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Proteomic Data and Drug 
Implications for Cerebral 
Microvascular Endothelial Cells 
Under Varying Oxygen Levels
Sarah Barakat   1 ✉, Fan Yang2, Hayriye Ecem Yelkenci   1, Kıvanç Kök   1,3 ✉, 
Giovanni E. Mann2 & Emrah Eroğlu1,4

Hyperoxia in standard cell cultures (18 kPa O2) imposes cellular oxidative stress, potentially skewing 
research and drug screening outcomes. Cerebral microvascular endothelial cells (hCMEC/D3) experience 
no more than 7 kPa O2 in vivo. In this study, hCMEC/D3 cells were adapted to 5 kPa O2 for 5 days to 
optimize an in vitro physiological cell culture model. Using a SYNAPT G2-Si mass spectrometer, we 
compared the proteomic profiles of cells cultured under 5 kPa versus 18 kPa O2. A substantial proteomic 
shift under hyperoxia highlighted the strong impact of oxygen levels on protein expression. We further 
investigated the effect of oxygen levels on drug screening using sulforaphane (SFN), an inducer of 
NRF2-regulated antioxidant defense genes. SFN induced more pronounced changes in proteomic 
profiles under 18 kPa O2 compared to 5 kPa, indicating oxygen-dependent cellular drug responses. This 
dataset offers a valuable resource for analyzing oxygen-sensitive proteomic changes. Comparative 
studies using different drugs or cell types could further elucidate oxygen-dependent signaling and 
inform the development of therapies aligned with physiological oxygen levels.

Background & Summary
Oxygen is fundamental to cellular function, driving metabolic processes and energy production. Cellular oxygen 
levels are finely adapted across tissues, determined by their specific physiological demands1. Recent studies using 
various cell types have demonstrated that different oxygen levels considerably impact cellular behavior and func-
tion1. For example, memory CD8 + T cells cultured under their physiologically normoxic oxygen (3 kPa), rather 
than standard cell culture atmospheric oxygen levels (~18 kPa), shift metabolism to glycolysis and enhance their 
immune responses2. Likewise, neurons and astrocytes cultured under 5 kPa oxygen display increased glycolytic 
activity3. In breast cancer cells, exposure to atmospheric oxygen levels influences the expression and activity of 
drug targets, thus increasing drug sensitivity4. Furthermore, oxygen levels have been shown to regulate transla-
tion mechanisms, such as through distinct cap-binding proteins, which in turn shape the proteome composition 
and impact cellular function5.

Despite the critical role of oxygen in cellular function, most in vitro studies are conducted under atmospheric 
oxygen levels (~18 kPa), which do not accurately reflect the lower oxygen tensions encountered by cells in vivo, 
thereby limiting the physiological relevance of such studies1,6. Endothelial cells regulate oxygen and nutrient 
transport, making their response to oxygen levels critical1. Pulmonary endothelial cells, for example, have been 
shown to alter their surface glycosylation under hyperoxia affecting cellular signaling and interactions7. Notably, 
umbilical vein endothelial cells respond to reduced oxygen levels by modifying key cellular functions, including 
cytoskeletal remodeling and ER stress8. The brain, with its high metabolic demands, is particularly sensitive to 
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oxygen supply9. Brain vascular endothelial cells lining the blood-brain barrier10 typically function under lower 
oxygen tensions, around 3–7 kPa1, and precise regulation is critical to obviate oxidative stress, inflammation, 
and cellular dysfunction11,12. Our previous studies demonstrated that hCMEC/D3 cells exhibit distinct antioxi-
dant responses under varying oxygen levels, as well as differential sensitivity to commonly used drugs known to 
induce cellular antioxidant properties13,14. Furthermore, pericellular oxygen levels influence cellular iron uptake, 
thereby affecting nitric oxide bioavailability15. Optimizing oxygen levels in experimental conditions is therefore 
crucial, particularly in contexts such as stroke research, where in vitro models of oxygen and glucose deprivation 
are often compared to controls incubated under conventional atmospheric oxygen levels, which may not accu-
rately mimic the physiological microenvironment16.

In this study, we explored the impact of oxygen levels on the proteomic profile of oxygen-sensitive brain 
endothelial cells, utilizing hCMEC/D3 cells as a representative model. Through a comparative analysis of pro-
teomic profiles under hyperoxic (18 kPa O2) and physiologically normoxic (5 kPa O2) conditions, we uncovered 
a protein expression signature distinguishing the two respective sample groups. Given the role of oxygen tension 
in endothelial function, we further investigated how these levels influence cellular responses to drug treatment, 
using sulforaphane (SFN) as a known activator of the transcription factor NRF2, involved in cellular oxidative 
stress defenses17. This comparison enabled us to evaluate the effectiveness of SFN under in vivo-like oxygen 
conditions to provide insights into the broader impact of oxygen tension on drug efficacy. The availability of this 
proteomic dataset provides a valuable resource for analyzing oxygen-sensitive pathways, enabling researchers 
to compare data across cell types to identify universal and cell-specific responses. It can also be integrated with 
transcriptomic, metabolomic, or epigenomic datasets to gain a more comprehensive insight into the mecha-
nisms by which pericellular oxygen affects cellular function. Additionally, this dataset allows for the comparison 
of other drug effects under different oxygen levels, facilitating the development of more physiologically relevant 
drug screening tools14,15 and protocols to inform the design and interpretation of therapeutic interventions in 
both health and disease.

Methods
hCMEC/D3 cell culture conditions.  hCMEC/D3 cells (obtained from Tebubio, UK) were cultured in 1% 
rat-tail collagen I coated substrates (Sigma) in EBM phenol-red free basal cell media (Lonza) supplemented with 
EGM-2MV growth factors 0.025% (v/v) rhEGF, 0.025% (v/v) VEGF, 0.025% (v/v) IGF, 0.1% (v/v) rhFGF, 0.1% 
(v/v) ascorbic acid, 0.04% (v/v) hydrocortisone, 2.5% fetal bovine serum (FBS) (Lonza) and 1% penicillin (100U/
ml)/ streptomycin (100 µg/ml). Culture media were pre-equilibrated under either ambient air (18 kPa O2) or 
5 kPa O2 in a dual Scitive Workstation (Baker, USA) prior to experimentation. hCMEC/D3 cells monolayers 
were maintained for at least 5 days in the O2-controlled workstation, gassed to 18 kPa or 5 kPa O2 under 5% CO2 
at 37 °C to establish an oxygen and redox phenotype in the absence of HIF1-α stabilization18. Experiments with 
hCMEC/D3 cells were performed at passages 27–34 (recommended range for maintaining endothelial phenotype 
and function19,20) within the O2-controlled workstation for long-term adaptation of cells to a defined O2 level to 
prevent re-exposure of cells adapted to 5 kPa O2 to atmospheric oxygen.

Experimental design of proteomics experiment.  hCMEC/D3 cells were collected after adaptation of 
cells for 5 days to 18 or 5 kPa O2. hCMEC/D3 cells adapted to 18 or 5 kPa O2 were also treated for 24 h with vehicle 
(veh, 0.01% dimethyl sulfoxide (DMSO) (Sigma-Aldrich, UK) or sulforaphane (SFN, 2.5 μM, Sigma-Aldrich, 
UK), respectively. Cell pellets were washed twice with PBS and stored at −80 °C. All experiments were repeated 
in 3 independent cultures.

Sample preparation for liquid chromatography mass spectrometry (lc-ms/ms).  Cells were lysed 
for total protein extraction using a protein extraction kit (ab270054, abcam) following the standard protocol21. 
Cells were lysed by resuspending cells in a lysis buffer with protease inhibitors cocktail (ab270061, Expedeon, 
Heidelberg, Germany), then boiled at 100 °C for 10 min. After cooling for 1 h at 4 °C, the samples were centrifuged 
at 16,000 g for 20 min at 4 °C, and supernatants were collected. Protein concentration was determined using a 
Qubit 3.0 Fluorometer (Q33216, Invitrogen, Life Technologies Corporation, Carlsbad, CA, USA). Proteins were 
digested using the FASP method21 (ab270519, Abcam, Cambridge, UK), where 50 μg of protein were collected on 
30 kDa cut-off spin column with 6 M urea, alkylated with 10 mM iodoacetamide at room temperature for 20 min 
in the dark, then finally digested overnight with a 1:100 ratio MS grade trypsin protease (90057, Thermo Fisher 
Scientific, Waltham, MA, USA) at 37 °C. Peptides were eluted, lyophilized, and reconstituted in 0.1% formic acid 
(1002642510, Merck) at a concentration of 100 ng/μL for LC-MS/MS analysis.

Liquid chromatography mass spectrometry analysis.  Proteomic analysis was performed using an 
ACQUITY UPLC M-Class system coupled to a SYNAPT G2-Si high-definition mass spectrometer (Waters, 
Milford, MA, USA) for untargeted proteomics, following a published protocol22. For this, both the analytical 
column (ACQUITY UPLC M-Class HSS T3, 100 Å, 75 μm × 250 mm, 1.8 μm, 186007474, Waters) and the trap 
column (ACQUITY UPLC M-Class Symmetry C18, 180 μm × 20 mm, 186007496, Waters) were equilibrated 
with 97% mobile phase A (0.1% formic acid in LC-MS grade water). The column temperature was maintained 
at 55 °C. Peptides were initially trapped on the trap column and subsequently eluted onto the analytical column 
using a 90-minute gradient of mobile phase B (0.1% formic acid in acetonitrile, 100,029, Merck) from 4% to 40% 
at a flow rate of 0.3 μL/min.

Data were acquired in positive ion mode with a resolution mode setting and a 0.6-second cycle time. A 
data-independent acquisition (DIA) approach was utilized, covering an m/z range of 50–1900, with ion mobility 
separation (IMS) enhancing the separation of ions in the gas phase. Low and high collision energies were set 
to 10 V and 30 V, respectively, with wave velocities ramped from 1000 to 55 m/s across the IMS cycle. The trap 
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release time was 500 μs, with a trap height of 15 V, and the IMS wave delay was set to 1000 μs. To ensure mass 
accuracy and stability, 100 fmol/μL Glu-1-fibrinopeptide B (186,007,091–2, Waters MA, USA) was used for lock 
mass calibration, introduced at 45-second intervals.

Data Records
The raw mass spectrometry data and the normalized protein expression dataset along with the extended 
metadata table have been deposited in the jPOST repository23 under ID JPST00347724 and accessible in 
ProteomeXchange25 under ID PXD06062226. The deposited files include the following main types:

•	 Compressed raw data files (xxx.raw.zip): Contain the original mass spectrometry data, with each sample 
deposited in a separate file.

•	 Detected protein files (xxx.csv): Contain the detected proteins, as identified by Progenesis QI for Proteomics 
software, with each sample deposited in a separate file.

•	 Combined expression dataset Excel file (combined_expression_dataset_with_all_samples.xlsx): this Excel file 
contains the final results from Progenesis QI for Proteomics software. It includes the following information: 
UniProt accession IDs, peptide count, unique peptides, confidence scores, ANOVA p-values, protein descrip-
tion, and normalized abundances for all detected proteins. The overall dataset sheet includes information for 
all samples while separate sheets provide information for each group comparison.

•	 Extended metadata Excel file (Metadata_of_Proteomics_Analysis.xlsx): Provides a Table of comprehensive 
information about the proteomics analysis. It includes the sample category, which describes the oxygen lev-
els (5 kPa and 18 kPa), and the sample subcategory, detailing the SFN treatment groups within each oxygen 
level (−/+ SFN). The Table also includes information on replicates, specifying the number of independ-
ent biological replicates (represented by the first number in the nomenclature) and the number of technical 
replicates per biological replicate (represented by the second number). For example, “18 kPa_3_2” indicates 
the second technical replicate of the third biological replicate for a sample cultured at an oxygen level of 18 
kPa. It includes sample IDs, which correspond to the labels for the samples used in figures, divided into IDs 
for non-averaged (individual data points) and averaged (mean values) results. The repository IDs provide 
references to the IDs of samples as stored in the data submission repository. Lastly, the total sample count 
represents the total number of samples for each experimental condition, encompassing both biological and 
technical replicates. A detailed description of the proteomics workflow and data analysis is provided in Fig. 1, 
while the metadata of the presented dataset is provided in Table 1.

Fig. 1  Workflow of Proteomics Experiment: Experimental design and data analysis.
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Technical Validation
Quality evaluation of mass spectrometry data.  To evaluate the quality of our mass spectrometry data, 
we assessed mass accuracy, precursor ion m/z values, charge state distribution, missed cleavage frequency, and 
peptide ion abundance across experimental conditions. The mass errors of identified peptide ions were centered 
around zero and predominantly fell within ± 2 standard deviations from the mean, indicating high mass accuracy 
and proper instrument calibration (Fig. 2a). The majority of precursor ions fell within the 500–1000 m/z range, 
consistent with efficient detection of tryptic peptides (Fig. 2b). Most peptides carried charge states of + 2 or + 3, 
which are favorable for fragmentation and reliable identification in tandem MS (Fig. 2c). Over 80% of the pep-
tides had no missed cleavages, and very few exceeded one missed cleavage, confirming high enzymatic digestion 
efficiency (Fig. 2d). To assess identification performance, we analyzed the percentage of normalized abundance of 
peptide ions under each experimental condition. In all conditions (18 kPa, 5 kPa, 18 kPa + SFN, and 5 kPa + SFN) 
identified peptides spanned a broad abundance range with no pronounced skew toward high-intensity ions, indi-
cating effective quantification and minimal saturation bias (Fig. 2e–h).

Mass spectrometry raw data analysis.  Peptide identification and quantification were conducted using 
Progenesis-QI for Proteomics software (Waters, https://www.nonlinear.com/progenesis/qi-for-proteomics/), 
using the UniProt Human database (accessed on 11 November 2024) and the MS search-based peptide identifi-
cation method. We followed previously published protocols22. Key parameters included a low energy threshold 
of 200 counts, a high energy threshold of 50 counts, and an intensity threshold of 750 counts. For alignment, 
the most suitable run was selected, and normalization was performed using the “normalize to all peptide ions” 
option. Additional analysis settings included a maximum charge of 5, allowance for one missed cleavage, fixed 
carbamidomethylation, variable methionine oxidation, and a maximum protein mass of 400 kDa. Ion matching 
requirements were set to ≥3 fragments per peptide, ≥7 fragments per protein, and ≥1 peptide per protein. 
Statistical analysis between comparison groups was performed in Progenesis-QI for Proteomics using one-way 
ANOVA functionality. Here, an Independent Student’s t-test was applied to compute p-values, resulting in an 
output file showing identified proteins with their abundance levels and obtained p-values. The resulting data 
were then filtered to exclude all proteins with ≤2 unique peptides. After filtering, the total number of identified 
proteins for the 18 kPa vs. 5 kPa comparison was 2,182, while 2,183 proteins were identified for the 5 kPa vs. 
5 kPa + SFN comparison, and 2,185 for the 18 kPa vs. 18 kPa + SFN comparison. These proteins were exported to 
Babelomics 527,28 (http://babelomics.bioinfo.cipf.es/) for further analysis, where multiple test correction (MTC) 
was applied using the Benjamini and Hochberg method, with an adjusted p-value threshold of 0.05. Due to 
the limited number of replicates (only 3 technical replicates per SFN-treated sample), no significant proteins 
(p < 0.05) were detected after MTC for the SFN-treated samples in comparison to controls at both 5 kPa and 

Sample category Sample subcategory Biological replicate ID Technical replicate ID

ID in figures

Total sample countNon-averaged Averaged

5 kPa

(−) SFN

1

1 5 kPa_1_1

5 kPa_1

9

2 5 kPa_1_2

3 5 kPa_1_3

2

1 5 kPa_2_1

5 kPa_22 5 kPa_2_2

3 5 kPa_2_3

3

1 5 kPa_3_1

5 kPa_32 5 kPa_3_2

3 5 kPa_3_3

(+) SFN 1

1 5 kPa_1 + SFN —

32 5 kPa_2 + SFN —

3 5 kPa_3 + SFN —

18 kPa

(−) SFN

1

1 18 kPa_1_1

18 kPa_1

9

2 18 kPa_1_2

3 18 kPa_1_3

2

1 18 kPa_2_1

18 kPa_22 18 kPa_2_2

3 18 kPa_2_3

3

1 18 kPa_3_1

18 kPa_32 18 kPa_3_2

3 18 kPa_3_3

(+) SFN 1

1 18 kPa_1 + SFN —

32 18 kPa_2 + SFN —

3 18 kPa_3 + SFN —

Table 1.  Metadata of the proteomic profiling dataset of hCMEC/D3 cells exposed to varying oxygen levels (5 kPa 
and 18 kPa) in the absence or presence of SFN.
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18 kPa. Therefore, we retained the data prior to MTC for these two comparisons. However, for the 18 kPa vs. 5 kPa 
comparison (without SFN treatment), which had a total of 9 replicates per condition (3 biological replicates, 
each with 3 technical replicates), significant proteins (adj. p < 0.05) were still identified after MTC. Fold changes 
were calculated in Babelomics 5 with a cutoff set at 1.4. This generated a final spreadsheet listing all identified 
proteins along with their respective abundances, significance test results, and fold changes, which was used for 
downstream analysis.

Fig. 2  Quality Evaluation of Mass Spectrometry Data. (a) Mass accuracy of identified peptide ions. (b) 
Distribution of m/z values for all precursor ions. (c) Percentage of precursor ions with various charge states. 
(d) Distribution of missed cleavages per identified peptide ion. (e–h) Abundance distribution of peptide ions 
in each condition (18 kPa, 5 kPa, 18 kPa + SFN, 5 kPa + SFN, respectively), shown as log10 of normalized 
abundance.
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Fig. 3  Differential Protein Expression Analysis of hCMEC/D3 Cells Cultured under 5 kPa vs. 18 kPa O2 in the 
Absence or Presence of SFN. (a,d,g) Hierarchical clustering heatmap analysis of total identified proteins, showing 
clustering of samples according to: (a) Oxygen levels: 5 kPa vs. 18 kPa, (d) SFN treatment at 5 kPa, g) SFN treatment at 
18 kPa. The color scale represents protein expression levels, with  indicating downregulation, and  indicating 
upregulation. (b,e,h) Principal component analysis plots of total identified proteins. The plots show separation 
between samples according to groups based on protein expression profiles: (b) Cells cultured at 5 kPa vs. 18 kPa. e) 
Cells cultured at 5 kPa vs. 5 kPa + SFN. (h) Cells cultured at 18 kPa vs. 18 kPa + SFN. The X and Y axes represent 
principal components 1 and 2, respectively. Prediction ellipses indicate the 95% confidence interval for each group. 
(c,f,i) Volcano plot illustrating total identified proteins for each group comparison: (c) 5 kPa vs. 18 kPa, (f) 5 kPa vs. 
5 kPa + SFN, i) 18 vs. 18 kPa + SFN. Upregulated DEPs , downregulated , while non significantly expressed 
proteins are shown as .
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Mass spectrometry downstream data analysis.  Multivariate statistical analyses, including Hierarchical 
Clustering Analysis (HCA) and Principal Component Analysis (PCA), were performed on the entire set of iden-
tified proteins to explore differential expression patterns. Input files consisted of lists of identified proteins along 
with their respective normalized expression values. All analyses were conducted using the SRplot web tool29 

Fig. 4  Non-Averaged Differential Protein Expression Analysis of hCMEC/D3 Cells under Different Conditions. 
(a,b,c) Hierarchical clustering heatmap analysis of total identified proteins, highlighting sample clustering based 
on sample group: (a) 5 kPa vs. 18 kPa, (b) 5 kPa vs. 5 kPa + SFN, (c) 18 vs. 18 kPa + SFN. The color bars represent 
downregulated , and upregulated  protein expressions. (d,e,f) Principal component analysis plots of total 
identified proteins showing sample separation based on sample group: (d) 5 kPa vs. 18 kPa, (e) 5 kPa vs. 
5 kPa + SFN, (f) 18 vs. 18 kPa + SFN. X and Y axes denote principal component 1 and principal component 2, 
respectively. Prediction ellipses indicate that, with a 95% probability, a new observation from the same group 
will fall within the ellipse. Samples are labeled with the first number indicating the number of biological 
replicate and the second indicating the number of technical replicates for each condition (See Table 1 for 
details).

Fig. 5  Comparative Effects of Oxygen Levels and SFN Treatment on Sample Separation. Principal component 
analysis plots of total identified proteins, showing sample separation between comparison groups based on: 
(a) Oxygen level and/or SFN treatment, (b) SFN treatment only, (c) Oxygen levels only. X and Y axes denote 
principal component 1 and principal component 2, respectively. Prediction ellipses indicate that, with 95% 
probability, a new observation from the same group will fall within the ellipse.
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(https://www.bioinformatics.com.cn/srplot). For HCA, data were scaled by rows, and a bidirectional clustering 
approach was applied. Pearson correlation was selected as the distance metric, and average linkage was used as the 
clustering method. In PCA, data centering and scaling were applied by default, with confidence ellipses included 
to highlight group separation. Finally, volcano plots were generated in an SRplot to visualize differential expres-
sion patterns of the identified proteins highlighting upregulated and downregulated DEPs (significance < 0.05, 
|fold change| ≥ 1.4).

HCA of cells adapted to 18 kPa versus those adapted to 5 kPa O2 revealed clear segregation of samples based 
on oxygen levels (Fig. 3a), underscoring the substantial impact of oxygen tension on the cellular proteome. 
Consistent with these findings, PCA also demonstrated distinct grouping according to the oxygen conditions 
(Fig. 3b). In contrast, no clear separation was observed between cells cultured at 5 kPa with sulforaphane (SFN) 
treatment compared to controls (Fig. 3d,e). However, clear separation was evident in both HCA and PCA when 
cells were cultured at 18 kPa (Fig. 3g,h). These results indicate that SFN has minimal effects on cells adapted to 
5 kPa oxygen but induces substantial proteomic changes at 18 kPa oxygen. Further insights were gained from 
examining DEPs in the volcano plot analysis as follows: in the 18 vs. 5 kPa comparison, 91 proteins were upreg-
ulated and 61 were downregulated (Fig. 3c). For the 5 kPa vs. 5 kPa + SFN comparison, only 17 proteins were 
upregulated and 3 downregulated (Fig. 3f). In contrast, the 18 kPa vs. 18 kPa + SFN comparison revealed 14 
upregulated and 8 downregulated proteins (Fig. 3i). Additional details are provided in Fig. 4, which presents 
similar findings for samples without averaging technical replicates, offering a higher resolution of individual 
sample clustering. The HCA and PCA plots in non-averaged form demonstrate consistent trends regarding 
sample grouping based on oxygen tension and SFN treatment, further validating the robustness of the observed 
patterns. Collectively, these results suggest that oxygen tension is the dominant factor driving sample segrega-
tion, as evident from the clear separation of groups in both averaged and non-averaged analyses. SFN treatment, 
in contrast, exerts a more subtle effect, with a noticeable impact observed only under 18 kPa oxygen conditions, 
as highlighted in Fig. 5. This indicates that the influence of SFN is strongly dependent on pericellular/intracellu-
lar oxygen levels and is more pronounced under 18 kPa O2 levels, highlighting a clear interplay between oxygen 
tension and SFN treatment in shaping the proteomic profile and impacting research outcomes.

Code availability
The Methods section contains a detailed description of the performed data analysis. No custom code was utilized 
in this study for the analysis of the presented data.
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