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Abstract: Neurological disorders are ranked as the leading cause of disability and the second leading
cause of death worldwide, underscoring an urgent necessity to develop novel pharmacotherapies.
Berberine (BBR) is a well-known phytochemical isolated from a number of medicinal herbs. BBR
has attracted much interest for its broad range of pharmacological actions in treating and/or man-
aging neurological disorders. The discoveries in basic and clinical studies of the effects of BBR on
neurological disorders in the last decade have provided novel evidence to support the potential
therapeutical efficacies of BBR in treating neurological diseases. In this review, we summarized the
pharmacological properties and therapeutic applications of BBR against neurological disorders in
the last decade. We also emphasized the major pathways modulated by BBR, which provides firm
evidence for BBR as a promising drug candidate for neurological disorders.

Keywords: berberine; neurological disorders

1. Introduction

Neurological disorders refer to any dysfunctions of the nervous system, and mainly
include Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD),
dementia, schizophrenia, anxiety, depression, epilepsy, traumatic brain injury (TBI), and
brain tumor [1,2]. The burden of deaths and disabilities caused by neurological disorders
has been increasing dramatically, ranking it as the leading cause of disability and the second
leading cause of death worldwide [2,3]. The World Health Organization predicts that by
2040, as many developed countries’ populations age, neurological disorders will overtake
cancer to become the second leading cause of death worldwide [4]. Nevertheless, there
is no treatment that can cure neurological disorders, and the current treatments mainly
target the amelioration of symptoms [5,6]. Berberine, a natural alkaloid, is mainly isolated
from Coptis chinensis, Berberis vulgaris, Hydrastis canadensis, and Phellodendron amurense [7].
For over a thousand years, these herbs have been used for treating diarrhea without any
obvious side effects in patients [8]. With the advances of pharmacological research, BBR
has been considered as a promising multitarget drug (MTD) for treating neurological
disorders. In this review, we summarize the in vivo research on BBR for treatment against
neurological disorders in the last decade and provide our comments about the omnipotent
effects of BBR.

2. Pharmacokinetic Characteristics of BBR

After oral administration, BBR was absorbed by the gastrointestinal tracts of mice,
rats, hamsters, rabbits, and beagle dogs [9–13]; however, the bioavailability was quite low
(below 1%) [12,14]. Then, BBR was mainly distributed into the liver, followed by other
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organs including the intestine, kidneys, muscle, lungs, brain, heart, and pancreas [11,15].
Notably, BBR can cross the blood–brain barrier [11,16], although the brain concentration
of BBR after oral administration was quite low (around 1 ng per g of brain tissue) [11].
Then, the absorbed BBR underwent phase I metabolism reactions, including demethylation,
demethylenation, and reduction to produce metabolites M1-6 [10,11]; phase 1 metabo-
lites were usually mediated by chrome P450 enzymes (CYPs) such as CYP2D6, CYP1A2,
and CYP3A4 [17]. In addition, nitroreductase from gut microbiota was reported to re-
duce BBR into an intestine-absorbable form—dihydroberberine (dhBBR) [10]. Phase II
metabolites were formed by glucuronidation, sulfation, and methylation of phase 1 metabo-
lites via UDP-glucuronosyltransferases (UGTs), sulfotransferases (SULTs), and catechol-
O-methyltransferase (COMT) catalyzation [18,19]. BBR and its metabolites were mainly
excreted through feces, followed by urine, and bile [18]. The metabolic characteristics of
BBR are summarized in Figure 1.
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3. Efficacies and Mechanisms of BBR on Neurological Disorders

Neurological disorders are not contagious, but greatly affect quality of life, as these
diseases not only lead to neural damage but also influence an individual’s movement,
speech, memory, intelligence, and much more [20,21]. BBR has emerged as a promising
medication for combating neurological disorders. Here, we address the efficacies and
mechanisms of BBR, as follows.

3.1. BBR on Alzheimer’s Disease

Alzheimer’s disease (AD) most often develops in people over 65 years of age and is
characterized by memory loss and handicapped daily functions [22]. To date, the exact
cause of AD has not been fully discovered, but it is believed that AD results from multiple
contributing factors. Thus, there is no direct and effective treatment for AD. There are
two main strategies for treatment. Firstly, inhibiting the activity of cholinesterase (ChE),
an enzyme to catalyze the breakdown of acetylcholine (ACh) and other choline esters
that function as neurotransmitters, is one of the potential therapeutic strategies based on
the cholinergic hypothesis [23,24]. Secondly, it is important to reduce amyloid beta (Aβ)
and Tau protein plaques, which may lead to neurofibrillary tangle formation, oxidation,
inflammation, and excitotoxicity [25,26].
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Due to its multifaceted nature, BBR has been shown to address AD mainly in two aspects:
anti-ChE and anti-Aβ/Tau pathways (Figure 2).
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3.1.1. Inhibitory Effect of BBR on ChE

The cholinergic hypothesis states that a deficit in central cholinergic neurotransmission
resulting from a loss of ACh contributes to pathological development [27]. ChE, including
acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), is responsible for hydrolyz-
ing ACh into choline and acetic acid [28]. ChE inhibitors are effective medication for AD as
they enhance central cholinergic function by inhibiting ChE activities, thereby increasing
the availability of ACh to stimulate memory and learning ability in the brain [27]. In the
streptozotocin-induced sporadic AD model and the heavy-metals-induced AD-like disease
model, BBR maintained the ACh level by inhibiting AChE activity [29,30]. BBR has a large
hydrophobic surface and a cation; thus, hydrophobic residues in AChE interacted with BBR
to form a binding pocket, which accounts for the interaction between AChE and BBR [31].
However, there is no publication discussing the effect of BBR on BChE in vivo.

3.1.2. Anti-Aβ and Tau Effects of BBR

The Aβ peptide, consisting of 39–43 amino acids, is derived from the abnormal
processing of the amyloid precursor protein (APP), and the accumulation of Aβ peptide
has been considered as a hallmark of AD pathogenetic development [32]. The enzymes α-
secretase, β-secretase (also called BACE), and γ-secretase take active roles in the processing
of APP [33]. Tau proteins within the brain cells of AD brains are misfolded and abnormally
shaped, deposits of which form tangles within the neural cells [34]. In AD, it is common
to find tau hyperphosphorylation and aggregation, thus losing its ability to maintain the
microtubule tracks; as a result, tau dysfunction could lead to the retraction of neuronal
processes and thus cell death [34].

The oral administration of BBR significantly ameliorated learning deficits and spatial
memory retention in transgenic mouse models of AD (TgCRND8 mice, APP/PS1 mice,
and 3×Tg AD mice) [35–38]. A mechanistic study showed that BBR significantly decreased
the levels of C-terminal fragments of APP and the hyperphosphorylation of APP via the
protein kinase B/glycogen synthase kinase 3 (AKT/GSK3) signaling pathway [35]. BBR
also inhibited the activity of β/γ-secretases or suppressed PRKR-like endoplasmic reticu-
lum kinase/eukaryotic translation initiation factor-2 α (PERK/EIF2α) signaling-mediated
BACE1 translation to downregulate the Aβ level in the AD mouse hippocampus [36,37,39].
In addition, promoting the clearance of Aβ is another mechanistic aspect of BBR. To
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promote Aβ clearance, BBR activated the autophagic process through initiating the phos-
phoinositide 3-kinase (PI3K)/Beclin-1 pathway [38] or by inhibiting the mammalian target
of rapamycin/P70 S6 kinase (mTOR/p70S6K) signaling [40]. Additionally, Aβ is toxic to
neural cells, as it can cause pore formation resulting in ion leakage, disturb cellular calcium
balance, and destroy membrane potential, thus leading to apoptosis, synaptic loss, and
cytoskeleton disruption [41]. BBR is effective in preventing Aβ-induced damage to neural
cells. Bilaterally injecting rats with Aβ induced learning and memory impairments, while
BBR administration ameliorated Aβ-induced toxicity [42]. BBR showed this beneficial
effect via modulating the Ca2+-activated K+ channel to maintain the optimal level of Ca2+

entry [42]. Moreover, BBR reduced Aβ-related oxidative and inflammatory damage. The
antioxidant effect of BBR was exerted via downregulating reactive oxygen species (ROS)
level, promoting the activity of glutathione (GSH), and inhibiting lipid peroxidation [43].
BBR also normalized the production of cytokines such as tumor necrosis factor α (TNFα),
interleukin 12 (IL-12), IL-6, and IL-1β to retard inflammation [30]. In addition, exposure
to Aβ could potentially lead to microglial activation, thereby triggering a detrimental
neural response [44]. No in vivo function of BBR regarding microglial activation has been
revealed; only an in vitro study indicated that BBR could inhibit Aβ-induced microglial
activation via a silencing of cytokine signaling factor 1 (SOCS1)-dependent modulation of
the microglial M1/M2 activated state [45].

Targeting Tau, BBR can reduce its hyperphosphorylation and increase its degradation.
In 3×Tg AD mice, BBR improved the spatial learning capacity, memory retention, and
the mechanism involved in reducing tau hyperphosphorylation via modulation of the
AKT/glycogen synthase kinase 3β (GSK3β) pathway, enhancing autophagic flux, and
increasing tau clearance through the PI3K/Beclin-1/B-cell lymphoma 2 (Bcl-2) pathway [46].
In APP/PS1 mice, BBR was found to suppress nuclear factor kappa-light-chain enhancer of
the activated B cells (NF-κB) signaling pathway to limit tau hyperphosphorylation [43].

In conclusion, BBR exhibits therapeutic efficacy on PD mainly through the inhibition
of ChE activity and suppression of Aβ- and Tau-induced toxicity. The downregulation of
ChE activity by BBR contributes to increased ACh availability in the brain [29,30]. Both
Aβ and Tau are toxic to neural cells via triggering oxidant, inflammatory, and even death
signals, while BBR can degrade Aβ and Tau to ameliorate their toxicity [36–40,42,43,46]
(Figure 2).

3.2. BBR on Parkinson’s Disease

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by
the degeneration of dopamine (DA) and non-DA neurons, which could lead to tremors,
rigidity, bradykinesia, and gait disturbance [47]. No cure has been discovered for treating
PD and the current therapy mainly focuses on lessening neuron loss [8]. BBR showed
beneficial effects against the chemical-induced PD model (Figure 2).

BBR protected neurons from apoptosis induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/
probenecid (MPTP/P) through the downregulation of the Bcl2/Bcl-2-associated X protein
(BAX) ratio [48], through AMP-activated protein kinase (AMPK)-dependent enhancement
of autophagy [49,50], or by preventing NLRP3 inflammasome activation [50]. In the
6-hydroxydopamine-induced PD model, BBR reduced ROS production, caspase-3 activa-
tion, and subsequent neuronal death [51,52] BBR also increased the expression of tyrosine
hydroxylase (TH), a rate-limiting enzyme for dopamine synthesis, to promote neurogen-
esis [48,50]. Additionally, a recent study demonstrated that BBR could ameliorate PD by
regulating gut microbiota. BBR enhanced TH to produce L-dopa by triggering the biosyn-
thesis of tetrahydrobiopterin in the gut microbiota and subsequently led to an increased
brain dopa level, therefore improving brain function in MPTP-induced PD mice [53].

In addition, rotenone is also widely used to establish PD models [54], whereas the
effect of BBR on the rotenone model is less well understood and controversial. There
is no in vivo study of BBR on the rotenone-induced PD model. For the in vitro efficacy,
Kysenius and colleagues claimed that the subtoxic nanomolar concentration (30 nM) of BBR
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could sensitize neurons to rotenone injury [55], while Han and colleagues found that BBR
protected SH-SY5Y cells from rotenone injury by activating the antioxidant and PI3K/AKT
signaling pathway [56].

Collectively, BBR maintains neural viability in PD models. BBR not only lessens
neuron loss [48–53], but also promotes neurogenesis [48,50,51] (Figure 2).

3.3. BBR on Stroke

Stroke, also defined as a cerebrovascular accident, is one of the major causes of mor-
tality and long-term disability, and it is induced by either inadequate focal blood flow or
hemorrhage into the brain tissue or the surrounding subarachnoid space [57]. The current
prevention or treatment of stroke includes primary prevention, recanalization and throm-
bolysis, neuroprotection, secondary prevention, and neurorepair [58,59]. Both pretreatment
and post-treatment of BBR have shown prominent efficacies for stroke (Figure 3).

Cells 2022, 11, x FOR PEER REVIEW 5 of 21 
 

 

enhanced TH to produce L-dopa by triggering the biosynthesis of tetrahydrobiopterin in 

the gut microbiota and subsequently led to an increased brain dopa level, therefore im-

proving brain function in MPTP-induced PD mice [53]. 

In addition, rotenone is also widely used to establish PD models [54], whereas the 

effect of BBR on the rotenone model is less well understood and controversial. There is no 

in vivo study of BBR on the rotenone-induced PD model. For the in vitro efficacy, Kyse-

nius and colleagues claimed that the subtoxic nanomolar concentration (30 nM) of BBR 

could sensitize neurons to rotenone injury [55], while Han and colleagues found that BBR 

protected SH-SY5Y cells from rotenone injury by activating the antioxidant and 

PI3K/AKT signaling pathway [56]. 

Collectively, BBR maintains neural viability in PD models. BBR not only lessens 

neuron loss [48–53], but also promotes neurogenesis [48,50,51] (Figure 2). 

3.3. BBR on Stroke 

Stroke, also defined as a cerebrovascular accident, is one of the major causes of 

mortality and long-term disability, and it is induced by either inadequate focal blood 

flow or hemorrhage into the brain tissue or the surrounding subarachnoid space [57]. The 

current prevention or treatment of stroke includes primary prevention, recanalization 

and thrombolysis, neuroprotection, secondary prevention, and neurorepair [58,59]. Both 

pretreatment and post-treatment of BBR have shown prominent efficacies for stroke 

(Figure 3). 

 

Figure 3. Effects of BBR against stroke. 

BBR was found to be a thrombin inhibitor and had the ability to inhibit throm-

bin-induced platelet aggregation in washed platelet samples in vitro [60]; however, there 

is no research exploring the thrombolysis effect of BBR in vivo. 

Middle cerebral artery occlusion (MCAO) surgery has been widely used to establish 

a successful murine stroke model [61]. After cerebral infarction occurs, oxidative factors 

and proinflammatory cytokines are released, leading to ischemic neuronal death in-

cluding apoptosis and necrosis [62]. Following ischemia and reperfusion, a cascade of 

inflammatory responses is triggered. The high-mobility group box 1 (HMGB1) protein is 

released from necrotic and dying neural cells, subsequently activating the NF-κB path-

Figure 3. Effects of BBR against stroke.

BBR was found to be a thrombin inhibitor and had the ability to inhibit thrombin-
induced platelet aggregation in washed platelet samples in vitro [60]; however, there is no
research exploring the thrombolysis effect of BBR in vivo.

Middle cerebral artery occlusion (MCAO) surgery has been widely used to estab-
lish a successful murine stroke model [61]. After cerebral infarction occurs, oxidative
factors and proinflammatory cytokines are released, leading to ischemic neuronal death
including apoptosis and necrosis [62]. Following ischemia and reperfusion, a cascade of
inflammatory responses is triggered. The high-mobility group box 1 (HMGB1) protein is
released from necrotic and dying neural cells, subsequently activating the NF-κB pathway,
which is commonly used as an indicator of inflammation in stroke studies [63,64]. Then,
TNFα, IL-1β, and IL-6 are activated [65,66]. Seven-day pretreatment of BBR prevented the
translocation of NF-κB into the nucleus and the transcription of proinflammatory cytokines;
consequently, the expression of proinflammatory factors such as TNFα, IL-1β, and IL-6
was downregulated and the expression of anti-inflammatory cytokines, including IL-10,
was upregulated [67]. Inflammation in stroke could lead to the production of ROS [68].
Excessive ROS may cause severe damage to neural cells, and then cell death by either
necrosis or apoptosis may be initiated [63]. BBR pretreatment lowered the increased level
of MDA and enhanced the activities of antioxidases such as superoxide dismutase (SOD),
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catalase (CAT), peroxiredoxin, and NAD(P)H dehydrogenase quinone 1 (NQO1) [67,69];
in addition, the preadministration of BBR lessened neural cell apoptosis via decreasing
caspase cascades (caspase-3 and caspase-9) and increasing Bcl-2 expression [70–72], and
promoting the cell-survival-related pathways such as the phosphor activation of AKT and
increase of ERK1/2 [70,73]. Moreover, BBR bound to the poly (A) tail on retinoblastoma
mRNA to antagonize the mRNA degradation and upregulation of the retinoblastoma
protein during ischemia/reperfusion, which in turn inhibited apoptosis and facilitated cell
survival in the injured brain [74].

Additionally, post-treatment of BBR results in effects similar to pretreatment. BBR
administered after MCAO surgery reduced the infarction volume in mice and rats [75–77].
BBR functioned as a potent anti-inflammatory agent for ameliorating focal cerebral is-
chemia injury by enhancing the IL-10 level [75] and downregulating NF-κB nuclear trans-
position [76]; BBR was also able to activate the upregulation of claudin-5 expression to
reduce access to the blood–brain barrier [76]. Scavenging ROS also contributed to the
effect of post-treatment with BBR. Our previous study found that BBR acted as a potent
agonist of peroxisome proliferator-activated receptor delta (PPARδ) to increase nuclear
factor (erythroid-derived 2)-like 1/2 (NRF1/2) and NQO1 to lower the ROS content in
MCAO mice brains, thus exhibiting the neuroprotective effect of BBR [77]. Moreover, BBR
is also beneficial for facilitating angiogenesis by modulating AMP-activated protein kinase
(AMPK)-dependent M2 macrophage/microglial polarization, which promoted functionary
recovery against ischemic stroke [78].

Stroke occurrence results in a detrimental impact on the brain. The most prominent
efficacy of BBR on stroke is to reduce brain infarct damage, which is achieved by promoting
thrombolysis [60], decreasing oxidative and inflammatory damage [67,69,75–77], reducing
neural cell death [67,70–74], and facilitating angiogenesis [78] (Figure 3).

3.4. BBR on Huntington’s Disease

Huntington’s disease (HD), also known as Huntington’s chorea, is mostly inherited
and mainly characterized by chorea, dystonia, loss of motor coordination, and mental
deterioration [79]. HD results from an expanded CAG repeat in the huntingtin gene, which
encodes an abnormally long polyglutamine repeat in the huntingtin protein [80]. BBR effec-
tively improved motor function and prolonged the survival rate of transgenic N171-82Q
HD mice by increasing autophagic function to reduce mutant huntingtin accumulation [81].

3.5. BBR on Dementia

Dementia describes a group of symptoms regarding memory loss and thinking dis-
ability. It is not a specific disease, but brain disorders and aging have been confirmed to
give rise to dementia [82,83]. The most common cause of dementia is AD, which accounts
for 60–70% of dementia cases worldwide [82]. Vascular dementia accounts for at least 20%
of dementia cases, making it the second most common type [84].

BBR treated AD-related dementia mainly via targeting AD symptoms (shown in
Section 3.1). Moreover, BBR is also effective in treating vascular dementia, which is usually
caused by reduced blood flow to the brain [84]. In the chronic cerebral hypoperfusion
(CCH)-induced vascular dementia model, BBR treatment prevented cognitive deficits and
reversed CCH-induced neuronal cell death [85]. In the diabetes-related vascular dementia
model, BBR increased the blood supply from the posterior cerebral artery, which was
achieved by the inhibition of miR-133a ectopic expression in the vascular endothelium
and by the normalization of vascular bioactivity in the cerebral middle artery [86]. Neu-
rotoxic chemicals, such as doxorubicin, d-galactose, and lipopolysaccharide also led to
cognitive impairment. BBR significantly improved cognitive disability in doxorubicin-
or lipopolysaccharide-treated rats, and also improved the mechanism of the antioxidant
and anti-inflammatory effect [87,88]. BBR diminished oxidative stress through enhancing
glutathione peroxidase (GPx), SOD, CAT, and GSH; additionally, BBR attenuated inflam-
mation, as evidenced by the downregulation of cyclooxygenase 2 (COX-2), NF-κB, TLR4,
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TNFα, and IL-6 levels [87,88]. In d-galactose-induced dementia rats, BBR ameliorated mem-
ory loss by restoring the Arc expression level, which is a pivotal mediator in maintaining
normal synaptic plasticity [89].

In conclusion, BBR restores normal brain functions in dementia subjects by increasing
the brain blood supply [86], reducing oxidative and inflammatory damage [87,88], and
maintaining normal synaptic plasticity [89].

3.6. BBR on Psychiatric Disorders and Epilepsy

Psychiatric disorders are mental illnesses that greatly disturb thinking, moods, and
behaviors, which may increase the risk of disability, pain, and even death [90,91]. Major
psychiatric disorders include schizophrenia, anxiety, and depression [92]. Moreover, these
disorders are considered as comorbidities in epilepsy patients, as clinical evidence has
shown a much higher rate of psychiatric disorders in epilepsy patients than in the healthy
control group [93,94]. BBR produces prominent effects on psychiatric disorders and epilepsy
(Figure 4).
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3.6.1. Schizophrenia, Anxiety, and Depression

Schizophrenia manifests as continuous or relapsing episodes of psychosis, and major
symptoms include altered perceptions, abnormal thinking, and odd behaviors [95]. MK-801
(an NMDA receptor antagonist) administration results in schizophrenia-like behaviors in
rodents; BBR treatment improved learning impairments, while the mechanism remains
unexplored [96].

Anxiety and depression are interrelated and mutually influenced. Patients with de-
pression often have anxiety disorders, and those with anxiety disorders commonly show
depression features [97]. The causes of anxiety and depression are multiple, and factors such
as chemical imbalance, environment, and heredity may play roles [98]. BBR is beneficial for
anxiety and depression, as shown in Figure 4. Drug addiction, such as methamphetamine
and morphine, can lead to anxiety and depression, while BBR remarkably attenuates this
discomfort [99–101]. In morphine-addicted animals, BBR modulated the central noradrener-
gic system through restoring the decreased brain-derived neurotrophic factor (BDNF) level
in the hippocampus and by suppressing locus coeruleus activation [99]. In ameliorating
methamphetamine-induced anxiety, BBR not only lessened neuroinflammation by reducing
TLR4 and NF-κB activation [100], but also increased oxytocin receptors in the nucleus
accumbens and in the hippocampus to a lower oxytocin level [101], which is closely related
to drug abuse [102]. In addition, clinical evidence shows that menopausal transition leads
to an elevated risk of anxiety and depression [103–105]. BBR produced antidepressant-like
effects in ovariectomized mice, which was achieved via the BDNF/cAMP-response element
binding protein (CREB)/eukaryotic elongation factor 2 (eEF2) pathway-dependent activa-
tion of the 5-hydroxytryptamine 2 (5-HT2) receptor [106]. Moreover, BBR is also capable of
modulating the gut microbiota to treat anxiety; in ovariectomized rats, BBR promoted the
abundance of beneficial gut microbes, such as Bacteroides, Bifidobacterium, Lactobacillus,
and Akkermansia, and increased equol generation to treat postmenopausal symptoms of
anxiety [107].



Cells 2022, 11, 796 8 of 20

3.6.2. Epilepsy

Epilepsy is a common chronic neurological disorder, the hallmark of which is recurrent
and unprovoked seizures [108]. Mutations in syntaxin 1b (Stx1b), encoding a presynaptic
protein, cause fever-associated epilepsy syndromes [109]. Pentylenetetrazole caused de-
creased Stx1b, which induced seizure, whereas BBR showed the ability to increase the Stx1b
level to inhibit seizure development [110]. In addition, excitotoxicity, neuroinflammation,
and oxidative stress characterize the epileptogenic process, and these three aspects are
considered as treatment targets [111]. The anti-inflammatory and antioxidant effect has
been well documented in treating epilepsy. The ability of BBR in combating oxidative
damage in epilepsy was exerted through reducing ROS, lipid peroxidation, and MDA
levels, and by promoting the expression of antioxidases such as NRF2, CAT, SOD, and
GPx [112–115]. The anti-inflammatory actions of BBR were related to a significant reduction
in the recruitment of macrophages and neutrophils as well as levels of TNFα, IL-1β, and
IL-6 [112,116].

Conclusively, BBR treats anxiety, depression, and epilepsy mainly through diminish-
ing oxidative and inflammatory damage [100,112–116]. Additionally, the regulation of
hormones (oxytocin), neurotransmitter-related targets (5-HT2, Stx1b), and gut microbiota
also contribute to the efficacies of BBR [99,101,106,107].

3.7. BBR on Traumatic Brain Injury

Traumatic brain injury (TBI) is an injury to the brain caused by an external force, and it
can result in bruising, torn tissues, bleeding, and other physical damage to the brain, which
might subsequently cause long-term complications or death [117]. TBI leads to neurological
disability due to primary and secondary injury mechanisms [118]. The primary injury
occurs during the initial insult, while the secondary injury is due to the pathological changes
that follow the insults [118]. The secondary injury affects the recovery outcome post-TBI,
and the post-treatment of BBR has shown good efficacy in attenuating secondary injury.
BBR reduced cortical lesion size and neuronal death by inhibiting microglia and astrocyte
activation in both the cortical lesion border zone (LBZ) and the ipsilateral hippocampal CA1
region, and by inhibiting inducible nitric oxide synthase (iNOS) and COX-2 expression,
thus suppressing the following oxidative and inflammatory injury [119]. In addition,
the post-injury administration of BBR was found to be related to the inhibition of the
TLR4/MyD88/NF-κB signaling pathway, which suppressed the inflammatory cascade in
glial cells to ameliorate TBI [120]. Thus, the antioxidant and anti-inflammatory properties
of BBR [119,120] contribute to its efficacies.

3.8. BBR on Tumor

Brain tumors occur due to a mass or growth of abnormal cells in the brain. Brain
tumors can begin in the brain (primary brain tumors), or cancer in other body parts may
spread to the brain as secondary (metastatic) brain tumors [121]. BBR can suppress various
kinds of tumors, including brain tumors (Figure 5).

Gliomas account for nearly 70% of malignant primary brain tumors in adults, and the
prognosis is quite poor [122]. BBR has emerged as a promising antiglioma medication via
promoting cell death, senescence, and inhibiting angiogenesis and drug resistance.

BBR induced glioblastoma cell apoptosis through autophagy activation, which was
achieved by the inhibition of the AMPK/mTOR/unc-51-like kinase 1 (ULK1) pathway [123].
In addition, BBR treatment could lead to glioblastoma cell oncosis [124], which is a non-
canonical form of programmed cell death resulting from a rapid decrease in intracellular
adenosine triphosphate (ATP) and mitochondrial dysfunction [125]. BBR reduced the
oxygen consumption rate and inhibited mitochondrial aerobic respiration by repressing
phosphorylated ERK1/2 (p-ERK1/2), thereby triggering oncosis-like cell death [124]. The
induction of cellular senescence is another antiglioma mechanism of BBR, which is likely
mediated by the downregulation of the epidermal growth factor receptor (EGFR)/ Raf-1
Proto-Oncogene (RAF)/mitogen-activated protein kinase (MEK)/ERK pathway [126].
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Angiogenesis refers to the formation of new blood vessels, and it does not cause
malignancy itself but can promote tumor progression and metastasis [127]. The antiangio-
genesis effect of BBR was evidenced by the decreased level of hemoglobin and cluster of
differentiation 31 (CD31) mRNA, proving that BBR reduced vascular density in glioma; this
occurred by inhibiting the phosphorylation of vascular endothelial growth factor receptor-2
(VEGFR2) and ERK [128].

The efficacy of chemotherapy might be hampered by the development of therapeutic
resistance in glioma [129]. BBR enhanced the sensitization of glioma against temozolomide
(a chemotherapeutic agent) [130]. BBR efficiently increased glioma responses to temozolo-
mide treatment, with a profound effect on the activation of the ERK1/2 pathway, triggering
the autophagy and apoptosis processes [130].

In sum, the anti-brain-tumor action of BBR is mainly due to the inhibition of tumor
growth, such as inducing cell death [123,124,126] and suppressing angiogenesis [128].
Additionally, BBR shows a synergic effect by enhancing chemotherapy efficacy [130].

4. Clinic Applications

Several clinical trials of BBR on stroke and schizophrenia patients have been performed
and are summarized in Table 1.

4.1. Effect of BBR on Stroke Patients

BBR exerted a therapeutic effect against stroke mainly by ameliorating oxidative,
apoptotic, and inflammatory damage. The common doses of BBR for treating stroke ranged
from 0.9 to 2.1 g/day with a treatment period of two weeks [131–134]. BBR treatment could
significantly improve neural function, reduce the plasma MDA level, and upregulate the
GSH-Px level in plasma [131,132]. In addition, the levels of the macrophage migration
inhibition factor (MIF), IL-6, HIF-1α, and caspase-3 were also reduced after BBR treatment,
indicating BBR was beneficial for stroke recovery [133,134].
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Table 1. Clinical trials of BBR on stroke and schizophrenia patients.

Disease No. of Patients Dosage
/Duration Outcome Ref.

Acute cerebral ischemic
stroke 55 300 mg (tid)

/14 days
Improved neural function; decreased MDA

level; increased GSH-Px level [131]

Acute cerebral ischemic
stroke 52 500 mg (tid)

/14 days
Improved neural function; decreased MDA

level [132]

Acute cerebral ischemic
stroke 60 300 mg (tid)

/14 days Decreased levels of MIF and IL-6 [133]

Acute cerebral
infarction 63 700 mg (tid)

/7 days
Reduced serum HIF-1α, caspase-3 level,

and fatality rate [134]

Schizophrenia 31 300 mg (tid)
/12 weeks

Improved learning memory function and
information processing [135]

Schizophrenia 43 300 mg (tid)
/2 months

Increased prolactin, SOD, GSH-Px, and CAT
levels; decreased MDA and

triiodothyronine levels
[136]

Schizophrenia 34 300 mg (tid)
/12 weeks Decreased IL-1β, IL-6, and TNFα levels [137]

Schizophrenia 27 300 mg (tid)
/8 weeks Decline in weight gain [138]

Schizophrenia 27 300 mg (tid)
/8 weeks

Decreased levels of total cholesterol,
low-density lipoprotein cholesterol, fasting

serum insulin, and insulin resistance
[139]

4.2. Effect of BBR on Schizophrenia Patients

There is no direct research on the clinical efficacies of BBR alone on schizophrenia.
BBR has shown good efficacies when used in combination with risperidone, which is a
first-line treatment for schizophrenia in a clinical setting. BBR not only enhances the action
of risperidone but also ameliorates the side effects induced by risperidone. BBR (0.9 g/day)
combined with risperidone (6 mg/day) were administered to patients. In comparison with
patients treated with risperidone only, BBR significantly improved the learning memory
function and the speed of information processing [135]. Then, BBR treatment corrected the
endocrine hormone level disorder by decreasing the serum triiodothyronine level and by
increasing the prolactin content; additionally, BBR attenuated oxidative stress caused by
risperidone through increasing SOD, GSH-Px, and CAT expression and by decreasing the
MDA level [136]. Another similar trial indicated that BBR was able to suppress inflamma-
tory markers induced by risperidone, as evidenced by the downregulation of IL-1β, IL-6,
and TNFα levels [137].

As metabolic syndrome is closely related to schizophrenia [140], the treatment of
metabolic disturbances in schizophrenia has been well studied. An eight-week treatment
of BBR (0.9 g/day) effectively decreased weight gain [138], levels of total cholesterol,
low-density lipoprotein cholesterol, fasting serum insulin, and insulin resistance [139].

5. Concluding Remarks and Future Perspectives

In the last decade, plenty of studies have confirmed that BBR is beneficial for treating
brain disorders. The omnifarious efficacy of BBR is mediated by its multitargeted mecha-
nisms. From the above, we conclude that there might be four aspects of BBR to elucidate
the multitargeted pharmacological effects (Figure 6).
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5.1. Cell-Viability-Related Pathway

Modulating cell viability is the most obvious representation of the efficacy of BBR.
BBR exerted influence on the cell-viability-related pathway by affecting cell proliferation,
apoptosis, autophagy, as well as angiogenesis. BBR could maintain cell viability in AD, PD,
stroke, dementia, and TBI, while in brain cancer, BBR treatment could provoke cell death.
One chemical can trigger opposite effects according to different cell types and physiological
status, which is considered as bidirectional regulation [141]. Many natural products share
the bidirectional regulation effect, such as jaceosidin [142], curcumin [143,144], ginseno-
sides [145,146], and baicalin [147,148].

The efficacies of one chemical towards normal and tumor cells might be based on
different factors. The major difference between normal and tumor cells is that tumor cells
are immortal; consequently, tumor cells could suppress apoptosis by inhibiting tumor
suppressor gene expression including p53, retinoblastoma protein, Bcl2, and TNF-related
apoptosis-inducing ligand receptors [149,150]. Thus, for combating tumors, the activation
of tumor suppressor genes could trigger apoptotic pathways to induce cell death, while
normal cells showed less sensitivity to apoptotic signals [151,152]. Moreover, for diseases or
chemical-induced toxicity to normal cells, the antiapoptotic effect of BBR was executed to
protect them from damage. Overall, the anti-/proapoptotic effects could be interpreted as
the protective effect of BBR for eliminating tumor cells or toxicity from the host. However,
more research is needed to elucidate how BBR could sense different cell types and then
trigger distinct pathways.

In brain disorders, neural cells are exposed to various stresses, including ROS, Aβ,
Tau, neural toxic chemicals, and tumors, and are easily damaged. Regulating cell viability
by BBR is manifested as affecting cell proliferation, apoptosis, autophagy, as well as
angiogenesis. The mitogen-activated protein kinase (MAPK) signaling pathway is pivotal
in regulating cell viability, including the ERK1/2, p38 MAPK, and JNK pathways [153]. It
is well-documented that BBR exhibits interactions with ERK1/2. BBR modulated ERK1/2
phosphorylation to maintain cell viability in AD and stroke, and to provoke apoptotic death
in brain tumors, showing the bidirectional regulation of BBR. The antiangiogenetic effect of
BRB on brain tumors is also dependent on ERK1/2. Therefore, BBR has been shown as a
potential autophagy modulator, as it could follow AMPK- or PI3K-dependent mechanisms
to regulate autophagy, showing different efficacies against AD, PD, and brain tumors.
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5.2. Oxidation- and Inflammation-Related Pathways

The coexistence of inflammation and oxidative stress responsible for neural pathologi-
cal progressions has been well documented [154]. While inflammation and oxidative stress
consist of distinct biochemical cascades, the processes are closely intertwined and function
in parallel [154]. An unregulated imbalance in the host between the production of reactive
chemicals and the elimination by antioxidases (refering to the protective effects) could lead
to damaged important biomolecules and cells, which would have an impact on the whole
organism and could cause many chronic diseases; during the damage, oxidative stress
can instigate the generation of proinflammatory factors. Then, activated inflammatory
cells would release mediators (cytokines, chemokines, nitric oxide, etc.) that induce tissue
damage and, in turn, augment oxidative stress [155].

BBR is a promising antioxidant in various neurovegetative models, both in vitro
and in vivo. The prominent action of BBR is to reduce ROS production. BBR scavenged
ROS through upregulating antioxidases such as GSH, SOD, CAT, NQO1, NRF2, and GPx,
which are enzymatic antioxidants and are capable of decomposing ROS [156]. In addition,
overwhelmed ROS might trigger cell apoptosis, for instance, in stroke. Notably, BBR was
also effective in counteracting ROS-induced apoptosis.

The regulation of the NF-κB pathway contributes to the anti-inflammatory effects
of BBR. The inhibitory effect of BBR on NF-κB has been verified in stroke, dementia,
anxiety, and TBI. NF-κB activation is tightly regulated, mainly through its localization. In
resting cells, NF-κB proteins are kept in the cytoplasm, while activated forms of NF-κB
mainly lie in the nucleus [157]. Then, activated NF-κB could execute its transcriptional
function to mediate proinflammatory or anti-inflammatory gene expressions [157]. BBR is
effective in preventing the translocation of NF-κB into the nucleus and the transcription of
proinflammatory cytokines; therefore, proinflammatory genes were suppressed, and anti-
inflammatory cytokines were promoted. Additionally, as oxidative stress and inflammation
are intertwined, the antioxidant capability of BBR might contribute to its anti-inflammatory
effect, and vice versa.

5.3. Gut-Microbiota-Related Pathway

The gut microbiota has been identified and proposed to be a key modulator of human
health, to such an extent that it is considered as a hidden organ of the human body.
Brain disorders are associated with gut microbiota dysbiosis, and the dysbiosis could
also promote disease development [158,159]. This interplay is defined as the gut–brain
axis [160]. It has been observed that significant changes in the microbial composition are
apparent in the gut of AD, PD, and stroke patients [161–163]. The mediators between the
brain and the gut microbiota mainly include short chain fatty acids (SCFAs), serotonin,
gamma-aminobutyric acid (GABA), and inflammatory cytokines [164,165]. SCFAs could
protect the blood–brain barrier, modulate the inflammatory cascade, affect the vagal nerve
pathway, and activate the host immune system [166,167]. The gut microbiota regulates the
level of serotonin In the colon and in the blood, and the alteration of serotonin-producing
bacteria, showing the potential to treat serotonin-related diseases such as PD [165]. The
gut microbiota also affects circulating GABA levels, which has been linked to cognitive
impairment and AD development [168]. In addition, the inflammatory stage would be
activated in the leaky gut, induced by microbiota dysbiosis via the release of inflammatory
cytokines such as IL-6, IL-1β, and TNF-α [169]. Then, these cytokines would damage the
brain barrier integrity and induce neuroinflammation via systemic routes [170]. So, would
the gut microbiota play a role in BBR treatment of neurological disorders? This point will
be further discussed in the next section.

5.4. Future Perspective

Overall, BBR seems to be a promising candidate for treating brain disorders. However,
the safety of BBR should be emphasized. Clinical studies have revealed that repeated
oral administration of BBR may inhibit the activities of CYP2D6, CYP2C9, and CYP3A4
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in healthy volunteers [171], which may interfere with the metabolism of other drugs
and would cause drug–drug interactions. In addition, there were some mild, transient,
gastrointestinal adverse effects in T2DM patients after a 13-week BBR treatment, but no
functional liver or kidney damage was observed [172]. As gut microbiota could affect the
absorption of BBR [10], the coadministration of antibiotics (or antibiotic-like chemicals)
with BBR should be used with caution.

Furthermore, little is known about why BBR could exert its various pharmacological
activities. As shown in Figure 6, BBR could influence different pathways for treating brain
disorders. More studies are needed to illustrate why BBR is omnipotent. For example,
whether BBR could activate cell apoptosis or not depends on cell types, or whether there
are any smart genes controlling this switch. Our recent research found that BBR functioned
as a potent ligand to activate PPARδ to protect mice from stroke injury [77]. In addition,
our previous research suggested that BBR was able to promote neurogenesis in vitro [173].
Considering that PPARδ, a ligand-inducible transcription factor, governs a variety of neural
activities including cell differentiation, proliferation, and development [174], it is possible
that PPARδ is a master gene in the BBR treatment of neurological disorders.

Owing to the extremely low bioavailability of BBR, another concern is whether there
is a high enough amount of BBR in the brain to execute its pharmacological effects. A
number of groups have found that BBR is prominent in attenuating cerebral ischemia
injury [67,69–71,74,76–78]. In addition, our research suggested that the oral administration
of BBR activated PPARδ to exert its protective action, and the binding affinity (Kd) between
BBR and PPARδ is 290 nM [77]. However, the peak brain BBR concentration after oral
administration ranges from 10 to 108 ng per g of brain tissue [11,175–177], and even via the
intravenous route, the peak BBR concentration in the brain is only around 270 ng per gram
of brain tissue [178]. Therefore, there may be endogenous factors/chemicals cooperating
with BBR to exert its pharmacological effects. In treating PD, there are two aspects regarding
the effects of BBR. First, BBR exhibits direct action on PD models, including the lessening
of neuron loss and promoting neurogenesis [48–50,52,53]. Second, Wang and colleagues
report that BBR ameliorated PD manifestation by upregulating the biosynthesis of L-dopa
in the gut microbiota through a vitamin-like effect [51], suggesting an indirect effect of BBR.
This kind of dual action is also found in hyperlipidemia. It is reported that BBR combated
hyperlipidemia via the direct effect of the circulated BBR and the indirect effect of working
through the butyrate of the gut microbiota [179].

To date, the role of BBR in treating PD and anxiety has been confirmed to relate to
the gut microbiota [51,107]. It has been revealed that BBR not only modulates the gut
microbiome structure, but also promotes some active microbial metabolites (e.g., L-dopa
and equol). BBR has been well-documented in regulating SCFA and reducing gut leakage
in metabolic syndrome [180]. Nevertheless, it is still unknown whether these effects could
contribute to the efficacy of BBR in treating neurological diseases. More studies on the
change in gut microbiota and metabolites upon the administration of BBR for neurological
diseases is warranted.
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