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Abstract: Traditionally, drug development involved the individual synthesis and biological evalu-
ation of hundreds to thousands of compounds with the intention of highlighting their biological
activity, selectivity, and bioavailability, as well as their low toxicity. On average, this process of new
drug development involved, in addition to high economic costs, a period of several years before
hopefully finding a drug with suitable characteristics to drive its commercialization. Therefore, the
chemical synthesis of new compounds became the limiting step in the process of searching for or
optimizing leads for new drug development. This need for large chemical libraries led to the birth of
high-throughput synthesis methods and combinatorial chemistry. Virtual combinatorial chemistry is
based on the same principle as real chemistry—many different compounds can be generated from
a few building blocks at once. The difference lies in its speed, as millions of compounds can be
produced in a few seconds. On the other hand, many virtual screening methods, such as QSAR
(Quantitative Sturcture-Activity Relationship), pharmacophore models, and molecular docking, have
been developed to study these libraries. These models allow for the selection of molecules to be
synthesized and tested with a high probability of success. The virtual combinatorial chemistry–virtual
screening tandem has become a fundamental tool in the process of searching for and developing a
drug, as it allows the process to be accelerated with extraordinary economic savings.

Keywords: virtual combinatorial chemistry; virtual screening; QSAR; drug development

1. Introduction

Traditionally, drug development included the individual synthesis and biological
evaluation of hundreds of organic compounds with the intention of characterizing their
biological activity, selectivity, bioavailability, and toxicity. On average, this process involved
high economic costs and several years of research before identifying a drug with suitable
characteristics to be commercialized [1]. Thus, the identification and synthesis of new
compounds rapidly became the limiting step in the discovery and optimization of lead
compounds for the development of new drugs [2]. In the past, chemical libraries used
in biological assays were obtained by gathering compounds via purification and identi-
fication of biologically active ingredients from natural, marine, or fermentative products
among other sources [3]. This was a time-consuming process that led to the appearance of
combinatorial chemistry as a method to obtain large chemical libraries in a time-effective
manner [2].

De Julian-Ortiz defined Virtual Combinatory Chemistry (VCC) as the computational
simulation of the generation of new chemical structures by using a combinatorial strategy
to generate a virtual library [4]. Since the generated compounds do not necessarily have
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to be new, VCC could be defined more precisely as computational simulation to generate
structurally related compounds. Moreover, the concept of virtual combinatorial library
should be clearly separated from databases in which compounds are not structurally related.
In other words, a virtual combinatorial library can be generated by combining a limited
number of chemical building blocks. The emergence of VCC, along with the publication of
many databases with hundreds or thousands of compounds, has propelled the development
of computational methods designed to analyze the rapidly increasing amounts of chemical
information that is being generated [5]. Initially, these libraries or databases were analyzed
using High-Throughput Screening (HTS), which involved the experimental screening of
entire compound collections. However, the growing number of compounds available
for screening promoted the development of computational approaches to complement
HTS, such as Virtual Screening (VS) [6]. The main advantage of VS is that, while HTS
requires experimentation to obtain results, VS consists in the computational evaluation of
databases aiming to select a small number of reliable and experimentally testable candidate
compounds that have a high probability of being active [5].

Different methodologies have been developed to carry out VS and they can be divided
into two main categories: ligand-based VS (LBVS) and structure-based VS (SBVS) [7]. LBVS
methods use the structural and biological data from a set of known active compounds to
identify promising candidates for experimental screening [8]. These chemical data can
be based on either 2D or 3D representations of the molecules. On the other hand, SBVS
requires the 3D representation of the target, as this approach aims to find molecules that fit
within a binding site in the best position and orientation possible [9].

Furthermore, besides identifying the appropriate chemical structure, other factors
must be considered during the drug design process. For example, variations in crystal
structure can lead to different polymorphs of a solid compound with different physic-
ochemical characteristics that can translate to pharmacokinetic differences that, in turn,
may affect their activity [10–12]. For this reason, understanding crystallization has become
increasingly important to have a reproducible drug production process. In fact, Density
Functional Theory (DFT) has become increasingly popular in drug design because it can
predict this behavior in active pharmaceutical ingredients, among many other things [13].

This review discusses chemical combinatorial libraries as well as other existing
databases available for VS and the different methodologies used for VS. This review
is divided into three main parts. In the first part, we analyze the different strategies used to
generate virtual combinatorial libraries as well as the methods that can be used to do so. In
the second part, we review the methodologies used to carry out the virtual screening of
combinatorial libraries and non-combinatorial databases. Lastly, the third part includes
examples and applications of the aforementioned methodologies in the discovery and
development of new drugs.

2. Virtual Combinatorial Library Creation

The design of virtual combinatorial libraries (VCLs) is a critical part in the early phases
of the drug discovery process as these libraries are used in lead generation projects to
identify series of analogues around hit and lead compounds to explore structure–activity
relationships (SARs) [14]. Starting from a single known bioactive molecule acting as a tem-
plate, a set of theoretically isofunctional molecules can be virtually assembled mimicking
the pharmacophore pattern [15]. In the following, we discuss the different approaches that
can be followed to create a VCL as well as the different software platforms available to
do so.

2.1. Types of Combinatorial Libraries

There are two main classifications of VCLs regarding their generation process: based
on a synthetic route or based on a scaffold structure.

The synthetic route approach starts with the identification of the chemical reactions
intended to be followed to obtain the designed compounds. This includes the reaction
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rules, the reaction strategy, allowed products, forbidden products, parameter values that
define the logical conditions for reaction application, and the sites where reactions oc-
cur [16]. Basically, the library is made up of the products of carrying out a certain reaction
with n reactants of type A and n reactants of type B. This approach imitates quite accu-
rately the steps followed in real chemical synthesis. In fact, the similarity it has with
in situ chemical synthesis is the reason why this is the approach generally followed by
the pharmaceutical industry. Examples of the application of reaction-based VCLs in the
pharmaceutical industry include BI-Claim developed by Boehringer Ingelheim, Eli Lilly’s
Proximal Collection, and Pfizer global virtual library (PGVL) [17–19]. All these VCLs
were built using prevalidated or reported reactions as well as accessible chemical reagents.
Similarly, Humbeck et al. developed CHIPMUNCK, a VCL that covers over 95 million
compounds [20]. This combinatorial database is composed of three sub-libraries, each
being the product of a special set of in-silico-performed reactions: heterocycle forming reac-
tions, medicinal chemistry reactions, and multicomponent reactions. Another example of a
VCL based on a synthetic route is ZINClick [21]. This combinatorial library contains over
16 million 1,4-disubstituted-1,2,3-triazoles that can by synthesized via a “click” 1,3-dipolar
cycloaddition reaction between azides and alkynes catalyzed by copper salts. Similarly,
Saldívar-González et al. applied a Diversity-Oriented Synthesis strategy to design a library
of lactams that could be easily synthesized by performing a series of intramolecular paring
reactions to form an amide bond between carboxylic acids and primary or secondary
amines [22].

The other main approach to VCL design is that based on a scaffold structure. This
method consists in the determination of a common skeleton with variable sites tagged
as R1, R2, R3 . . . Rn, where each one is associated with a list of possible substituents [23].
This approach is ideal in those cases where there are different synthetic routes described to
obtain a common scaffold [24]. This type of VCL is focused on a specific target, structural
class, or pharmacophore as it stresses the exploration of a specific area of the chemical
space, resulting in a small number of structurally related compounds based on a known
target or family [24]. Examples of this type of VCL include the combinatorial library of
1001 6-fluoroquinolones developed by Bueso-Bordils et al. [25] to identify new compounds
with antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). The
library was built using a 6-fluoroquinolone skeleton with structural variations in positions
1, 7, and 8. Similarly, Kouman et al. designed a VCL based on a benzamide scaffold
to identify new Mycobacterium tuberculosis 2-trans enoyl-acyl carrier protein reductase
inhibitors with favorable pharmacokinetic profiles [26]. Lauro et al. have also built a library
containing approximately 2.0 × 104 virtual compounds by following a multicomponent-
based chemical route for the decoration of the 2,4-thiazolidinedione core [27].

2.2. Generation of Combinatorial Libraries

Virtual combinatorial libraries can be generated using different computational tools
and software [28]. Table 1 summarizes different tools that can be used to build VCLs of
small molecules. Some of these tools, such as KNIME, RDKit, DataWarrior, and Reactor,
allow for the creation of a VCL based on a list of prevalidated reactions [29–34]. Others,
such as Library Synthesizer, SimLib, MOE, Schrödinger, and Nova, use the scaffold-based
approach to create the combinatorial library by allowing the user to select a common
scaffold or molecular skeleton with tagged substitution points to which different R groups
will be attached [35–40]. Finally, a third type of model includes those using multi-objective
algorithms such as CCLab and MoSELECT [29,30]. In this case, the tool does not only
provide a set of combinatorial compounds, but also provides filtering options regarding
aspects such as synthesis cost, drug-likeness, physicochemical properties, and structural
diversity. These tools allow the relationship between different objectives to be explored with
competing objectives easily identified. Thus, the library designer can make an informed
choice on which solution to explore.
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Table 1. Examples of chemoinformatic tools available to create chemical libraries of small molecules.
(Adapted from Saldívar-González et al. [28]).

Tool/Software Main Features Ref.

CCLab Based on a multi-objective genetic algorithm,
including synthesis cost and drug-likeness. [29]

MoSELECT

Based on a multi-objective genetic algorithm,
including diversity and “drug-like”
physicochemical properties, and a
fitness function.

[30]

KNIME Based on generic reactions. [31]

RDKit Based on generic reactions. [32]

DataWarrior
Molecules are designed following a given
generic reaction and a list of real
reactant structures.

[33]

Library synthesizer
Creates libraries through specification of a
central scaffold with connection points and a list
of R groups.

[35]

SimLib v2.0 Libraries are built using SMILES and a
scaffold-based approach. [36]

GLARE Allows one to optimize reagent lists for the
design of combinatorial libraries. [41]

Reactor (ChemAxon)
Library generated using generic reactions and
considering reaction rules that yield chemically
feasible products.

[34]

Molecular Operating
Environment (MOE)

Scaffold-based. New chemical compounds are
generated by attaching R groups to a common
skeleton with marked points.

[37]

Schrödinger
Creates library by substituting attachments on a
core structure with fragments from
reagent compounds.

[38]

Nova Uses central scaffolds and a list of R groups. [39]

ChemDraw Uses central scaffolds and a list of R groups. [40]

3. Virtual Screening

Virtual screening can be defined as a computational technique that is generally used
in the early stages of the drug discovery process to search libraries of small molecules to
identify chemical compounds that are likely to bind to one or several drug targets [42].
In other words, VS is a step-by-step method with a series of filters able to narrow down
and choose a set of lead-like hits with potential biological activity against intended drug
targets [43]. Essentially, VS could be considered as an experimental high-throughput
screening (HTS) performed in silico [44]. VS presents two main advantages when compared
to the traditional experimental HTS. Firstly, it acts as a filter, selecting only those candidates
with the most favorable characteristics to be active, which can then be tested in vitro. This
leads to the second main advantage, which is the fact that, since the compounds studied
do not necessarily exist, their “testing” does not consume valuable substance material,
which, in turn, improves the time- and cost-effectiveness of the drug development process.
Therefore, any molecule can, in theory, be evaluated using VS.

3.1. Methods Used in Virtual Screening

Virtual screening techniques can be grouped into two major categories, depending
on the type of information used to develop the screening models. Ligand-based virtual
screening relies on structural and physicochemical properties of the chemical scaffold of
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known active and inactive molecules and is based on the molecular similarity principle [7].
On the other hand, SBVS exploits the three-dimensional structure of the target protein [9].
In the following, we will describe different methodologies used in LBVS and SBVS.

3.1.1. Ligand-Based Virtual Screening (LBVS)

As was mentioned above, LBVS is based on molecular similarity through the com-
parison of different structural and physicochemical properties [7]. The main hypothesis
behind LBVS is that similar compounds will cause similar biological effects. Essentially,
large ligand libraries are searched to identify compounds with similar chemical properties
or shapes to molecules with known pharmacological activity, which can in turn result in the
identification of new active compounds [45]. The search can be performed using several
screening methods that differ on the measure of similarity, ranging from two-dimensional
descriptors to shape comparisons and three-dimensional descriptors.

Quantitative Structure–Activity Relationship (QSAR) models are one of the main
methods used in LBVS. These models can identify the correlation between structure-based
molecular descriptors and biological activity [46]. Traditionally, these models were used
retrospectively, with scientists focused on developing explanatory models of existing
data [47]. However, the substantial increase in the size of experimental datasets available
has led to an increase in the use of QSAR models as a virtual screening tool to discover
active compounds in chemical databases and VCLs [48]. There are many QSAR approaches
that differ on the structural parameters, also known as descriptors, used to characterize
molecules as well as on the mathematical approaches used to establish the correlation
between descriptor values and pharmacological activity [49].

The molecular descriptors used in QSAR models can be divided into five groups: topo-
logical, geometrical, thermodynamic, electronic, and constitutional [50–52]. Topological
and geometrical descriptors represent the connectivity of atoms in a molecule as well as
its shape but, while topological descriptors are based on 2D molecular graphs, geomet-
rical descriptors are calculated from the 3D coordinates of the atoms. Thermodynamic
descriptors relate the chemical structure to an observed chemical behavior. Examples of
these include molar refractivity as a combined measure of molecular size and polarizability,
log P to characterize the hydrophobicity of the molecule, and solvation free energies [53].
Electronic descriptors describe electronic aspects of the molecule or atom bonds such as the
charge distribution in a molecule. Lastly, constitutional descriptors reflect simple chemical
information about a molecule, such as the molecular weight or the number of bonds in
the molecule.

There are many mathematical methods used to build the QSAR predictive models.
These could be grouped into linear and machine learning approaches [54]. Linear methods,
which include linear discriminant analysis, multiple linear regression, and partial least
squares, among others, fit data to an equation and report the coefficients derived from it.
On the other hand, machine learning methods, among which one can find neural networks
and support vector machines, process input information and recognize patterns.

Another widely used LBVS approach is pharmacophore-based modeling. In this
case, different algorithms are applied to identify configurations or spatial arrangements of
chemical features that are common to molecules with a known activity [55]. These chem-
ical features include, but are not limited to, hydrogen bonds, charges, and hydrophobic
areas [56]. The analysis can be carried out in either a 2D or 3D space [57]. Pharmacophore
models are based on the principle that novel compounds able to fulfill a certain interaction
pattern regarding the aforementioned chemical features should bind and show comparable
biological activity to that of the known active molecule. Pharmacophore modeling starts
with the identification of the pharmacophore of a molecule with a desired activity. Subse-
quently, a conformational analysis is carried out where the flexibility of small molecules
is handled by enumerating multiple conformations for each molecule in the database.
Pharmacophore-based LBVS can sometimes be confused with molecular docking, an SBVS
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method. The main differences between them will be discussed after molecular docking
is explained.

3.1.2. Structure-Based Virtual Screening (SBVS)

SBVS, also known as target-based virtual screening (TBVS), aims to predict the best
interaction between ligands and a molecular target to form a complex [9]. In other words,
the affinity of different ligands to the target is assessed and ranked. Thus, to perform SBVS,
the 3D structure of the target protein must be known to be able to predict the interactions
between the target and each chemical compound in silico [58]. This technique is based
on a series of algorithms that explore the geometrically feasible alignments of different
ligands with a specific drug target [59]. As a result, the ligands are ranked according
to their affinity with the receptor site, allowing for the identification of molecules that
are more likely to present pharmacological activity. In order to carry out this ranking,
scoring functions are used to approximate the binding free energy between the protein
and the ligand in each docking pose [60]. Lastly, the results are processed to examine the
validity of the generated pose, undesirable chemical moieties, metabolic liabilities, desired
physicochemical properties, lead-likeness, and chemical diversity [61].

Scoring functions play a key role in molecular docking. These functions can be divided
into three categories: empirical, knowledge-based, and physics-based [62]. Empirical
functions are some of the most widely used as they are easy to compute. These functions
try to capture relevant elements of binding free energy, such as solvent accessible surface,
entropy, and hydrogen bonds, to then fit them in experimental data [63]. In fact, because
of their simple energy terms, these scoring functions are able to predict binding affinity,
ligand pose, and virtual screening with low computing costs; however, their accuracy is
lower compared with the other two types of functions [64]. On the other hand, knowledge-
based scoring functions calculate the desired pairwise potentials from three-dimensional
structures of a large set of protein–ligand complexes based on the inverse Boltzmann
statistic principle [65]. In this case, the size and quality of the databases used to derive
the statistical potentials have a great impact on the accuracy of knowledge-based scoring
functions. Lastly, physics-based scoring functions include scoring functions based on force
field, solvation model, and quantum mechanics methods [66–68]. These scoring functions
can directly compute the interactions between the atoms of a protein and ligand, having a
greater predictive accuracy than other types of scoring functions due to consideration of
the enthalpy, solvation, and entropy.

Having seen molecular docking and pharmacophore-based VS, it is easy to confuse one
with the other as both aim to identify molecules capable of binding to a certain drug target.
However, their difference relies, essentially, on the methodology. While pharmacophore-
based VS uses the structures of ligands with known pharmacological activity to predict
chemical structures that should bind to proteins in the same way, molecular docking
requires the defined 3D structure of the target protein to study which compounds will bind
more effectively to it and, thus, have the higher probability of being pharmacologically
active [64,69].

4. Applications and Current Trends

The different methodologies of VS have been widely used for the discovery and devel-
opment of new drugs. This VS can be either performed on virtual combinatorial libraries
or on large databases of chemical compounds available online (Figure 1). The number of
chemical databases available for VS has increased exponentially in the last few years as
the advances in computational methods have vastly increased the information output [70].
These databases include chemical, biomolecular, drug–target interaction, and/or disease
information and can be used for drug discovery and drug repurposing. Some of the most
widely used databases in medicinal chemistry include PubChem, ZINC, ChemSpider, and
DrugBank [71–74]. In the following, we will present successful examples of the different VS
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techniques applied in both VCLs and chemical databases for the discovery of new drugs in
the early stages of the development process.

Figure 1. General flowchart used in virtual screening.

As was mentioned earlier, QSAR models were initially used to interpret the structure–
activity relationship of lead compounds. However, this technique evolved and QSAR
models began to be applied in the prediction of pharmacological activity. For example,
Bueso-Bordils et al. built a QSAR model based on linear discriminant analysis to predict
antibacterial activity against MRSA [25]. They used this model to virtually screen a fluoro-
quinolone VCL, identifying 117 theoretically active molecules of which five were synthe-
sized and three showed anti-MRSA activity comparable to that of ciprofloxacin. Similarly,
Suay-Garcia et al. developed a tree-based QSAR model based on quinolones that was ap-
plied to the DrugBank database to screen for active compounds against Escherichia coli [75].
The model identified 134 drugs with theoretical activity against E. coli of which eight were
already commercialized as antibacterial drugs, 67 were approved for different patholo-
gies, and 55 were drugs in experimental stages. The same methodology was used by Luo
et al. to develop a binary classification QSAR prediction model that was used to mine
drug-like, diversity, and GPCR-targeted libraries to identify novel anxiolytics and potential
antischizophrenic drugs [76]. Another QSAR model was developed using GUSAR soft-
ware to identify novel HIV-1 integrase inhibitors [77]. This model was used to virtually
screen a subset of 308 structurally distinct compounds from the BindingDB database. Of
these, 236 compounds were selected as potential candidates for synthesis due to their good
druglikeness. Finally, six compounds were chosen to be synthesized and one of them
was experimentally confirmed to inhibit the strand transfer reaction in HIV. More recently,
Zaki et al. developed a balanced QSAR model based on the genetic similarity between
SARS-CoV-2 and SARS-CoV to identify novel molecules with inhibitory potential against
the main protease of SARS-CoV-2 [78]. The study combines a prediction QSAR model along
with molecular docking and molecular dynamics to screen 26,467 food compounds and
360 heterocyclic variants of a benzotriazole–indole hybrid molecule to identify promising
hits to treat COVID-19.

Pharmcophore-based models are the other most common LBVS approach in virtual
screening. For instance, a pharmacophore-based model was developed to identify potential
σ1 receptor ligands to treat Alzheimer’s Disease [79]. This model was applied to screen
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8543 compounds from the Life Chemicals database, of which five candidates presented
excellent druglikeness and ADMET properties. Along these lines, Liu et al. generated a
pharmacophore model from the structures of active amino alcohols to perform a virtual
screening to discover novel compounds with anti-echinococcal activity [80]. The screen-
ing was performed on the ZINC15 database and, out of the 62 compounds selected by
the model, 10 were found to be experimentally active against Echinococcus multilocularis.
Kouman et al. followed a similar procedure to identify benzamides capable of inhibiting
2-trans enoyl-acyl carrier protein reductases in Mycobacterium tuberculosis [26]. In this
case, a pharmacophore model generated from the active conformations of N-benzyl-4-
((heteroaryl)methyl) benzamides (BHMBs) was used as a virtual screening tool of novel
analogs included in a VCL of compounds containing benzamide scaffolds. The model
identified 90 new and potent BHMBs with enhanced cell membrane permeability and high
human oral absorption compared with current treatments for tuberculosis. Screening of a
virtual combinatorial library with a pharmacophore model was also used to identify novel
µ-opioid receptor inverse agonists to treat narcotic overdose or drug addiction [81]. More
specifically, a library including 19,800 tetrapeptides was created to perform the virtual
screening and three candidates were selected for binding assays.

Regarding SBVS, molecular docking is the most widely used technique. However,
the latest VS trends aim for a consensus approach in which different VS techniques are
used in combination to optimize results. Thus, molecular docking is generally found to
be used along with LBVS models. For example, a combination of a pharmacophore-based
model with 3D-QSAR and molecular docking was used to virtually screen the ZINC and
ASINEX databases to identify potential dipeptidyl peptidase IV inhibitors to be used as
oral antidiabetics [82]. More specifically, the pharmacophore and 3D QSAR model was
used to virtually screen the aforementioned databases and the hit molecules were used
to design a VCL that was evaluated using molecular docking. A similar procedure was
followed by Bommu et al. to predict potential epigallocatechin gallate (EGCG) analogs
against epidermal growth factor receptors [83]. In this case, log P and log S predictions
along with the toxicity endpoint were modeled using QSAR, which was combined with
a pharmacophore model and molecular docking to identify seven high-potential EGCG
analogs as promising pharmacological, anticancer, and drug-like templates that could be
used towards moderating lung cancer progression. This consensus approach was also used
to identify natural compounds against mosquito-borne Chikungunya virus targets [84].
To do so, a subset of compounds from natural sources found on PubChem was studied
using molecular docking and the selected potential ligands were subjected to 3D-QSAR
studies to predict biological activity. Finally, Lipinski’s rule and ADMET studies were also
performed, leading to the identification of the four best-fit compounds of natural origin
against targets of the Chikungunya virus.

5. Conclusions

Virtual Combinatorial Chemistry and the different Virtual Screening tools are pre-
sented as a key tool in the development of new drugs in a time- and cost-effective manner.
These in silico methods, whether combined or on their own, accelerate the drug discovery
process by acting as filters and allowing experimental evaluation to be focused only on
compounds with the most drug-likeness.
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