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a b s t r a c t

Ionic liquids (IL) and aqueous ionic liquids (aIL) are attractive (co-)solvents for green industrial processes
involving biocatalysts, but often reduce enzyme activity. Experimental and computational methods are
applied to predict favorable substitution sites and, most often, subsequent site-directed surface charge
modifications are introduced to enhance enzyme resistance towards aIL. However, almost no studies
evaluate the prediction precision with random mutagenesis or the application of simple data-driven fil-
tering processes. Here, we systematically and rigorously evaluated the performance of 22 previously
described structure-based approaches to increase enzyme resistance to aIL based on an experimental
complete site-saturation mutagenesis library of Bacillus subtilis Lipase A (BsLipA) screened against four
aIL. We show that, surprisingly, most of the approaches yield low gain-in-precision (GiP) values, partic-
ularly for predicting relevant positions: 14 approaches perform worse than random mutagenesis.
Encouragingly, exploiting experimental information on the thermostability of BsLipA or structural weak
spots of BsLipA predicted by rigidity theory yields GiP = 3.03 and 2.39 for relevant variants and GiP = 1.61
and 1.41 for relevant positions. Combining five simple-to-compute physicochemical and evolutionary
properties substantially increases the precision of predicting relevant variants and positions, yielding
GiP = 3.35 and 1.29. Finally, combining these properties with predictions of structural weak spots iden-
tified by rigidity theory additionally improves GiP for relevant variants up to 4-fold to �10 and sustains
or increases GiP for relevant positions, resulting in a prediction precision of �90% compared to �9% in
randommutagenesis. This combination should be applicable to other enzyme systems for guiding protein
engineering approaches towards improved aIL resistance.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the world population continuing to increase [1], studies
forecast a shortage of natural resources, such as fresh water [2]
and fossil fuels [3–4]. Green industrial processes, such as the enzy-
matic production of biofuel and other valuable products from
abundantly available plant material, attempt to solve these prob-
lems [5–11]. However, in particular, current biofuel production
uses environmentally unfriendly acid catalysis and requires large
amounts of freshwater for the reaction workup [12–14]. Conse-
quently, environmentally friendly alternatives to produce biofuel
are needed. Ionic liquids (IL) are attractive solvents for this, as
some IL dissolve cellulosic plant material without the need for heat
activation or pretreatment using solvents such as strong acids or
carbon disulfide [12,15]. For instance, IL-pretreated holocellulose
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retains a high digestibility for enzymes after recrystallization in
water [21]. However, pure IL often result in enzyme activities
impractical for industrial processes [16–20], and aqueous ionic liq-
uids (aIL), e.g., the remnants of IL in recrystallized holocellulose,
show a reduced yet still marked impact on enzymatic activity
[22–23]. Hence, for using aIL in green industrial processes, it is of
utmost importance to understand how aIL affect enzyme stability
and activity and to use this knowledge to improve enzyme resis-
tance against these solvents.

To improve enzyme resistance to aIL, studies frequently relied
on straightforward and well-established approaches, such as direc-
ted evolution [24–25], to generate aIL-resistant enzyme variants
[26–28]. The low experimental efforts, however, come with the
drawback that mutations are randomly generated (albeit this can
be directed to a certain degree using, e.g., modified polymerases),
leading predominantly to minor changes in the protein [29] and
often incomplete coverage of the sequence and position space
[30]. More recently, approaches to increase aIL resistance trans-
posed towards data-driven protein engineering approaches, which
rely on prior knowledge to improve specific enzyme properties by
introducing changes at distinguished sequence positions and can
cover the whole sequence space. Here, variant libraries are
designed by predicting advantageous positions based on, e.g.,
structure [31–35] or consensus information [36–39] or by predict-
ing substitutions (exchanges of an amino acid to a different amino
acid due to a mutation in the corresponding DNA sequence) at dis-
tinct positions with a specific goal in mind, e.g., in disulfide bond
engineering [40] or surface charge modification approaches [17–
20,41–44]. Surface charge modification, in particular, is a widely
proposed approach to increase aIL resistance following the ratio-
nale that introducing charged, ion-repelling substitutions at the
protein surface can prevent aIL interactions with enzymes and
their subsequent effects [41,17–20,44–46]. Over the years, this
approach became noticeably more specific, as it evolved from a
global chemical modification of all lysine residues of a protein
[18–20] over fractional substitutions of lysine residues [41] to an
NMR-based site-specific approach targeting distinguished posi-
tions around perturbed protein residues [17]. However, the lack
of available, systematic large-scale data prevented evaluating the
performance of such approaches against random mutagenesis or
simple structure-based guidelines.

For the model enzyme Bacillus subtilis Lipase A (BsLipA), a com-
plete site-saturation mutagenesis library (termed ‘‘BsLipA SSM
library” hereafter) is available that covers all 3620 potential single
substitutions with natural amino acids (181 substitution sites with
20 possible substitutions at each site) [16]). The BsLipA SSM library
was screened towards thermostability [33], resistance to four
detergents [33,47]), resistance to three organic solvents [30], and
aIL resistance to four imidazolium-based aIL (0.9 M 1-butyl-3-
methylimidazolium bromide ([BMIM/Br]), 1.2 M 1-butyl-
3-methylimidazolium chloride ([BMIM/Cl]), 0.6 M 1-butyl-3-
methylimidazolium iodide ([BMIM/I]) and 0.7 M 1-butyl-
3-methylimidazolium trifluoromethanesulfonate ([BMIM/TfO]))
[16]. The concentrations of the individual aIL were chosen to result
in residual activities of 30–40% with respect to the activity in buf-
fer to allow for relative comparisons between the aIL [16]. BsLipA is
particularly interesting for that, as it is a small lipase and does not
show interfacial activation, but has often been used in similar
experimental and computational studies [16–17,33,48,44–45],
and high-resolution X-ray crystal structures (PDB ID: 1I6W [50]
and 1ISP [51]) are available.

An initial analysis of the BsLipA SSM library showed that more
than half of all amino acid positions contribute to IL resistance of
BsLipA. It further revealed substitution patterns at which presum-
ably high fractions of aIL-resistant variants occur, e.g., for substitu-
tions at specific secondary structure elements [16] or substitutions
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to chemically different amino acids [16]. Subsequent studies based
on the BsLipA SSM library proposed surface charge-engineering
and increasing the substrate cleft polarity to improve aIL resistance
[16,45,49]. However, in these cases, the results were not related to
a priori probabilities, such that the performance of these guidelines
for suggesting aIL-tolerant variants may be overrated (see also
below).

A previous large-scale analysis of the BsLipA SSM library with
respect to thermostability and detergent resistance revealed signif-
icant improvements in prediction accuracy compared to random
mutagenesis for a data-driven structural stability-based approach
[33]. Additionally, data mining of the BsLipA SSM library [30,33]
and another large-scale library [52] showed that applying simple
physicochemical properties to predict substitutions, such as the
solvent-accessibility (SA) or the change in unfolding free energy
(DDGunf), increases the prediction accuracy for thermostability or
detergent resistance [30,33,52]. Hence, the BsLipA SSM library
offers a unique opportunity to evaluate the performance of com-
monly applied approaches to increase aIL resistance towards their
prediction accuracy of beneficial substitutions and substitution
sites. Furthermore, the BsLipA SSM library can be used to system-
atically evaluate new guidelines aiming at a time- and cost-
efficient knowledge-driven protein engineering towards aIL
resistance.

In this work, we show for the BsLipA SSM library that the pre-
diction accuracy of commonly used approaches and guidelines to
improve aIL resistance of enzymes is surprisingly low. We apply
rigorous binary classifiers and report the results relative to per-
forming unbiased random mutagenesis for evaluation. This way,
we account for a priori probabilities. Furthermore, we introduce a
rational approach that outperforms currently applied approaches,
can be computed within a few hours, and only requires a protein
structure as input.
2. Results

2.1. In total, 9% of all variants show significantly increased aIL
resistance, and 57% of all positions harbor such variants

In total, The BsLipA SSM library contains 3620 variants at 181
positions that were tested for residual activity (RAaIL; Eq. S1) in
0.9 M [BMIM/Br], 1.2 M [BMIM/Cl], 0.6 M [BMIM/I], and 0.7 M
[BMIM/TfO] and subsequently assessed concerning the variance
of the data and significance of changes (see Section 3.1 in
Supplementary Information) [16]. The aIL resistance of a variant
was considered significantly improved when RAvariant,aIL �
RAwildtype,aIL + 3 raIL, with RAvariant,aIL and RAwildtype,aIL being the
RAaIL of the variant or wildtype in aIL and buffer, respectively,
and raIL being the standard deviation of the assay in the respective
aIL [16]. 3 raIL was chosen because it corresponds to a p-value
below 0.01, assuming a Gaussian distribution of the RAaIL.
Throughout this study, variants with significantly improved aIL
resistance and positions harboring such substitutions will be ter-
med ‘‘relevant variants” or ‘‘relevant positions”. A graphical repre-
sentation of the BsLipA variant distribution of variants and
positions is shown in Fig. 1.

Averaged over all four aIL, only 9% of all substitutions (310 vari-
ants) yielded relevant variants ([BMIM/Br]: 8% or 263 variants;
[BMIM/Cl]: 13%/462; [BMIM/I]: 6%/206; [BMIM/TfO]: 9%/292). This
proportion (9%) represents the chance of finding relevant variants
using unbiased random mutagenesis, e.g., by error-prone PCR
(epPCR) with equal probabilities for all variants; experimental
biases, such as the preference of Taq polymerase [53] in epPCR
for AT? GC transitions, are thus not considered [54]. This value
will subsequently be used in our analyses to evaluate the perfor-



Fig. 1. Distributions of relevant variants and positions for the four aIL in the BsLipA SSM library. Data is analyzed by focussing on relevant variants (A-B) and relevant
positions (C-D). (A) The average number of relevant variants per position is mapped onto the BsLipA structure with blue (red) color depicting a low (high) amount of variants
per position. The catalytic site residues S77, D133, and H156 are depicted as sticks and colored in green. (B) Average number of relevant variants per position. The majority of
the positions yields less than one aIL resistant variant, and few positions yield multiple (>4) aIL resistant variants. (C) Number of positions that are relevant in n = 0 to 4 aIL.
Almost half of all BsLipA positions (89 positions) yield relevant variants in three or more aIL, and only �20% (39 positions) yield variants that are not improved in any aIL. (D)
Data of (C) mapped onto the BsLipA structure with colors depicting the number of aIL (white: 0; light blue: 1; blue: 2; magenta:3; red:4). The catalytic site residues S77, D133,
and H156 are depicted as sticks and colored in green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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mance of approaches to predict relevant variants. The percentage
of relevant variants is comparable to that obtained for detergent
resistance (�12%) [33,47]. The slightly lower percentage for aIL
may be due to using 3 raIL as a limit to define significance, whereas
2 rD was used in the case of detergents [33,47]. The conservative
limits are used to counterbalance experimental uncertainties in
the RAaIL that originate from enzyme activities measured in the
supernatant [16], which may be influenced by differences in
thermodynamic or kinetic protein stability [34,55] or protein
expression [56]. The RAaIL distributions for the four aIL are shown
in Fig. S1.

In contrast, more than half of all substitution sites (57% or 103
positions) harbored such relevant variants ([BMIM/Br]: 50% or 91
positions; [BMIM/Cl]: 69%/124; [BMIM/I]: 52%/95; [BMIM/TfO]:
57%/104). Interestingly, almost half of all BsLipA positions (89 posi-
tions) yield relevant variants in three ormore aIL, and only�20% (39
positions) yield variants that are not improved in any aIL (Fig. 1C/D).
Thus, more than twice the number of positions in BsLipA yield rele-
vant variants compared to detergent resistance (�27%) [33]. This
proportion (57%) represents the chance of finding a position that
harbors relevant variants using unbiased random mutagenesis
and will subsequently be used in our analyses to evaluate the per-
formance of approaches to predict relevant positions. Here, the
majority of the positions yields less than one aIL resistant variant,
and few positions yield multiple (>4) aIL resistant variants
(Fig. 1A/B). Hence, in BsLipA, each of the 103 relevant positions
yields on average three relevant variants out of 20 possible substi-
tutions.Whenusing unbiased randommutagenesis, the experimen-
tal effort to identify 10 unique relevant variants or positions on
average sums up to screening �117 and �18 variants, respectively.

2.2. Definition of measures for evaluating the predictive power of
approaches

We defined two measures to evaluate the performance of a
given approach for improving aIL resistance on the BsLipA SSM
library based on binary classification: the gain-in-precision (GiP,
Eq. S3, [57]) on a variant-wise level (GiPvar) and the gain-in-
precision on a positional level (GiPpos). The GiPvar and GiPpos
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describe the relative likelihoods to correctly predict relevant variants
or relevant positions compared to unbiased random mutagenesis.
Note that GiP is not affected by data prevalence and data imbalance,
in contrast to other measures of binary classification, such as accu-
racy [58], which is important in view of the underrepresentation of
relevant variants. Note, too, that we focus on precision and not recall
[57] because, for our application, it is more important to have a high
fraction of correctly classified instances among those classified rele-
vant than to have high coverage of the relevant class: Substantially
improved enzyme variants often incorporate only a few (1–3) substi-
tutions [59–62], and additional substitutions do not easily lead to fur-
ther improvements, particularly when they are interacting [25]. This
is because the majority of substitutions destabilize an enzyme, limit-
ing the way how substitutions are combinable [46,59,63–66]. Fur-
thermore, despite state-of-the-art high-throughput selection [67–
70] and screening [71–73] techniques, protein engineering
approaches are still limited to a small number of positions if the
whole sequence space shall be investigated, as the library size
increases exponentially (combining all possible substitutions at,
e.g., six positions already leads to 206 = 6.4�107 variants) [74]. Hence,
identifying a few relevant variants and positions is necessary and suf-
ficient for most protein engineering approaches.

Because our analysis is focused on general applicability towards
several aIL instead of individual solvents, the GiP values are aver-
aged over the four aIL of the BsLipA SSM library. Yet, to provide
an estimate of the data variance, the ranges of the numbers of rel-
evant variants and positions, and the relations to the total consid-
ered variants and positions, are presented across the four aIL
(Table 1, Table S1). Finally, we performed a Boschloo’s ‘exact’-test
to determine if the observed populations of relevant variants and
positions of a given approach were significantly different
(p � 0.05) from those of random mutagenesis [75]. Here, we
assessed the p-value of the test statistics regarding the populations
of relevant variants or positions versus not-relevant variants or
positions compared to random mutagenesis, which describes the
probability of finding a sample statistic as extreme as the test
statistics. Unless all p-values are <0.05, the lowest and highest p-
values observed over the four aIL are shown in Table 1 and
Table S1.



Table 1
Predictive performance of selected approaches and physicochemical and evolutionary properties to predict relevant variants and positions.[a]

[a]Substitutions to specific residues are indicated by ‘‘?” plus one-letter code; in all other cases, substitutions to all residues are performed. The results for the predicted
relevant variants and positions for all evaluated approaches, properties, and the combinations of both are shown along the sequence of BsLipA (see the top for a secondary
structure representation): Red bars indicate relevant positions for which relevant variants were correctly predicted. Blue bars indicate relevant positions for which no
relevant variant was correctly predicted. The height of red bars represents the fraction of relevant variants among all predicted variants for the given position, thus, describing
the precision of predicting relevant variants. The height of blue bars represents the fraction of (falsely) predicted relevant variants of all possible variants at this position, thus,
giving an estimate of the experimental work unnecessarily spent when investigating all predicted variants. In all, high red bars and low blue bars indicate a favorable
approach, and vice versa. For random mutagenesis (Rd), the graph along the BsLipA sequence represents the experimentally determined mutagenesis efficiency (i.e., the
relevance) of each sequence position. Thus, blue bars represent positions not relevant in all aIL, whereas red bars represent positions relevant in at least one aIL. The height of
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red bars displays the average fraction of relevant variants at the respective relevant position.
[b]Numbering of evaluated approaches and properties. A = Approach, P = Properties, C = Combination of approaches and properties.
[c]Number of relevant variants vs. all considered variants.
[d]Number of relevant positions vs. all considered positions.
[e]Random mutagenesis.
[f] Averaged percentage of relevant variants compared to the whole BsLipA SSM library.
[g]Averaged percentage of relevant positions compared to the whole BsLipA SSM library.
[h]Not determined.
[i]See Section 3.4 in the Supplementary Information for an explanation of the abbreviations.
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2.3. Assessment of commonly applied approaches to improve aIL
resistance

We extracted 22 approaches to improve enzyme resistance
towards aIL from the literature and evaluated their performance
to improve aIL resistance using the above-defined measures
(Table S1). These approaches can be classified into six groups
(Fig. 2):

I) approaches that determine relevant positions from experi-
mental structural data for the system (A1-A5);

II) approaches that determine relevant positions from exten-
sive computations (A6-A11);

III) approaches that determine relevant positions from experi-
mental biochemical data on other ‘‘environmental” effects,
such as temperature or solvents with detergents (A12-A13);

IV) one approach where relevant positions are determined as
structural weak spots by rigidity theory without considering
specific aIL effects (A14);

V) approaches that modify surface charges (A15-A20);
VI) two approaches that did not consider a priori information

(A21-A22).

We will summarize the results for the approaches of each group
here (Table 1). For detailed information on each approach, see the
Supporting Information and Table S1.

Group I: Approaches A1 and A2 used binding sites identified
from X-ray crystal structures of BsLipA in the presence of aIL,
which were subsequently refined by molecular dynamics (MD)
simulations. Approaches A3-A5 used two-dimensional 15N/1H
HSQC NMR experiments to identify positions that experienced per-
turbations in their local chemical environment upon incubation in
[BMIM/Cl]. In both cases, a similar number of relevant sites (23 to
24) were predicted. These sites overlap to a low degree between
the approaches (26% of A1-A2 sites are found in A3-A5 and 25%
vice versa), but to a high degree with the BsLipA SSM library refer-
Fig. 2. Overview of evaluated structure-based approaches described in the litera-
ture for improving aIL resistance. The classification of the approaches (I-VI) is
described in the text. Most approaches rely on analyzing direct protein-aIL
interactions (A1-A7), whereas only a few investigate subsequent effects of the aIL
interactions on the protein (A8-A11).
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ence data (74% and 80%). For specific changes to charged amino
acids, in either subgroup, high GiPvar values of �2.2 to 2.5 are asso-
ciated with low GiPpos values (�0.3 to 0.5), indicating that such
charge changes are effective at the predicted relevant sites with
�⅓ to ½ of the precision of random mutagenesis only. In turn,
moderate GiPvar (�1.8) and GiPpos (�1.2) values are obtained if
substitutions to all amino acids are evaluated. I.e., GiPvar = 1.79
and GiPpos = 1.2 in approach A2 indicate that �65 and �15 variants
have to be screened to obtain ten relevant variants and positions,
respectively, compared to �118 and �18 when using random
mutagenesis.

Group II: In approaches A6 and A7, we identified aIL binding
sites of BsLipA from extensive MD simulations using distance-
based interaction criteria and evaluated the 20 most occupied posi-
tions for each solvent [43]. The identified sites showed a low to
moderate overlap with binding sites of A1-A2 (41% and 26% for
A6 and A7, respectively) and A3-A5 (18% and 21% for A6 and A7,
respectively), but a high overlap with the BsLipA SSM library refer-
ence data (73% and 85%). However, similar to A1 and A3-A4, speci-
fic changes to positively (negatively) charged amino acids for
cation (anion) binding sites yielded moderate GiPvar of �1.3 but
substantially lower GiPpos values (�0.3), again indicating a low pre-
cision for such predicted relevant sites compared to random muta-
genesis in the context of charge changes.

In approaches A8-A11, we assessed whether predictions based
on aIL-induced local structural stability changes, identified using
either MD simulations (A8–A9) or the rigidity theory-based Con-
straint Network Analysis (CNA) (A10-A11), lead to increased GiP
values. Introducing charged amino acids at solvent-exposed posi-
tions (A8 and A10) yielded high GiPvar � 2 but again low GiPpos �
0.75 values. In turn, considering substitutions to all amino acids
at positions irrespective of the solvent exposure (A9 and A11)
yields moderately increased GiPvar (�1.35) and GiPpos (�1.15) val-
ues. Notably, the results are comparable to predictions from A1-A5,
indicating that computational approaches predict relevant variants
and positions with similar precision as experiment-based ones
without the need for cost- and time-intensive experiments.

Group III: Approaches A12 and A13 probe to what extent
knowledge of relevant positions gained from optimizing BsLipA
against temperature or detergent influence can be transferred to
increasing aIL resistance. In the latter case (A13), only moderate
GiPvar (1.56) and GiPpos (1.20) are obtained. In the former case
(A12), however, the highest GiPvar = 3.03 and GiPpos = 1.61 of all
tested approaches are obtained.

Group IV: Approach A14 assesses whether structural weak
spots of the BsLipA structure identified with the rigidity theory-
based Constraint Network Analysis method are relevant positions.
Contrary to A11, weak spots were identified based on structural
ensembles of BsLipA generated in water only and determined from
phase transitions upon thermal unfolding. With this approach, the
highest GiPpos = 1.41 among all evaluated computational
approaches is obtained, and the fifth-highest GiPvar = 2.39 among
all evaluated experimental and computational approaches. Note
that for groups III and IV, the number of predicted relevant posi-
tions is low (6 to 11), which facilitates identifying beneficial substi-
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tution combinations later. However, the number of variants is still
high because we evaluate substitutions to all amino acids. Hence,
further rules are needed to limit the substitution possibilities
(see below).

Group V: Approaches A15–A20 comprise surface charge modi-
fications irrespective of identifying aIL interaction sites or changes
in structural stability due to aIL beforehand. The underlying princi-
ple is to repel like-charged solvent molecules by introducing either
positively (K/R) or negatively (D/E) charged residues on the protein
surface. Introducing charged residues (D, E, R, or K) at all surface
residue positions (A15), introducing only E there following Ref.
[17] (A16), or substitutions to all other residues but D, E, R, or K
(A20) led to GiPvar = 1.10 to 1.76, but GiPpos < 1.0 with at the same
time � 120 residues to consider. Focussing on lysine residues on
the surface only and substituting them to E (A17) yielded
GiPvar = 2.26, but GiPpos = 0.33, again indicating that such charge
changes are effective at predicted relevant sites with �⅓ of the
precision of random mutagenesis only. Finally, performing
positive-to-negative substitutions for surface residues (A18) or
the opposite, negative-to-positive substitutions (A19), yielded
almost identical results for both GiPvar � 2.75 and GiPpos � 0.56,
indicating that the direction of single charge changes does not mat-
ter but that such changes are effective at predicted relevant sites
with ½ of the precision of random mutagenesis only.

Group VI: Approaches A21 and A22 were suggested based on
previous observations for the BsLipA SSM library [16] and involved
the somewhat unexpected substitutions to chemically different
amino acids at all sites, or substitutions in helices and loops. How-
ever, in both cases, GiPvar and GiPpos are close to 1 or below, indi-
cating that these approaches lead to precisions as found in random
mutagenesis. Not considering this prior information led to overrat-
ing the approaches previously [16].

To conclude, of the presented 22 approaches, only two stand out
with substantially improved GiPvar and GiPpos values. These are
A12, which exploits experimental information on the thermosta-
bility of BsLipA, resulting in GiPvar of 3.03 and GiPpos of 1.61, as well
as A14, which exploits structural weak spots of BsLipA predicted by
rigidity theory, resulting in GiPvar of 2.39 and GiPpos of 1.41. Fur-
ther, they only require performing substitutions at 6 to 10 posi-
tions. On the other hand, approaches employing the concept of
surface charge modification, which focus on repelling aIL ions via
the introduction of charged residues at the surface (A1, A3-A4,
A15-A19), yield high GiPvar � 1.6 (except for A3) only at the
expense of low GiPpos � 0.6.

2.4. Evaluating physicochemical and evolutionary properties for
predicting improved aIL resistance

Motivated by recent findings that simple descriptors can
explain protein stability change upon substitutions [76], we scruti-
nized if five physicochemical and evolutionary properties of pro-
tein residues can predict relevant variants and substitution sites
to improve aIL resistance. These properties are solvent accessibility
(P1-P3), relative volume (P4), hydropathy (P5), unfolding free
energy (P6), and residue conservation (P7-P8) (summarized in
Table 1; see the Supplementary Information and Table S1 for
detailed information on each approach). We also combined these
properties (P9) and evaluated their robustness towards deviations
from the optimal range by relaxing and tightening the ranges by
25% and 50% (P10-P12). Here, we considered substitutions to all
other amino acids at predicted relevant sites according to the prop-
erties P1-P12.

P1-P3: Solvent accessibility. Recent studies investigating the
thermostability of Streptococcus sp. protein G [52] and BsLipA
[33] reported increased prediction accuracy when substituting at
more solvent-exposed positions compared to buried positions.
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For increasing aIL resistance, selecting residues with a low to mod-
erate solvent accessibility (SA, Eq. S5) had a beneficial effect for
GiPvar = 1.46 and GiPpos = 1.13 (10% < SA � 40%, P1). Substituting
at solvent-accessible positions (5% � SA), in general, was more
favorable (GiPvar = 1.20 and GiPpos = 1.07, P2) than at buried (5% >
SA) sites (GiPvar = 0.58 and GiPpos = 0.85, P3).

P4: Relative volume. The relative volume (rV, Eq. S7) reflects
that different positions can differentially accommodate volume
changes, e.g., substitutions of small, buried amino acids to larger
ones are usually disfavorable [52]. Consequently, the precision in
predicting improved BsLipA thermostability increased when
small-to-large substitutions were excluded [34]. Here, similar to
the exclusion of small-to-large mutations, excluding substitutions
that markedly increase the occupied volume (rV > 1.3) led to
GiPvar = 1.09 but GiPpos = 0.88.

P5: Hydropathy. The change in hydropathy (DHy, Eq. S9) of
BsLipA variants is related to the concept of surface charge modifi-
cation as both aim at modifying polarity, which is widely used to
increase aIL resistance [18–20]. Here, the highest GiP were found
for a moderate reduction in hydropathy (DHy � �4) (GiPvar = 1.21
and GiPpos = 0.61).

P6: Unfolding free energy. The unfolding free energy (DDGunf,
Eq. S6) is an important factor when considering substitutions, as
beneficial effects towards aIL resistance must compensate
potentially destabilizing effects (higher DDGunf) due to substitu-
tions. This concept was previously used to evaluate the cooperativ-
ity of BsLipA variants to increase aIL resistance in [BMIM/Cl],
where the exclusion of strongly destabilizing variants
(DDGunf � 7.52 kcal mol�1) led to a higher chance of determining
cooperative variants [63]. Here, excluding substitutions that mod-
erately destabilized the enzyme (DDGunf > 4 kcal mol�1) led to the
highest GiP (GiPvar = 1.13 and GiPpos = 0.93).

P7-P8: Residue conservation. Residue conservation (CS) is
often analyzed prior to rational mutagenesis approaches to deter-
mine residues important for the structure or function of enzymes,
such as in the catalytic or ligand binding sites [60,77,78]. Reducing
the degree of residue conservation below which substitutions are
allowed led to an almost linear increase of both GiPvar and GiPpos,
resulting in GiPvar = 1.22 and GiPpos = 1.20 at CS = 0 (see P8). How-
ever, as relevant sites and substitutions can coincide with semicon-
served positions [33], we used CS � 4 as the limit, which yields
GiPvar = 1.13 and GiPpos = 1.08 (P7).

P9-P12: Combined properties. We then evaluated the perfor-
mance when combining the properties P1, P4, P5, P6, and P7. This
yielded GiPvar = 3.35 and GiPpos = 1.29 (P9), which are substantially
increased GiP values compared to the individual properties. Nota-
bly, the result is robust to deviations from the optimal property
ranges and still yielded GiPvar � 3 and GiPpos � 1 when tightening
or relaxing the optimal ranges by 25%, respectively (P10 and
P11). Finally, relaxing the optimal ranges by 50% (P12) yielded
GiPvar = 1.85 and GiPpos = 0.83, a performance comparable to that
of some experimental approaches (A1, A2, and A4). Tightening
the optimal ranges by 50% led to zero predicted relevant variants
and positions. Note that relaxing (tightening) refers to modifying
the optimal ranges as to include more (less) variants. I.e., for
DHy, relaxing (tightening) by 25% means modifying the range from
[�1, �4] to [�1, �3] (or [�1, �5]), while the same changes mod-
ify the SA-ranges from [0.1, 0.4] to [0.075, 0.5] (or [0.125, 0.3]).

To conclude, the combination of five physicochemical and evo-
lutionary properties (P9), which can be computed within a few
hours from a static protein structure or sequence information,
yielded the, so far, highest GiPvar value and the third-highest GiPpos
value. At 13 positions predicted to be relevant, substitutions would
need to be performed, up to about twice as many as predicted by
A12 and A14. The five properties had been optimized individually
against the BsLipA SSM library, which may explain the excellent
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performance of P9. Still, if the properties were modified by�25% to
+50% (P10-P12), GiPvar � 1.85 result, although the GiPpos decreased
to �1 or below.
2.5. Computational approaches can be further enhanced by
combination with physicochemical and evolutionary properties

C1-C9: ‘‘Combinations”. Finally, we probed if the predictive
power of the most promising computational structure- and
mechanism-based approaches (A9, A11, A14) can be further
improved by combining themwith the physicochemical and evolu-
tionary properties (P9), which also notably reduces the number of
predicted relevant variants and positions, resulting in C1-C3
(Table 1; Table S1). Furthermore, we assessed the predictive power
when the applied properties deviate by �25% or +25% from the
optimal values, resulting in C4-C6 and C7-C9, respectively. In most
cases, increases in GiPvar result, while GiPpos is sustained (�1) or
increased (�1.7). These results indicate that the properties can
be used as filters to improve the predictive power for relevant vari-
ants and positions. Particularly, the results for C3, C6, and C9 indi-
cate that, first, predicting relevant positions by identifying
structural weak spots with CNA (A14) and, subsequently, filtering
the variants and positions using the physicochemical and evolu-
tionary properties (P9, P10, and P11) is a powerful and efficient
approach to predict smarter variant libraries at very few positions
for improving aIL resistance in protein engineering approaches.
Fig. 3. Only five approaches (A1, A2, A12, A14, A15) yield a significantly improved
prediction precision for relevant variants compared to random mutagenesis; only
two approaches (A12, A14) yield a markedly improved prediction precision for
relevant positions compared to random mutagenesis. Approaches are colored
according to their classification. See Fig. 2 for the color code. GiPvar and GiPpos are
shown as mean ± standard error of the mean over the four BsLipA SSM libraries.
Significant differences compared to random mutagenesis (Rd) are indicated with an
asterisk if p < 0.05 for each of the four BsLipA SSM libraries.
3. Discussion

In this study, we systematically and rigorously evaluated the
performance of 22 previously described structure-based
approaches to increase aIL resistance. We based our assessment
on an experimental BsLipA SSM library, which is, to our knowledge,
outstanding with respect to the number and completeness of vari-
ants and the variants’ screening against four aIL. We show that,
surprisingly, most of the approaches yield low GiP values, in partic-
ular with respect to predicting relevant positions. Here, 14
approaches perform worse than random mutagenesis (GiPpos < 1).
Encouragingly, however, exploiting experimental information on
the thermostability of BsLipA (A12) or structural weak spots of
BsLipA predicted by rigidity theory (A14) yields GiPvar values of
3.03 and 2.39 as well as GiPpos � 1.5. Furthermore, we demon-
strated that the combination of five simple-to-compute physico-
chemical and evolutionary properties (P9-P12) substantially
increases the precision of predicting relevant variants and posi-
tions of BsLipA for increasing aIL resistance. Finally, we showed
that combining these properties with predictions from structural
stability analyses of MD trajectories (C1/C4) or structural weak
spots identified by CNA (C2, C3, C5, C6, and C9) additionally
improves GiPvar up to 4-fold to �10 (C3, C6, C9) and sustains or
increases GiPpos � 0.96–1.77. Furthermore, at most ten relevant
positions are predicted, similar to the number obtained using dif-
ferent random mutagenesis approaches [30,79–81]. This enables
the investigation of substitution combinations for additive or coop-
erative effects.

Our results are based on the BsLipA SSM library that covers all
181 positions and contains all 3620 variants, each with a single
amino acid substitution as confirmed by DNA sequencing [16]. This
dataset represents a unique opportunity to evaluate the predic-
tions of approaches to improve aIL resistance, because, in contrast
to other biotechnologically relevant enzyme properties such as
thermostability and resistance towards detergents and organic sol-
vents, for which databases such as ProTherm [82–83], ProtaBank
[84], and FireProtDB [85] exist, such large-scale data is not avail-
able for aIL resistance. Additionally, it is unique in terms of its com-
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prehensiveness and unbiasedness. In comparison, the ProTherm
database [82–83] contains on average �12 single, �12 double,
and �1 multiple substitutions for each of the �1000 proteins
stored [86] and is strongly biased towards substitutions to alanine
[87]. Thus, outliers in this data may potentially corrupt its evalua-
tion to extract generally applicable rules to improve enzyme prop-
erties. Finally, the uniformity of screening conditions applied for
the BsLipA SSM library avoids ambiguous results originating from
different experimental methods, which was observed for ther-
mostability data of the same variant [88]. Note, though, that
enzyme activity determined for the BsLipA SSM library may be
influenced by differences in thermodynamic or kinetic protein sta-
bility [34,55] and protein expression [56]. Although in a recent
study, these shortcomings were circumvented by reporting com-
prehensive, domain-wide thermostability data for purified variants
of protein G (Gb1, 56 residues) [52], no such data at large scale is
available for aIL resistance.

To evaluate our results, we used rigorous binary classifiers that
are not affected by data prevalence and data imbalances and report
the results relative to performing random mutagenesis, which
accounts for a priori probabilities [57–58]. Subsequently, we deter-
mined if the changes of the observed relevant and non-relevant
populations were significant using Boschloo’s exact test [75]. Five
approaches (A1, A2, A12, A14, A15) significantly improved GiPvar
compared to random mutagenesis, but only approaches A12 and
A14 markedly improved GiPpos, although not significantly (Fig. 3).
The latter is likely due to the small sample sizes evaluated for pre-
dicted relevant positions (sometimes a field of the contingency
table even contains a zero) [89], although A12 and A14 consis-
tently improve GiPpos for all four aIL screened (A12: 1.66, 1.46,
1.59, 1.74; A14: 1.39, 1.31, 1.52, 1.39). This finding indicates that
the BsLipA SSM library may still be too small to allow for a rigorous
statistical assessment of approaches that aim at predicting small
residue proportions as relevant positions. These limitations will
likely become more pronounced when smaller datasets, such as
those extracted from the ProTherm database [82–83] or the Gb1
dataset [52], are considered.

The prediction precision of approaches that determine relevant
positions from experimental structural data (group I) and exten-
sive computations (group II), or perform general surface charge
modifications (group V), was unexpected considering that in no
(group II) or at most 50% of the assessed approaches (groups I
and V) GiPvar values were >2, and in no (group V) or at most 40%
of the cases GiPpos values were >1. The low performance needs to
be related to the extensive experimental (group I) or computa-
tional (group II) work required to predict relevant positions, or
the wide use of the approaches (group V) [41,19–20]. Hence, our
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assessment demonstrates that approaches should be evaluated on
large, unbiased, and complete datasets that allow a thorough anal-
ysis of a priori information; by contrast, many of the approaches in
the three groups have been exemplified based on small numbers of
variants or positions only (e.g., 24 positions in the case of A1 [90],
23 positions in the case of A4 [17], or 20–28 positions in the case of
A6-A11 [43]). Notably, predictions of relevant positions in terms of
interaction sites or perturbed residues for the BsLipA SSM library
based on experimental (A2, A5) or computational (A9, A11) work
perform almost equally, and only moderately better than perform-
ing substitutions at all solvent-exposed positions (P2). Further-
more, by most of the approaches of the three groups, many
(�20) relevant positions are predicted, which then lead to high
numbers of substitutions to be evaluated.

The cases where GiPvar > 2 but GiPpos � 0.3 to 0.5 (A1, A4, A17-
A19) indicate that charge modifications may be effective but that
their effect is strongly position-dependent. This corroborates pre-
vious findings that aIL interact specifically with a few surface resi-
dues of BsLipA, but also hints at that identifying such interaction
sites without evaluating the interaction effect on the protein stabil-
ity is insufficient [43]. Indeed, when changes in local structural sta-
bility originating from such interactions were additionally
considered, higher GiPpos, albeit still < 1, are obtained (A8, A10).
Finally, almost identical prediction precisions for R/K substitutions
at cationic binding sites (A6) versus D/E substitutions at anionic
binding sites (A7), or K/R? D/E (A18) versus D/E? K/R (A19) sub-
stitutions at solvent-exposed sites, indicate that effects on protein
stability due to aIL cations or anions can be equally well counter-
acted. These results furthermore suggest that cooperative counter-
measures may be possible when the respective charge
modifications are introduced together [42].

Previously, knowledge gained on a system while improving one
property was subsequently used to improve another property [33].
This applies particularly to improving thermostability, which has
been described to foster protein evolvability [91–92] and be
related to improvements of resistance to organic solvents [66,93–
96] and detergents [33,97]. In that respect, knowledge gained for
improving resistance to detergents also leads to moderate GiP
compared to randommutagenesis for predicting relevant positions
and variants for resistance to aIL (A13). More remarkably, the lar-
gest GiP across all 22 approaches are found if prior knowledge on
relevant positions for thermostability is transferred to improving
aIL resistance (A12), corroborating the relationship between pro-
teins that are stable against temperature and other influence
[33,66,94–97]. Rather than generating and screening an entire
SSM library to perform approach A12, knowledge gained during
enzyme engineering towards improved thermostability should
also be valuable [98–102] if the thermostability screening is more
efficient than that for aIL resistance. Finally, many more prediction
algorithms have been devised for improving thermostability than
aIL resistance, which may also be exploited in this context [103–
108]. One such example is CNA, which has been applied in retro-
[33,55,109–111] and prospective [34,112–113] studies to improve
protein thermostability previously and has been used before to
predict structural weak spots of BsLipA [33–34,55]. Applying these
weak spot predictions (A14) yields the highest GiPpos among all
evaluated computational approaches and the fifth-highest GiPvar
among all evaluated experimental and computational approaches,
without the need to tailor the method system-specifically and with
only moderate computational costs [33].

We contrasted the performance of the established approaches
with that of five physicochemical and evolutionary properties.
Such descriptors have been widely analyzed before for improving
thermostability [33,52,114–115], but less for aIL resistance
[16,49,63]. Many of the approaches derived from literature share
features with these properties. E.g., substituting to chemically dif-
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ferent amino acids [16] (A21) is highly similar to introducing mod-
erate changes in DHy as this often corresponds to different amino
acid types, e.g., aliphatic-to-polar and polar-to-charged [116].
However, our hydropathy-based criterion allows us to exclude
substitutions that increase hydropathy, that way limiting changes
to increases in polarity, which were suggested to be beneficial for
aIL resistance, particularly when introduced at the enzyme surface
[16,49]. Surprisingly, the most noticeable improvements originate
from properties that disregard specific knowledge on aIL but orig-
inate from general data- or structure-based computations, such as
solvent-accessibility, residue conservation, and unfolding free
energy. The success of these approaches is likely due to ‘‘excluding
unbeneficial variants” rather than ‘‘predicting beneficial variants”,
corroborating previous observations for excluding or including
specific variants [33–34,52,63,66].

As all properties that filter on the variant-wise level (P4-P6) led
to increased GiPvar at the expense of decreased GiPpos when applied
alone, it is advisable to combine variant-wise descriptors (P4-P6)
with at least one position-wise descriptor (P1-P3, P7-P8) to cir-
cumvent this drawback. Accordingly, combining such properties
(P9) not only reduced the numbers of predicted relevant variants
and positions to a level realizable by current high-throughput
methods [67–73] but also substantially increases the precision of
predicting relevant variants and positions of BsLipA for increasing
aIL resistance. To probe for the bias introduced in P9 by optimizing
the individual properties against the BsLipA SSM libraries, we
assessed the performance of the combination when the properties
deviated from the optimal values by –25% (P10), +25% (P11), and
+50% (P12). Although the performance of GiPpos dropped to �1,
GiPvar remains � �2, which is still higher than that of most other
approaches and indicating that the computed ranges are robust
against deviations from their optimal values.

Finally, the improved predictive performances of C1-C9 indicate
that structure- and mechanism-based computational predictions
can still be markedly improved by applying filters based on physic-
ochemical and evolutionary properties. As another favorable result,
few predicted relevant variants and positions were obtained,
which allows focussing subsequent experimental efforts. This is
important because protein engineering approaches are limited to
a few positions if the whole sequence space shall be investigated
by substitutions, as the library size increases exponentially [74].
Identified variants can subsequently be employed in additive
mutagenesis approaches, such as Computer-Assisted Recombina-
tion (CompassR), for creating further improved recombinant vari-
ants [46,63]. For instance, substitutions with
DDGunf < 7.52 kcal mol�1 were found to be more effectively com-
binable, indicating that the exclusion of destabilizing substitutions
with DDGunf > 4.0 kcal mol�1 likely leads to combinable substitu-
tions with synergistic and further improved enzyme resistance to
aIL [46,63].

In contrast to other methods limiting the investigated range of
potential substitutions, our approach evaluates substitutions over
the whole residue range, filtering on properties that are indepen-
dent of fixed residue characteristics but instead employing relative
property differences. For instance, in surface charge modification
approaches including only substitutions to charged residues on
the enzyme surface, only �22% of the beneficial substitutions in
the BsLipA SSM library are considered, and many relevant variants
are discarded [16]. Furthermore, our approach allows exploiting
site-specific measures potentially yielding many relevant variants,
such as the introduction of hydrophobic or polar residues, which
has rarely been thoroughly investigated [49] compared to surface
charge modifications [45,18–20]. However, previous findings that
many of the highest increases in aIL resistance were achieved by
introducing hydrophobic or polar residues [49] indicate substantial
potential for variants with improved enzyme resistance to aIL
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based on these substitutions. Thus, our results indicate that a time-
and cost-efficient workflow to improve aIL resistance (C3) is given
by, first, predicting relevant positions as structural weak spots with
CNA (A14) and, subsequently, reducing the number of predicted
relevant variants there according to the physicochemical and evo-
lutionary properties (P9). Notably, this combination is robust
against variations of the properties by ±25% (C6, C9).

In summary, we show for a complete SSM library of BsLipA that
the majority of 22 commonly used approaches to increase aIL resis-
tance perform surprisingly poorly compared to random mutagene-
sis. These findings stress the need to consider a priori information
and evaluate approaches for improving aIL resistance on large and
diverse enough datasets in the future. Notably, however, exploiting
experimental information on the thermostability of BsLipA or
structural weak spots of BsLipA predicted by rigidity theory stand
out favorably with GiPvar of 3.03 and 2.39 as well as GiPpos � 1.5.
The combination of five physicochemical and evolutionary proper-
ties provides an even more compute-efficient approach with still
fair GiPvar. Finally, combining structural weak spot prediction by
rigidity theory (CNA) with the physicochemical and evolutionary
properties yields particularly good GiPvar = 7.18–9.76 and
GiPpos = 1.77. Hence, compared to an unbiased random mutagene-
sis study, the experimental effort to identify 10 relevant variants
will be reduced from screening �117 randomly selected variants
to only �12 rationally selected variants using approach C6.
Although these results were obtained for the case of BsLipA, CNA
was not system-specifically adapted, and the robustness of the
physicochemical and evolutionary properties as to pronounced
deviations from their cutoff values was demonstrated. These find-
ings suggest that this combination should be applicable to other
enzyme systems for guiding protein engineering approaches
towards improved aIL resistance for the use in green industrial
approaches.
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