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Alcopops are flavored alcoholic beverages sweetened by sodas, known to contain

fructose. These drinks have the goal of democratizing alcohol among young consumers

(12–17 years old) and in the past few years have been considered as fashionable amongst

teenagers. Adolescence, however, is a key period for brain maturation, occurring in

the prefrontal cortex and limbic system until 21 years old. Therefore, this drinking

behavior has become a public health concern. Despite the extensive literature concerning

the respective impacts of either fructose or ethanol on brain, the effects following

joint consumption of these substrates remains unknown. Our objective was to study

the early brain modifications induced by a combined diet of high fructose (20%) and

moderate amount of alcohol in young rats by 13C Nuclear Magnetic Resonance (NMR)

spectroscopy. Wistar rats had isocaloric pair-fed diets containing fructose (HF, 20%),

ethanol (Et, 0.5 g/day/kg) or both substrates at the same time (HFEt). After 6 weeks

of diet, the rats were infused with 13C-glucose and brain perchloric acid extracts

were analyzed by NMR spectroscopy (1H and 13C). Surprisingly, the most important

modifications of brain metabolism were observed under fructose diet. Alterations,

observed after only 6 weeks of diet, show that the brain is vulnerable at the metabolic

level to fructose consumption during late-adolescence throughout adulthood in rats. The

main result was an increase in oxidative metabolism compared to glycolysis, which may

impact lactate levels in the brain and may, at least partially, explain memory impairment

in teenagers consuming alcopops.

Keywords: high fructose, moderate ethanol, alcopops, designer drinks, 13C NMR, brain metabolism, astrocytes,

rat

INTRODUCTION

Regular consumption of “alcopops,” also called “designer drinks” or “ready to drink” has
increased among young people in Western societies (1), even if it varies within different
countries and if no reliable survey can be found on teenagers (2). These flavored alcoholic
beverages are sweetened by soft drinks containing fructose, which insidiously facilitates
alcohol consumption among young consumers (3). Flavor, alcohol-strength, portability and low
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cost also influence young consumers (12–17 years old) toward
this category of beverages (4), which can lead to episodic
heavy drinking and related injuries (3). Considering that brain
maturation in the prefrontal cortex and limbic system continues
until 21 years of age, this drinking behavior is becoming a
prevalent public health concern (5).

In Western diets, fructose is one of the most widely
added sugars and its dietary intake is mostly through sucrose
(50:50 molar mixture of fructose and glucose) and high
fructose corn syrup (HFCS; 42, 55, or 90% of fructose).
Compared to a natural consumption of 16–24 g daily with
fruits and honey, “industrial” fructose consumption can reach
80 g/day which equates to 17–20% of the daily caloric
intake (6). The NHANES (National Health and Nutrition
Examination Survey) has reported that soft drinks account
for 40% of the total daily intake of added sugar (7). An
increasing literature has linked a high fructose (HF) diet with
deleterious metabolic effects such as obesity, insulin resistance,
hyperlipidemia and non-alcoholic hepatic steatosis [for review
see (8–10)].

In addition, mounting evidence suggests that high fructose
consumption can induce cerebral abnormalities. Indeed, HF
diet alters spatial memory of rats exposed either during
adulthood (60% fructose for 19 weeks) or a period considered
as adolescence (11% sucrose or HFCS55 during 30 days)
(11, 12). Moreover, 55% of rats fed on a HF diet during
adolescence showed anxiety-like and depression-like behaviors
with an elevated basal corticosterone concentration (13). In
addition to the behavioral features, a HF diet induces alterations
in the hippocampus (structure implicated in spatial memory),
reduces neurogenesis associated with increased apoptosis (14),
raises neuroinflammatory markers (interleukins 1β and 6) (12)
and cerebral insulin resistance (15–17). Moreover, it has been
hypothesized that regular dietary intake of fructose can play a role
in the pathophysiology of chronic neurodegenerative diseases
such as dementia (18, 19).

Alcohol drinking behaviors can be broadly divided in three
categories: acute ethanol consumption (“binge drinking”;> 100 g
ethanol or five “standard drinks” within 2 h), heavily chronic
consumption of ethanol (alcoholism; > 80 g daily), and
light to moderate consumption (<40 g from daily to weekly
frequency) (20). There is very extensive literature concerning
moderate alcohol consumption and its cerebral effects have been
largely studied. It has been documented that ethanol interacts
with neurotransmitter systems (dopamine, serotonin, GABA,
glutamate) as well as second messenger systems (21).

Early moderate ethanol exposure in rats during the critical
developmental period of adolescence has been reported to reduce
hippocampal neurogenesis (22) and to lead to disturbances in
the nucleus accumbens (structure of mesolimbic reward system)
by increasing dopamine levels (23) and neuronal activation
markers (24). Similarly, chronic moderate consumption in adult
rodents induced alterations in dopaminergic neurotransmission
in the nucleus accumbens (25), GABAergic disinhibition in
the dorsolateral striatum (26), altered hippocampal glutamate
basal levels (27), and reduced neurogenesis in the hippocampus
contributing to changes in structural plasticity (28).

Recently, it has been proposed that fructose consumption has
similar toxic effects to ethanol consumption, particularly in terms
of hepatic metabolism (29). Indeed, fructose and ethanol are
nonessential, insulin-independent, energetic substrates leading
to hepatic steatosis. According to this hypothesis, it has been
demonstrated that a mixed diet of high fructose and ethanol
exacerbates hepatic steatosis accompanied by glucosemetabolism
impairment and dyslipidemia (30). It has also been shown that
high fructose diet (60%) may potentiate the effects of chronic
alcohol consumption by enhancing the hepatic inflammatory
response (31).

Despite the extensive literature concerning the respective
impacts of either fructose or ethanol on the brain, the effects
following combined consumption of these substrates remains
unknown. To our knowledge, it is the first time that the
joint consumption of fructose and ethanol at dietary relevant
concentrations has been studied for its impact on young rat
brain metabolism. Our objective was to study the early brain
modifications induced by a diet of high fructose (20%) combined
or not with a moderate amount of alcohol in young rats by 13C-
Nuclear Magnetic Resonance (NMR) spectroscopy, which is a
powerful tool to follow the fate of enriched glucose (the main
brain substrate) through cerebral metabolic pathways.

MATERIALS AND METHODS

Animals and Diets
Male Wistar rats aged 7 weeks and weighing 230 g upon arrival
were purchased from Janvier Labs (Le Genest Saint Isle, France).
Rats were housed in cages inside a room with controlled
parameters; temperature 21–23◦C, hygrometry 30% and a 12 h
light/dark system. The diets were started 4 days after their arrival
and maintained for 6 weeks.

The protocol included four experimental groups (n = 8 for
each group): (i) control diet (CT) with a standard chow (A04
SAFE, Augy, France); (ii) high fructose diet (HF) with 20%
fructose (Sigma) added to the drinking water; (iii) ethanol group
(Et) with a moderate dose of 0.5 g/kg of body weight (BW) per
day (anhydrous absolute ethanol; Carlo Erba Reagents) added to
the drinking water; (iv) a diet combining fructose and ethanol
(HFEt) concentrations of groups (ii) and (iii) in drinking water.

The solid chow composition was similar in all groups and
contained 60% carbohydrates, 16% proteins, 4% cellulose, 3%
lipids, and 12% water. Diets were calculated to be isocaloric
and pair fed among the groups based on Table 1. Diets were
10 g standard chow/100 g BW/day and 10mL drinks/100 g
BW/day. Rat weight and food consumption were measured every
48 h. This study was performed only on males to avoid the
confounding factors linked to sex differences in puberty and
hormone cycles. All procedures have been approved by the
Institutional Animal Research Ethics Review Board of Bordeaux
University (n◦ 5012029A) and followed the guidelines of the
French governmental agency.

Infusion of [1-13C]glucose
At the end of the feeding period, the rats were anesthetized with
an intraperitoneal injection of chloral hydrate (8%, 1 mL/200 g
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TABLE 1 | Caloric value for each substrate.

Standard chow diet 2.9 kcal/g

High fructose 20% 0.8 kcal/mL

Ethanol 0.036 kcal/mL

High fructose 20% + ethanol 0.836 kcal/mL

BW; Sigma-Aldrich, USA) and placed on a heated pad (37◦C).
[1-13C]D-glucose (750mM, Cambridge Isotope Laboratories,
Inc.) was infused into the tail vein over a total period of 60min,
following a previous 20 steps, time-decreasing exponential rate
protocol going from 15–1.23 ml/h during the first 25min after
which the rate was kept unchanged for the last 35min. This
infusion protocol was designed to reach constant [1-13C]D-
glucose concentrations in the blood and the total amount of
glucose administered was 2.19 mmol/h per 200 g BW.

Blood and Brain Samples
Prior to the infusion, 500 µL of blood was collected from the
tail vein with heparinized syringes, centrifuged (1,500 g, 10min)
and plasma stored at −80◦C. At the end of the infusion period
and while the rats were still anesthetized, the abdomen was
opened sufficiently to collect 2mL of blood from the inferior vena
cava into heparinized syringes. Blood samples were immediately
centrifuged (1,500 g, 10min) and plasma was kept at −80◦C
until it was analyzed. After blood sampling, rats were rapidly
euthanized by focused brain scientific microwaves (5 kW, 1 s;
Sacron8000, Sairem, Neyron, France), which completely prevents
post-mortem metabolic modifications in the brain. The skull was
cut opened with a micro-circular saw, the brain rapidly removed
and dipped into liquid nitrogen. Brains were kept at−80◦C until
the metabolites were extracted.

Perchloric Acid Extraction
Before extraction, each brain was weighed to normalize the data.
Water soluble metabolites of the whole brain were extracted into
perchloric acid (0.9M) as previously described (32) with the
following modifications. After homogenization, the suspension
was centrifuged at 3,000 g for 10min (4◦C). The supernatant was
neutralized at pH 7.20 with a 9M KOH solution and centrifuged
to eliminate perchlorate salts. Samples were then lyophilized.
Prior to NMR spectroscopy, lyophilysates were dissolved in 400
µL of D2O and 10 µL of ethylene glycol (1 mmol/L in D2O) was
added as an external reference.

High Resolution at the Magic Angle
Spinning (HRMAS) NMR Spectroscopy
HRMAS NMR spectroscopy was performed on an 11.7T
spectrometer (DPX 500MHz, Bruker Biospin, Wissembourg,
France). For each brain perchloric acid extract, 50 µL was placed
in a 4 mm-diameter rotor and analyzed at room temperature.

1H-NMR spectra were acquired with a 90◦ pulse angle
(adjusted for each sample), relaxation time of 8 s, relaxation
delay of 8 s, and spectrum width of 10 parts per million (ppm),
acquisition time of 3.28 s, 128 scans and 32K memory size.

Homonuclear presaturation was used to suppress the water
signal.

The specific enrichment (% 13C) of glucose carbon 1 (Glc C1
SEnr) was determined from the ratio of the integral of Glc satellite
peaks resulting from heteronuclear spin-coupling to the sum of
the integrals of satellite and central peaks.

1H-decoupled 13C-NMR spectra were acquired with a 90◦

pulse angle, relaxation time of 20 s, 200 ppm spectrum width,
1.31 s acquisition time, ∼5,500 scans, and 64K memory size.
From these 13C spectra, relative enrichment of glutamate (Glu)
C2/C3 and glutamine (Gln) C2/C3 were calculated.

1H-observed/13C-edited (POCE) NMR spectra were acquired
under 13C decoupling as previously described (32). The method
included a first scan consisting of a standard spin-echo
acquisition in which 1H linked to all carbons (12C and 13C) were
detected, and a second scan corresponding to a 13C inversion
pulse, in which only 1H coupled to 13C were visible. Brain
metabolite 13C enrichments were determined from the ratio of
the integral of a resonance on the edited 13C-1H spectrum to its
integral in the standard spin-echo spectrum.

Plasma Metabolites
Plasma samples were collected at the end of the 13C-glucose
infusion and analyzed using a clinical chemistry analyzer
(Olympus AU2700, BCO, Villepinte, France) with kits for glucose
(Glc), proteins, albumin, total cholesterol, HDL-cholesterol,
triglycerides (TG) and free fatty acids (FFA). These assays were
performed in the medical laboratories of Bordeaux Hospital
(Haut-Levêque, France). Insulin levels were assessed by ELISA
(Diasorin, Antony, France) at the Institut de Chimie et Biologie
des Membranes et des Nano-objets (Pessac, France).

Data Analysis
Values are mean ± SEM. Statistical analyses were performed
using Prism 5 (GraphPad, La Jolla, CA, USA). Two way-
ANOVA analyses followed by a post-hoc Bonferroni test were
used to compare body weight as a function of diet and time.
Statistical comparisons between diets for plasma and brain
metabolites were performed using non-parametric one-way
ANOVA (Kruskal–Wallis analysis followed by a post-hoc test of
Dunn). A p < 0.05 was considered statistically significant.

RESULTS

Body Mass and Food Intake
Control rats had a constant weight gain of 30 g per week during
the first 3 weeks linked to normal growth, followed by a gain of
15 g per week until the end of the protocol. HF and Et rats showed
similar weight gain curves (Figure 1A) but had a lower weight
gain than the CT group. The difference became statistically
significant at day 10 and remained until the end of the protocol,
corresponding to a final difference of 19% for HF group and
16% for the Et group. HFEt rats exhibited the lowest weight gain
relative to rats on other diets, leading to a final reduction of 28%
compared to CT rats and a mean difference of 18% compared
to HF and Et rats. The difference became statistically significant
at day 17 compared to both HF and Et groups. It is important
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FIGURE 1 | Body weight (A) and food intake (B) of rats fed with control diet

(CT), high fructose diet (HF), ethanol (Et), or a mix (HFEt) during 6 weeks.

Values are mean ± SEM (n = 8/diet for each time point). a: Statistical

difference between CT vs. HF, Et, and HFEt from the 10th day until the end of

the protocol. b: Statistical difference between HFEt vs. HF and Et from the

17th day until the end of the protocol.

to notice that such significant differences in weight gain were
observable while all diets were isocaloric and caloric intake tends
to be equivalent between groups (Figure 1B).

Plasma Measurements
Prior to the infusion of [1-13C]glucose, systemic glucose
metabolism impairment was assessed in each group by
determining the glycemia/insulinemia blood ratio. For the HF
and Et groups, the ratio tended to be higher than in the CT
group, while this difference was significant only for the HFEt rats
(Figure 2).

Biochemical assays were also performed on plasma collected
after the [1-13C]glucose infusion and are summarized in
Table 2. No significant difference was observed between groups
regarding proteins and albumin, which are nutritional markers
indicating adequate dietary intakes. Total cholesterol, HDL-
cholesterol and FFA were unchanged among groups. In contrast,
plasmatic triglycerides (TG) tended to increase in the HF
group and were significantly raised by 69% in the HFEt
group.

FIGURE 2 | Ratio glycemia/insulinemia in rats after 6-week diet with either

control (CT), high fructose (HF), ethanol (Et), or a mix diet (HFEt) and prior

infusion of [1-13C]D-glucose. Glucose and insulin content were measured in a

blood sample collected just before [1-13C]glucose infusion and after 6 weeks

of diet to detect any disturbance in insulin and therefore glucose metabolism

homeostasis at this time point. Values are mean ± SEM. *Statistical difference

between CT and HFEt.

TABLE 2 | Biochemical assays on plasma in rats fed during 6 weeks with Control

(CT), High Fructose (HF), Ethanol (Et), or a mix (HFEt) diet.

CT HF Et HFEt

Proteins (g/L) 57.0 ± 0.7 56.0 ± 2.8 52.0 ± 0.6 55.0 ± 0.8

Albumin (g/L) 27.0 ± 0.5 30.0 ± 0.8 26.0 ± 0.4 28.1 ± 0.6

Total Cholesterol

(mmol/L)

1.84 ± 0.18 1.38 ± 0.13 1.35 ± 0.04 1.40 ± 0.12

HDL-Cholesterol

(mmol/L)

0.79 ± 0.09 0.64 ± 0.12 0.65 ± 0.02 0.63 ± 0.06

TG (mmol/L) 1.33 ± 0.15 1.99 ± 0.63 1.05 ± 0.13 2.25 ± 0.31*

FFA (mmol/L) 0.92 ± 0.38 0.68 ± 0.27 0.80 ± 0.22 0.81 ± 0.13

*Statistical difference between CT and HFEt.

Brain Metabolism by HRMAS NMR
Spectroscopy
The Specific Enrichment of Glucose (% 13C) in Brain

The specific enrichment of glucose C1 (% 13C; Glc C1 SEnr)
was determined on 1H spectra to evaluate the 13C-enrichment
obtained in the brain following 1h of [1-13C]glucose infusion. Glc
C1 SEnr in Et andHFEt groups were 21.6 and 18.7%, respectively,
slightly higher than the one measured in CT (17.4%) and HF
(15.5%) groups (Figure 3).

Relative Enrichment of Glu C2/C3 and Gln C2/C3

From 13C spectra, the relative enrichments (comparison of 13C
incorporation between different carbons in the same molecule)
for glutamate and glutamine were determined. Classically,
glutamate, present in greater quantity in neurons, represents
the neuronal compartment whereas glutamine, synthetized only
in astrocytes, represents the astrocytic compartment. Therefore,
these measurements are used to determine if [1-13C]glucose
is preferentially metabolized in astrocytes (C2/C3 Gln>1; due
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to the activity of pyruvate carboxylase (PC) present only
in astrocytes) or in the neuronal compartment (C2/C3 Glu
around 1; no pyruvate carboxylase activity) (For a schematic
representation of the fate of 13C see Figure 4 in which labeling
linked to PC is marked as an open circle whereas the one linked

FIGURE 3 | Specific enrichment of glucose 13C (% 13C) obtained in the brain

following 1 h of [1-13C]D-glucose infusion in rats fed with control (CT), high

fructose (HF), ethanol (Et), or a mix diet (HFEt). Specific enrichments were

normalized to the Glucose C1 specific enrichment in each group.

to pyruvate dehydrogenase is represented by a filled circle). No
variation in the Glu C2/C3 ratio was observed between groups
(Table 3). Compared to the CT group, the Gln C2/C3 ratio was
significantly increased by 30.6% in HF, 36.1% in Et and 28.7%
in HFEt groups, which indicates an increase in the astrocytic PC
activity.

13C Enrichment of Brain Metabolites

From POCE spectra, brain metabolite 13C enrichments
(percentage of 13C incorporated in a metabolite at a specific
carbon position) were measured (Figure 5). In each diet group,
Glc C1 SEnr previously measured was used to normalize 13C
enrichments of brain metabolites and thus compare groups
between them. Most of the cerebral metabolites 13C enrichments

TABLE 3 | Ratios C2/C3 glutamate and C2/C3 glutamine measured by 13C NMR

HRMAS in brain perchloric extract of rat who followed Control (CT), High Fructose

20% (HF), Ethanol (Et), or a mix diet (HFEt).

CT HF Et HFEt

C2/C3 glutamate 1.15 ± 0.12 1.11 ± 0.05 1.15 ± 0.05 1.20 ± 0.10

C2/C3 glutamine 1.08 ± 0.08 1.41 ± 0.09* 1.47 ± 0.11 * 1.39 ± 0.08 *

*Statistical difference between CT and HF and/or Et.

FIGURE 4 | Schematic representation of metabolite labeling from [1-13C]glucose during the first tricarboxylic acid (TCA) cycle turn. In astrocytes, [1-13C]glucose

follows either the pyruvate dehydrogenase (PDH; ) or the pyruvate carboxylase (PC; ), but only the PDH pathway occurs in neurons. At the end of the glycolysis,

[1-13C]glucose provides [3-13C]pyruvate which can take two paths: either pyruvate dehydrogenase (PDH; ) or pyruvate carboxylase (PC; ). In the PDH pathway,

[3-13C]pyruvate gives [2-13C]AcCoA which enters in the TCA cycle and leads to [4-13C]citrate, then to [4-13C] αKG. This intermediate αKG forms [4-13C]glutamate,

which is metabolized in [4-13C]glutamine. Through TCA cycle, by the symmetry of some intermediates, [4-13C]αKG gives two isotopomers of OAA: [2-13C]OAA

(50%) and [3-13C]OAA (50%). Then, it provides Asparate labeled in [2-13C] (50%) and [3-13C](50%). In the PC pathway (only in astrocyte compartment),

[3-13C]pyruvate is converted in [3-13C]OAA which enters TCA cycle to form [2-13C]αKetoGlu which leads to [2-13C]glutamate and then to [2-13C]glutamine. α-KG,

α-ketoglutarate; Ala, alanine; AcCoA, acetyl-CoA; Glu, glutamate; Gln, glutamine; GABA, γ-aminobutyric acid; Lac, lactate; OAA, oxaloacetate.
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FIGURE 5 | 13C-specific enrichments (%) of some carbon positions of some brain metabolites after 1 h infusion of [1-13C]glucose in rats fed with control (CT), high

fructose (HF), ethanol (Et) or mixed (HFEt) diet. *Statistical difference between CT and HF.

increased significantly in the HF group compared to the CT
group; alanine C3 +19% (p = 0.03), aspartate C3 +37% (p =

0.002), glutamate C3 +75% (p = 0.005), glutamate C4 +24%
(p = 0.05), glutamine C3 +26% (p = 0.03), glutamine C4
+24% (p = 0.05), GABA C2 +31% (p = 0.04), GABA C3 +34%
(p = 0.02). In comparison to the CT group, brain metabolites
13C enrichments in the Et group tended to increase, except for
lactate and GABA. Concerning the mix diet HFEt, it caused an
increase of a magnitude, which is intermediate between the effect
observed for the HF and Et groups for all measured amino acid
carbons, except for glutamine C4.

DISCUSSION

In the present study, we have evaluated the effects of an intake
of fructose (similar as in the Western diet) and/or of a moderate
amount of ethanol on cerebral glucosemetabolism in young adult
rats. Indeed, the brain represents only 2% of the body mass but it
consumes up to 25% of the circulating glucose at rest as its main
energy source (33). Rodents are a good model to study the effects
of alcopop consumption in young people, as they exhibit a very
similar fructose metabolism than humans (34, 35). Moreover, the
time window for “adolescence” (from 30 to 46 postnatal day)
(36) and “late-adolescence” (from 46 to 59 postnatal day) are
very convenient and can be related to their human counterparts
(23). With our experimental design, we studied the effects on
metabolic pathways of fructose and ethanol substrates per se
in the case of a normal and isocaloric diet in rats from late-
adolescence (postnatal day 53) to adulthood (13 weeks). The
caloric intake from beverages in the HFEt group was equivalent

to human alcopop consumption of 300ml per week containing
on average 4% of alcohol (185 kcal/week/rat).

Effect of the Diets on Body Weight
Compared to the control group, wemeasured a lesser weight gain
in all treated groups (HF, Et, and HFEt). Since rats were both
isocaloric and pair-fed (same amount of caloric intake for all rats
independently of their body weight), our results strongly suggest
that fructose has a lower energetic efficiency than control chow
diet. This weaker weight gain observed in HF fed rats seems at
variance with reports of either similar body weight (37–39) or
even increased body weight reported in the literature [review in
(40)]. However, these differences with others can be explained by
our experimental design, which differed from previous studies
that used up to 60% fructose in the diet (20% fructose here)
and/or the diet was available ad libitum. Nonetheless, in one
study performed by Alwahsh et al. (30), conducted in adult
Sprague-Dawley rats, a decrease in body weight was measured
after 4 and 8 weeks of high fat and 70%-fructose diet. More
interestingly, in this study, liver weights did not change between
control and rats that underwent the diet, whereas the ratio
liver weight/body weight was increased, indicating a change in
body composition. Two other studies have shown that fructose
diet didn’t lead to increased weight when directly administered
during 4 months to adult mice [15% fructose in the diet; (41)] or
in rat pups after maternal supplementation (42).

In our study, as a consequence of its design and the choice
to highlight the substrate effect, no effect linked to an excessive
caloric intake can be evidenced. However, after a 6-week period
on a 20%-fructose diet, we observed an increase in visceral
adipose tissue (data not shown). Taking all together (lesser body
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weight gain and increase in visceral adipose tissue), our data
suggest either a decrease in rat growth and/or a modification
of the body composition, a consequence of a decrease in energy
efficiency linked to fructose and/or ethanol intake. Since it has
been shown that excessive consumption of fructose increases
reactive oxygen species (ROS) production and mitochondria
impairment in skeletal muscle [for review, see (43)], which
could therefore lead to tissue damage, we may hypothesize that
change in body composition could be a consequence of such
ROS production and either less muscle weight gain or a decrease
in global energy efficiency. Moreover, aged rats having a 30%
fructose supply during 5 months evidenced an accelerated loss
of muscle mass vs. control group by altering the stimulation
of postprandial protein synthesis (44); this effect perhaps due
to a decrease in insulin sensitivity could participate to a lesser
growth in young rats needing a positive energetic balance. A short
period of 1 week of high fructose is sufficient in humans to alter
the expression of genes involved in the energetic metabolism in
skeletal muscle (45).

Concerning the Et diet, we observed a lower body weight gain,
a result already found in a previous study in which a lower weight
was measured at postnatal day 114 in rats exposed chronically
to ethanol vapor since adolescence (22). Such a variation in
body weight was also measured after a 20-days exposure to
10%-ethanol gelatin (46).

In the HFEt group, the decreased body weight gain was even
more extensive, indicating a synergistic effect of both diets, which
is consistent with a previous study showing a combined fructose-
ethanol diet resulted in a more apparent decreased body weight
gain during the 2nd and 3rd weeks of feeding compared to
ethanol group (30).

Effect of the Diets on Plasma Lipid
Contents, Glycemia, and Insulinemia
We did not observe any statistical difference in plasmatic
markers of lipid metabolism (total cholesterol, HDL-
cholesterol, and FFA) between CT, HF and Et groups.
Nevertheless, we measured an increase in triglyceridemia
in the HFEt group (and a tendency to increase in the HF
group), which is in accordance with the fact that high
fructose diet can induce dyslipidemia (11, 14, 16) and
early liver fatty acid deposit with lipid microvacuoles,
a phenomenon that we observed after 6 weeks of diet
(Supplementary Figure 1).

A higher dose of fructose and ethanol (30% of each substrates
in the diet for 4 weeks) has been shown to significantly elevate
blood insulin (31). In our study, plasmatic ratio glucose/insulin
was increased after all diets, compared to control, but this
increase was only significant in the HFEt group. This increase
indicates that insulin homeostasis has been disturbed at the
examined time point. It’s now well-known that fructose and
ethanol diets alter hepatic metabolism (47, 48). By contrast to
glucose, fructose and ethanol do not require insulin for their
metabolism (29) and it has been shown that both molecules can
impair insulin sensitivity (49–53), a result observed in our study.

Effect of Fructose on Brain Oxidative
Metabolism
Fructose enters the brain through Glucose Transporter 5
(GLUT5), which is found in the blood-brain barrier endothelial
cells (54). In the brain, GLUT5 is expressed in microglial cells
(55–57). However, some studies have found that GLUT5 can also
be expressed in Purkinje cells in mouse cerebellum, together with
the specialized enzymes ketohexokinase (fructokinase), aldolase,
and triokinase, three enzymes important for the fructose-specific
metabolic pathway (58). In a more recent study conducted in
rats, in addition to microglia and Purkinje cells, GLUT5 was
localized in hypothalamic neurons as well as in tanycyte processes
(57). However, even if fructose was shown to be metabolized by
the brain (59), its metabolism is low compared to the one of
glucose.

13C-NMR spectroscopy is a powerful tool to studymetabolism
but with a low sensitivity. Only molecules above the mM
range can be detected and it also requires the infusion of
13C-labeled precursor. In this study, [1-13C]glucose infusion
allowed the following of brain glucose metabolism [for an
overview of the fate of 13C in brain metabolism, see (60,
61)], the main brain substrate, and was chosen to reflect
the impact of the diet. Indeed, if any metabolic adaptation
was established during fructose and/or ethanol intake, we will
be able to observed it through the [1-13C]glucose pathway
and 13C distribution. For the first time, a significant raise in
13C-specific enrichment in intermediate metabolites (alanine,
aspartate, glutamate, glutamine, and GABA) has been measured
in HF rats, as well a small raise in Et group and an
intermediate increased enrichment for HFEt animals. However,
this increase was only statistically significant in the HF group.
This means that even if ethanol and ethanol+fructose may
modify metabolism, the major impact was linked to the fructose
diet.

13C-labeling of glutamate and aspartate reflects neuronal
glucose oxidative metabolism through the TCA cycle with
formation of 13C-labeled α-ketoglutarate and oxaloacetate,
from which these two amino acids are formed, respectively.
Since glutamine synthetase is present only in astrocytes (62),
labeling of glutamine reflects astrocytic oxidative metabolism.
An increase in the specific enrichments of these amino acids
indicates that oxidative metabolism was increased in the brain
after fructose dietary supplementation. Interestingly, lactate
C3 specific enrichment was unchanged whereas alanine C3
specific enrichment was increased. Alanine enrichment reflects
the one of pyruvate. This indicates that pyruvate, formed at
the end of the glycolysis, is mainly directed toward oxidative
metabolism rather than lactate production, a pathway that is
predominant in astrocytes (63). Finally, glutamate and glutamine
C3 specific enrichments also increased. Since these carbons are
labeled during the second TCA cycle turn, an increase of 13C
incorporation into these carbon positions indicates that the TCA
cycle is turning faster (C3/C4 ratios increased). Taken altogether,
our data show a relative increase in oxidative metabolism
compared to glycolytic lactate production after the fructose
diet.
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Such an increase in mitochondrial metabolism was already
observed when insulin-resistance is present (64–66). Another
study, in which fructose was administered during gestation
and lactation, (42) demonstrated that maternal exposure to
fructose led to a significant increase in state 3 respiration in
rat pup brains, as well as a decrease in the Phosphate/Oxygen
(P/O2) ratio, indicating a lower efficiency of the respiratory
chain and an increase in mitochondrial metabolism to
compensate for this lower ATP production (mitochondrial
decoupling).

Effect of Fructose on Astrocytic
Metabolism
In the brain, it has been proposed that a metabolic
compartmentation occurs, the astrocytes being more glycolytic
and the neurons more oxidative. This leads to a lactate shuttle
between astrocytes and neurons, a metabolic cooperation
still debated nowadays but more and more admitted [for a
review see (67)]. In our study, we found that lactate C3 specific
enrichment was unchanged whereas specific enrichments of
amino acids linked to the TCA cycle were increased. This
relative increase in oxidative metabolism compared to glycolytic
lactate production after the fructose diet may have an impact on
cognitive functions. Indeed, it has been shown that fructose diet
may impact memory (41), and, in parallel, that lactate shuttling
between astrocytes and neurons through the monocarboxylate
transporters (MCT) is necessary for long-term memory
formation (68). In a more recent study, the down regulation
of the neuronal lactate transporter, MCT2, in the barrel cortex
of rat suppressed the blood-oxygen-level dependent (BOLD)
effect observed in functional magnetic resonance imaging (MRI)
when the whisker were activated, suggesting impairment of
the synaptic activity when this lactate shuttle is suppressed
(69).

The metabolic modification after the HF diet can also be
observed through the relative enrichments of the different
glutamine carbons. Indeed, glutamine C2/C3 ratio increased in
the HF group. An increase in this ratio reflects an increase in the
pyruvate carboxylase (PC) pathway (70). PC is the predominant
anaplerotic enzyme in the brain and is exclusively located in
astrocytes (71). This enzyme allows the conversion of pyruvate
directly into oxaloacetate and is activated by AcCoA. Therefore,
an increase in the glutamine C2/C3 ratio indicates that a greater
amount of pyruvate is directed toward the TCA cycle rather
than being converted into lactate. These data strengthened the
conclusion that fructose diet alters metabolism in astrocytes. The
relative decrease in lactate production compared to oxidative
metabolism after fructose diet suggests a remodeling of astrocytic
metabolism, a decrease of glycolysis in these cells, which may
have a role in this memory impairment. This hypothesis is
supported by preliminary results obtained by in vivo diffusion
MRI on HF rat brains after 5 weeks of diet: a 18, 13,
and 20%-decrease in fractional anisotropy were measured
(Supplementary Figure 2) compared to control in the cortex,

hippocampus and striatum, respectively, indicating a decrease in
fiber organization and/or myelination (72) in a period of critical
brain maturation.

CONCLUSION

In this study, we followed the effects induced by a high fructose
diet (20%) combined or not to a moderate amount of alcohol
in young rats. We provide here evidence that in the case of a
combined fructose and moderate dose of ethanol consumption,
under isocaloric conditions, fructose has the biggest impact on
brain metabolism and increases oxidative metabolism. These
early alterations show that the brain is vulnerable at the
metabolic level to fructose consumption during late-adolescence
throughout adulthood in rats. Brain metabolic remodeling
appears to occur precociously without a concurrent increase
in overall energy intake and seems consequently to be linked
to fructose itself. These disturbances should be more explored
to elucidate deleterious long-term outcomes, such as memory
impairments, as recently proposed (73).
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Supplementary Figure 1 | Histology of liver from control (A) and HF rats (B) fed

with control diet or 20%-high fructose diet during 6 weeks. Representative

hematoxylin–eosin–saffron (HES) and Periodic Acid Schiff (PAS) stainings.

Inclusion of lipid droplets are detected in (C).

Supplementary Figure 2 | Fractional anisotropy values measured from diffusion

weighted MRI in the cortex, striatum and hippocampus of control rats (CTL) and

rats fed with a high fructose diet during 5 weeks (HF). ∗Statistical difference

between CTL and HF.
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