brain analysis showed robust

engagement of regions associated with language comprehension and language production during listening and speaking respectively for

both interactions with humans and robots. Directly contrasting listening to a robot with listening to a human revealed more activation in the

bilateral Heschl’s gyrus, lateral occipital cortex, insular cortex and inferior frontal gyrus, whereas the reverse contrast showed more

activation in the superior parietal lobule and bilateral inferior parietal lobule, middle frontal gyrus, paracingulate gyrus and left middle

temporal gyrus. Only subtle differences were observed when contrasting speaking to a robot with speaking to a human or vice versa.

(b) Group-based regions of interest for the theory-of-mind (tom), person perception (ppn), object-specific (object), language and multiple-

demand networks (demand) were used in the region-of-interest and functional connectivity analyses, mapping social and non-social,

domain-specific and domain-general networks. (c) Listening to a robot led to more activity compared to listening to a human in the person

perception and language networks. Regardless of interaction, listening compared to speaking led to more activity in the theory-of-mind and

multiple-demand networks. For visual purposes activation maps are shown with an uncorrected threshold of p < .001 (k = 10) in (a). Rain

cloud plots with errors bars reflecting 95% confidence intervals are used in (c) (Allen et al., 2021).
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4 | DISCUSSION

In the present exploratory study, we aimed to map the
similarities and differences in domain-specific and
domain-general neural network engagement during
embodied and recursive interactions with a human or
robotic agent. Employing whole-brain, ROI and func-
tional connectivity analyses, we mapped functional activ-
ity and connectivity across networks associated with
domain-general and domain-specific, as well as social
and non-social cognitive processes. Whole-brain and ROI
analyses suggest that activity in the language network,
especially regions associated with listening comprehen-
sion, and the person perception network, differentiated

between HHI and HRI. No differences in the theory-of-
mind network nor robust differences in within- or
between-network connectivity between the interactions
were observed when considering the dynamics of the
interactions. Overall, these results suggest that interac-
tions with an artificial entity such as a social robot might
lead to only subtle differences in response profiles of neu-
ral networks at a perceptual but not cognitive level.

In the quest for understanding the neurocognitive
foundation of social interaction with human and artificial
agents, these results help advance our understanding in
several ways. The present results could implicate a disso-
ciation between the neurocognitive circuitry supporting
different social interactions. This dissociation may shift

TAB L E 1 Regions associated with the type and dynamics of the interaction

Anatomical region Cytoarchitectonic location

MNI coordinates

t value Cluster size pFWEx y z

Listening: HHI > HRI

Cerebellum right crus II 14 �88 �41 6.10 343 <.001

Cerebellum left crus II �14 �88 �41 6.16 236 <.001

Superior parietal lobule 7A �9 �58 56 5.95 203 <.001

Inferior parietal lobule PGp �36 �80 42 6.71 162 <.001

Inferior parietal lobule PGp 46 �80 32 7.41 134 .001

Middle frontal gyrus �36 25 52 7.32 110 .003

Right caudate 21 5 24 5.47 86 .011

Paracingulate gyrus p32 �9 50 �4 5.99 84 .013

Middle temporal gyrus te5 �69 �10 �18 5.81 78 .019

Listening: HRI > HHI

Planum temporale/Heschl’s gyrus TE 1.1 41 �28 12 12.22 2423 <.001

Planum temporale/Heschl’s gyrus TE 1 �46 �18 2 9.84 2100 <.001

Lateral occipital cortex FG2 �42 �78 �14 7.21 900 <.001

Lateral occipital cortex FG2 46 �62 �16 6.88 438 <.001

Intracalcarine cortex hOc1 (V1) 8 �72 9 5.23 194 <.001

Inferior frontal gyrus 45 54 22 24 7.70 168 <.001

Insular cortex Id7 �32 22 �1 7.96 159 <.001

Insular cortex Id7 31 25 �1 7.43 102 .004

Inferior frontal gyrus 44 �39 15 24 5.39 77 .021

Speaking: HHI > HRI

Temporal pole TE 3 �54 15 �11 7.74 694 <.001

Temporal pole TE 5 58 5 �18 7.69 451 <.001

Cerebellum left crus I �44 �80 �38 6.65 130 .001

Speaking: HRI > HHI

Cerebellum right crus I 36 �75 �28 5.79 117 .002

Occipital fusiform gyrus hOc4v (V4(v)) �26 �82 �8 4.66 64 .048

Note: Results from the whole-brain analysis for the different contrasts. Only clusters with a cluster pFWE-corrected ≤ .05 (puncorrected < .001, k = 10, with an
average grey-matter mask applied) are reported. MNI coordinates and t value of the peak voxels are reported.
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from the level of social and non-social networks to the
level of low-level perceptual and higher order neurocog-
nitive processes and networks. Although no differences
in activity or connectivity profiles of the theory-of-mind
network were found, both the person perception and lan-
guage networks showed increased activation when listen-
ing to a robot compared to listening to a human. This
suggests that only during distinct aspects of an interac-
tion (cf. listening), low-level perceptual, as reflected by
person perception and language network engagement,
but not higher order neurocognitive processes, as
reflected by theory-of-mind network engagement, might
be affected by the artificial nature of the interacting
agent.

Going beyond the mere focus on social brain regions
and social cognitive processes, the question arises what
role non-social, for example, object-specific regions, play
during HRIs (Henschel et al., 2020). This contributes to
the debate if robots should be framed as social agents or
can be viewed as an object or unique category supported
by different neurocognitive processes (Cross &
Ramsey, 2021; Prescott, 2017). A recent observation is
that engagements with robots consistently activate
object-specific regions (Henschel et al., 2020). The fusi-
form gyrus, middle occipital gyrus, and the inferior parie-
tal lobule are activated during perception of actions
(Cross et al., 2012) and emotions expressed by a robot

(Cross et al., 2019). In line with these findings, we
observed that regions in the object-specific network show
higher activation for HRI compared to HHI. Although
our results are exploratory in nature, they may point to
the involvement of networks beyond social networks.

A broader question pertaining to not only interactions
with artificial agents but also with other individuals is to
what extent domain-specific and domain-general net-
works support these interactions. Our results suggest that
no clear differences in activation and connectivity pro-
files of the multiple-demand network are visible when
contrasting interactions with other individuals with inter-
actions with artificial agents. All in all, differences
between interactions only appear for some domain-
specific networks. Ramsey and Ward (2020) put forward
a hybrid model for information processing during social
interactions that captures the interplay between domain-
specific and domain-general networks and provide a first
view on the present results. In their hybrid model, both
person representation supported by domain-specific pro-
cesses and domain-general control process play key roles
during social interaction. Person representation is
informed by social cognitive processes and associated net-
works, with three possible representational levels: per-
ceptual (e.g., face perception), cognitive (cf. theory of
mind), and valence and affect. Across these so-called
person-feature maps, information is integrated. For

F I GURE 3 Functional network connectivity during interactions with a human and robotic agent. (a) Functional connectivity for

interactions with a human (hhi) and robot (hri). (b, c) No differences were found in within-network and between-network connectivity

between interactions with a human and robot. Raw correlations are shown in (a), whereas z-transformed correlations are shown in (b) and

(c). Rain cloud plots with errors bars reflecting 95% confidence intervals are used in (b) and (c) (Allen et al., 2021).
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instance, body perception is supported by processing in
not only the person perception network but also the
theory-of-mind network (Ramsey, 2018). Besides person
representation, control processes play a crucial role in
social interaction as well (Ramsey & Ward, 2020). These
processes guide ongoing interaction by means of inte-
grated priority maps. The latter maps receive information
from of exogenous (person-feature maps across the three
levels) and endogenous cues (e.g., goals, memory and an
individual’s current affective state).

Integration of information occurs both within and
between the person representation and control processes
in the form of biased competition. Biases at one level
(e.g., perceptual person-feature map) influence a subse-
quent level (e.g., cognitive person-feature map)
(Ramsey & Ward, 2020). Although we found subtle differ-
ences in functional activation in domain-specific net-
works, we did not find any differences in functional
connectivity within and between domain-specific and
domain-general networks. Integrating these findings with
the hybrid model of Ramsey and Ward (2020) suggests
that person-feature maps at the level of perception, but
not cognition, might be impacted by the artificial nature
of the agent. Integration and processing of information
within and across the person representation and control
systems might also be intact during HRI. Future research
should replicate and extend our findings and formally
test if indeed only subtle perceptual differences between
interactions with human and robotic agents are observed.

Mapping activity across a series of networks with dif-
ferent cognitive functionalities, we look beyond individual
regions or a few domain-specific social networks
(Hortensius et al., 2018; Hortensius & Cross, 2018; Wiese
et al., 2017; Wykowska, 2021). Using this network
approach, we replicate and extend the original study by
Rauchbauer et al. (2019). Although they reported
decreased activation in the temporoparietal junction and
medial prefrontal cortex during interactions with a robot,
we provide a nuance to this observation by considering
the dynamics of the interaction. Critically, when consider-
ing the dynamics of the interactions, listening and speak-
ing, we do not find decreased activation in these and other
regions of the theory-of-mind network. Similar to the
observations by Rauchbauer et al. (2019), previous studies
mostly reported attenuated activation for the theory-of-
mind network when people engage with artificial agents
such as social robots (Hortensius & Cross, 2018). The con-
trast between screen-based, restricted and one-off interac-
tions (previous studies) and embodied and recursive
interactions that consider the dynamics of these interac-
tions (current study) likely explains this difference in find-
ings (e.g., Schilbach, 2014). Future studies should explore
what the functional significance is of increased or

decreased activation in specific networks. Of course, the
labelling of networks as social or non-social or domain-
general or domain-specific has some level of arbitrarity to
it. To fully understand the neurocognitive representation
of social cognition during interactions with artificial
agents requires more advanced approaches beyond analys-
ing activity patterns, such as representational similarity
and multivoxel pattern analyses, together with a network
approach (Henschel et al., 2020).

Exposure and beliefs to robots drive how these artifi-
cial entities are perceived and interacted with (Agnieszka
et al., 2016; Hortensius & Cross, 2018). This experience
dependency shapes the neurocognitive response during
engagements with robots (Cross et al., 2016; Gowen
et al., 2016; Klapper et al., 2014; Özdem et al., 2017;
Wykowska et al., 2014). Similarly, the hybrid model of
information processing is experience dependent in
nature, where informational cues, like beliefs and expec-
tations, influence the ongoing interaction (Ramsey &
Ward, 2020). To test similar effects of experience in the
current study, we looked into temporal effects on func-
tional connectivity. No temporal effects on within- or
between-network connectivity were observed; that is, the
connectivity patterns remained stable across the different
interactions. However, the current time window is rela-
tively short (less than an hour). Employing a between-
session approach, a recent study did not report a change
in activity in the pain matrix, a collection of brain regions
responsive to observations of another individual’s distress
or pain, after a 5 day interaction period with a robot
(Cross et al., 2019). Using longer time windows (multiple
sessions across days/weeks) would allow to answer ques-
tions on the experience dependency of the neurocognitive
architecture supporting interactions with artificial agents.
Future studies can test how external (e.g., the duration of
the interaction) and internal (e.g., an individual’s expec-
tation of the robot) factors influence the engagement of
domain-specific and domain-general, social and non-
social networks during interactions with social robots.

5 | CONCLUSION

In this exploratory study, we tested neural network
engagement during HRIs using whole-brain, ROI and
functional connectivity analyses. Going beyond selective
brain regions, we analysed the activity and connectivity
patterns across networks that can be viewed as social or
non-social, and domain-specific or domain-general and
that form the building blocks of social interaction.
Together, our results point to a dissociation between
interactions with human and robotic agents at the per-
ceptual, but not cognitive level.
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