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Formation of metastable phases by spinodal
decomposition
Ricard Alert1,2, Pietro Tierno1,2,3 & Jaume Casademunt1,2

Metastable phases may be spontaneously formed from other metastable phases through

nucleation. Here we demonstrate the spontaneous formation of a metastable phase from an

unstable equilibrium by spinodal decomposition, which leads to a transient coexistence of

stable and metastable phases. This phenomenon is generic within the recently introduced

scenario of the landscape-inversion phase transitions, which we experimentally realize as a

structural transition in a colloidal crystal. This transition exhibits a rich repertoire of new

phase-ordering phenomena, including the coexistence of two equilibrium phases connected

by two physically different interfaces. In addition, this scenario enables the control of sizes

and lifetimes of metastable domains. Our findings open a new setting that broadens

the fundamental understanding of phase-ordering kinetics, and yield new prospects of

applications in materials science.
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U
pon a quench, namely a sudden change of the external
conditions, a system is initially in a nonequilibrium state.
The processes of relaxation to the new equilibrium state

may be complex, specially if a phase transition boundary is
crossed and more than one phase is locally stable. The
corresponding phase-ordering processes and their kinetics have
been intensively studied for decades and are now a classical topic
of nonequilibrium physics. Indeed, phase-ordering kinetics is
central to understand and control domain formation in a wide
range of materials, ranging from liquid mixtures or metal alloys to
structural or magnetic domains in solids, through liquid crystals,
polymers and many soft-matter systems1.

The dynamics of phase transitions often involves metastable
phases, namely states that are only transiently stable, since they
relax to the actual equilibrium by a finite-size perturbation.
Examples are ubiquitous and include diamond or supercooled
liquid water, which are metastable, respectively, to graphite and
ice at room pressure. A given phase may become metastable upon
a change of thermodynamic variables, such as temperature,
pressure or magnetic field, that modifies its relative stability, such
as when liquid water is supercooled. Subsequently, a transition to
the stable equilibrium phase occurs typically via nucleation,
which requires overcoming an energy barrier to form a growing
nucleus of the final phase. In contrast, if the quench is such that
the initial phase is in unstable equilibrium, new equilibrium
phases are spontaneously generated by the relaxation dynamics.
By this process, known as spinodal decomposition, infinitesimal
fluctuations directly grow to give rise to domains of the final
coexisting phases2–5.

Metastable phases may be generated de novo through
nucleation from other preexisting metastable phases, such as
supercooled water giving rise to metastable structures of ice.
According to Ostwald’s step rule6, this will occur when the
nucleation kinetics of the stable phase is slower than that
of an intermediate metastable phase. On the other hand,
nonequilibrium metastable states such as gels may form via a
dynamic arrest of a spinodal decomposition process7,8. However,
to our knowledge, metastable equilibrium phases, namely
metastable states of possible equilibrium phases of the system,
have never been observed to appear spontaneously by spinodal
decomposition, this is from an unstable equilibrium phase. Here
we predict and experimentally verify the direct, spontaneous
formation of a metastable equilibrium phase upon a quench into
an unstable equilibrium.

This phenomenon is observed in a solid–solid transition of a
two-dimensional (2D) colloidal crystal made of paramagnetic
particles. Colloidal systems have proven to be very useful
experimental models for studying the kinetics of phase
transitions9. Specifically, several aspects of the dynamics of
solid–solid transitions were revealed by studies on colloidal
crystals10, including the appearance of long-lived metastable
structures11–13, usually through displacive transformations.
Indeed, diffusive nucleation was only recently observed in
colloidal crystals, in the form of a two-stage, liquid-mediated
process14,15 that was later found in a metal16.

From a fundamental point of view, the universal features of
phase-ordering processes are usually captured by time-dependent
continuum models based on coarse-grained free energy
functionals2–5,17. Recently, these classical field models are being
revisited to formulate a theory for phase separation in active
systems18,19. However, the fundamental theory of phase
separation in traditional, non-active systems has remained
essentially unchanged for decades. Herein, we report a battery
of new phase-ordering phenomena that have no counterpart
within the classical theory. Our results stem from a recently
introduced, nonstandard scenario of phase transitions, the

so-called landscape-inversion phase transitions (LIPT)20, where
the periodic energy landscape of the system can be inverted by
changing a single parameter.

Among the new phenomena, we highlight the existence of an
asymmetric spinodal decomposition whereby the system phase
separates into two coexisting equilibrium phases of different
relative stability. This process leads to the aforementioned
formation of the metastable domains. We also predict that these
domains are subsequently eliminated by a front propagation
mechanism, thus differing from the self-similar domain
coarsening that usually follows spinodal decomposition.
Moreover, we also show that the range of sizes and lifetimes of
the metastable domains, and thus the overall phase transition
kinetics, can be externally controlled by a magnetic field. Finally,
we further reveal the possibility that two coexisting stable phases
are simultaneously connected by two distinct interfaces, with
different physical properties such as interfacial tension.

Results
The landscape-inversion phase transition. A phase transition
scenario based on a complete inversion of the energy landscape
was recently discovered in a 2D crystal of paramagnetic colloidal
particles on top of a periodic magnetic substrate20, and later
found in a suspension of magnetic and nonmagnetic particles
within a ferrofluid of tunable susceptibility21. In the former
realization, particles arrange along parallel lines following the
domain walls of a striped substrate. At these lines, the substrate
generates a magnetic field ±Hs that magnetizes particles on
consecutive lines in opposite directions (Fig. 1a). Then, when a
uniform external magnetic field H is applied, particles on
consecutive lines acquire magnetic dipoles mipHþHs and
mjpH�Hs. Thus, the dipolar interaction between these particles
yields a contribution UijpmimjpH2

s �H2 to the energy.
Consequently, the application of an external field H4Hs causes
the energy landscape to globally invert. This induces a structural
phase transition in the crystal, with the lattice angle a as
(nonconserved) order parameter, which is accompanied by a
magnetic transition from an antiferromagnetic to a ferromagnetic
order (Fig. 1). Moreover, without crossing the phase transition
boundary at H¼Hs, the external field tunes the relative stability
of the different structures, and hence their dynamics, without
modifying their crystalline order a, which can be independently
tuned by changing the density of particles20.

We remark that, for HoHs, the equilibrium angle aa is
equivalent to � aa (Fig. 1c). This is because, in the corresponding
structure, particles on one line are equidistant from the four
neighbouring particles on the two nearest lines (sketch in Fig. 1a).
Therefore, the structures with lattice angles aa and � aa are
exactly the same, and hence the identification aa2� aa. In
contrast, for H4Hs, the two equilibrium structures, with opposed
lattice angles ab and � ab (Fig. 1c), correspond to different
particle arrangements (sketch in Fig. 1b).

Formation of metastable domains by spinodal decomposition.
We first focus on the phase-ordering kinetics associated to the
LIPT by suddenly switching off an external magnetic field
H¼ 3Hs/2. This quench forces the crystal to transit from
the rhomboidal structure with abE7� (Fig. 1b) to that with
aaE25� (Fig. 1a). We monitor the dynamics of the structural
rearrangement via the time evolution of the radial distribution
function g(r) of the crystal, as shown in Fig. 2. Different
crystalline lattices are distinguished by their corresponding
peaks in the g(r). In Fig. 2a, the initial ab crystal (Fig. 1b) is
distinguished by the presence of secondary peaks at rB1.4l/2 and
rB2.25l/2 (blue). In turn, the final aa crystal (Fig. 1a) features a
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wider first peak and no secondary peaks (red). The theoretical
positions of the main peaks of both structures are indicated by
arrows in Fig. 2a. From them, we infer that the widening of the

first peak in the aa structure indeed results from the appearance
of a second peak at rB1.1l/2, which cannot be resolved from the
primary one within the experimental resolution.
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Figure 1 | Landscape-inversion phase transition in dipolar colloids on a periodic magnetic substrate. (a,b) Experimental image and sketch of the dipolar

colloidal crystal at external magnetic fields H lower and higher than the substrate field Hs¼ 13 kA m� 1. Particles assemble into lines, on top of the

walls between oppositely magnetized domains (white and grey) of the substrate, with spatial period l¼ 2.6mm. The structural order is described by the

lattice angle a. Scale bars, 20mm. (c) The energy landscape of the system completely inverts for H4Hs. This induces a transition from the aa to the ab

structure in the crystal20. A metastable equilibrium structure, am, exists for HoHs. Dashed lines illustrate the identification aa2� aa, since these angles

correspond to the same structure (see text). The energy scale is u0�m0w2a3H2
s , with wB1 the magnetic susceptibility of the particles of radius a¼0.5 mm.
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Figure 2 | Formation of a metastable phase. (a) Radial distribution function g(r) of the system before (t¼4 s, blue), during (t¼ 6.57 s, green),

and after (t¼ 11 s, red) the phase-ordering process induced by a quench of the magnetic field from H¼ 3Hs/2 to H¼0 at t¼6 s. The theoretical positions

of the main peaks of the initial and final equilibrium structures are indicated by blue and red arrows, respectively, with black arrows standing for peaks

common to both lattices. The distance is divided by the spatial semiperiod of the substrate, l/2¼ 1.3 mm. (b) Time evolution of the height of the secondary

peak of the g(r). Its transient increase right after the quench is due to the spontaneous formation of a metastable rectangular structure with am¼0, which

disappears afterwards. Colour lines indicate the average height of the peak at equilibrium, both before and after the quench. Colour stars correspond to the

three radial distribution functions in a. (c) Time evolution of the width of the first peak of the g(r) at a height g¼ 1.3. After the quench, this peak widens due

to the appearance of a second peak of the final lattice very close to the primary peak, which is not resolved experimentally. The widening, this is the

formation of the final equilibrium phase, occurs on the same characteristic time as the disappearance of the metastable phase shown in b. Therefore, the

metastable domains are eliminated in favour of the stable crystalline structure. All quantities are averaged over 15 realizations.
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However, Fig. 2a also reveals that the structural transition does
not occur via a homogeneous relaxation but that it rather involves
a nontrivial phase-ordering process. This follows from the fact
that the secondary peaks of the initial structure first increase
in height (green) before disappearing (see also Fig. 2b). This
corresponds to the transient formation of the metastable
rectangular structure with am¼ 0 (Fig. 1c), which contributes
peaks at r¼

ffiffiffi
2
p

l/2 and r¼
ffiffiffi
5
p

l/2. However, the stable aa

structure also starts forming right after the quench, as indicated
by the widening of the first peak of the g(r) (Fig. 2c). Therefore,
both phases transiently coexist for B2 s, after which the system
reaches the final homogeneous aa phase.

The theoretical model of the LIPT (Fig. 1c) allows to predict
the phase-ordering processes associated to the inversion of the
energy landscape. A simple quench from H4Hs to HoHs

leaves the system at an unstable equilibrium state, from which it
phase separates into domains of two locally stable phases.
However, in contrast to standard spinodal decomposition2–5,
the two coexisting phases have different relative stability.
Hence, we term this phase separation process ‘asymmetric
spinodal decomposition’. Thereby, half of the system initially
evolves towards a metastable phase that was not present in the
initial condition. Therefore, in the light of the model, the
experimental data conclusively demonstrate the direct
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resulting from a quench from H4Hs to HoHs (see Supplementary Movie 1). Colour indicates the order parameter field j(r, t) of the model. The system,

initially at the unstable state j¼ 30� (dark blue), undergoes an asymmetric spinodal decomposition that spontaneously generates both stable j¼ 90�
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. (b) Model energy landscape of the LIPT, equation 2. The dashed part illustrates the

periodicity of the potential. (c) Dispersion relation of the unstable state, equation 4, for different values of the magnetic field. The field controls the region of

unstable modes qoqc and thus the range of sizes of the forming domains. (d) Velocity of planar fronts as a function of the landscape-inversion parameter

h� 1�H2/H2
s from simulations, with a fit of the predicted scaling vph1/2. (e) Time evolution of the area fraction covered by the metastable state for

different values of the magnetic field. This graph shows the formation and subsequent elimination of the metastable state, with the overall phase transition

dynamics controlled by the external magnetic field.
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spontaneous formation of a metastable phase by spinodal
decomposition.

Hitherto, metastable phases could only form de novo from
other metastable phases, either through diffusive nucleation
or displacive transformations. Indeed, a mechanism for the
formation of metastable domains upon the nucleation of the
stable phase was proposed based on a dynamical instability of
the fronts propagating from stable into unstable states, both for
nonconserved22–24 and conserved25,26 order parameters. In any
case, the formation of the metastable phases was not generic but
depended on the depth or rate of the quench. In contrast, within
the LIPT scenario, metastable domains are spontaneously formed
by spinodal decomposition, thus directly from the unstable state,
simultaneously to the formation of stable domains. In other
words, metastable domains are naturally formed at the initial
stages of the phase separation process, as a direct consequence of
the energy landscape inversion. In addition, their appearance is
completely generic, independent of the quench depth.

To further investigate the novel phase-ordering processes of
the LIPT, we formulate a time-dependent Ginzburg–Landau-like
model for its dynamics (see Methods). Stochastic simulations of
such a model clearly illustrate the spontaneous formation of
metastable domains upon the inversion of the energy landscape
(Fig. 3a,b). The dispersion relation of the unstable state, plotted in
Fig. 3c, gives the minimal size of the forming domains, B2p/qc,
which is controlled by the magnetic field at which the quench is
performed.

Front propagation. The generated metastable domains coexist
with globally stable ones, and, therefore, they are subsequently
invaded and eliminated by fronts of the stable state.
Consequently, the late stages of the phase-ordering process do not
proceed by a self-similar coarsening as in usual spinodal
decomposition3–5. Thus, domain dynamics is not governed by
interfacial curvature but rather by front propagation, and hence
by the free energy difference between the stable and metastable
phases27–29. This enables the external control of the domain
dynamics by means of the magnetic field.

The dependence of the speed of the fronts on the value of the
magnetic field upon the quench can be deduced from the
dynamics of the order parameter field28,29. Neglecting curvature
corrections, the interface speed, width and tension are thereby
predicted to scale as vph1/2, dph� 1/2, and sph1/2, respectively
(see Methods). Here we have defined the landscape-inversion
parameter h� 1�H2/H2

s , which changes sign at the transition

point. Then, we measure the speed of planar fronts in simulations
for several values of h. The numerical results agree with the predi-
cted scaling, as shown in Fig. 3d.

We note that the scaling vph1/2 contrasts with the prediction
of a linear scaling vpE of the front speed with the distance
from the transition point, E� (T�Tc)/Tc, for first-order phase
transitions30. For the LIPT, h directly measures the distance
from the transition point at h¼ 0. In fact, a square-root scaling
vp|E|1/2 like the one we find was predicted for fronts associated
to second-order transitions30. Thus, despite being discontinuous,
the LIPT shares some dynamical properties with second-order
phase transitions.

Finally, since the external magnetic field controls both the
range of sizes of the generated domains and their rate of
disappearance, it actually tunes the overall phase transition
dynamics. Higher fields, closer to the transition threshold Hs,
imply a wider distribution of domain sizes (Fig. 3c) and slower
propagating fronts, so that more metastable phase is generated
and it lives longer. This is shown in Fig. 3e, which reports the
fraction of area covered by the metastable state in simulations at
different magnetic fields.

Last, it is also worth mentioning that, in principle, the
inversion of the energy landscape could be useful as a generic
probe for front propagation problems (see Supplementary Note).

Phase coexistence with two physically different interfaces. We
next consider the phase-ordering process upon the opposite
quench, from HoHs to H4Hs. Again, as illustrated in Fig. 4a,
the inversion of the energy landscape from the equilibrium state
j¼ 90� at HoHs leaves the system at an unstable state, from
which it undergoes spinodal decomposition. However, this
process is symmetric for the present situation, leading to
two equilibrium phases, j¼±30�, with equal energy. As a
consequence, interfaces between these two phases can not
propagate as fronts, and they only move under curvature. Their
speed is locally proportional to their curvature, following the
Allen–Cahn law31. This behaviour leads to a usual curvature-
driven coarsening process characterized by a scaling regime of the
typical domain size2–5,31,32 R(t)pt1/2.

Now, because of the periodicity of the free energy, the two
equilibrium phases are indeed connected through two distinct
interfaces, with different profiles and interfacial tensions (Fig. 4a).
Remarkably, the system forms only the most energetic of both
interfaces when quenched from the equilibrium state j¼ 90� at
HoHs. In contrast, if the system presents stable-metastable
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coexistence when quenched to H4Hs, it naturally undergoes a
double spinodal decomposition leading to the formation of both
interfaces, as illustrated in Fig. 4b. Simulations also show that the
most energetic interface disappears in favour of the least energetic
one when both get into contact (Supplementary Movie 3).

Discussion
Our findings open a new scenario of phase-ordering kinetics,
associated to the LIPT, in which several unexpected phenomena
take place. In particular, these include a new mechanism to form
metastable phases, namely by spinodal decomposition. By this
mechanism, metastable phase formation is robust within the
LIPT scenario, occurring regardless of the amplitude or the rate of
the quench. Remarkably, the LIPT never leads to nucleation
despite the existence of a metastable state in the free energy.
A summary of the phase-ordering processes allowed by this
nonstandard scenario is provided in Fig. 5a. There, the case
of a conserved order parameter has also been included
for completeness (see Supplementary Discussion for details).
Additionally, a concise summary of the phase-ordering processes
associated to the classical A and B models of phase transition
dynamics5 is given in Fig. 5b for comparison (see Supplementary
Discussion).

While we experimentally demonstrate the unstable-to-meta-
stable phase change, the rest of our predictions remain to be
experimentally verified due to limitations of our setup, such as the
relatively small system size, the presence of vacancies in the
crystals and the lack of precise control of the in-line particle
density. However, the LIPT scenario has been already realized in
another physical system21. Thus, searching for other systems that
broaden the experimental possibilities or finding a LIPT with
conserved order parameter remain appealing open challenges. In
this sense, our results may open new research avenues in the field
of phase transition dynamics and may foster, for instance, the
exploration of nonstandard routes to phase separation.

With regard to colloidal materials, in addition to enabling
novel routes for solid–solid transitions, our system also provides
external magnetic control over the phase-ordering dynamics of
2D crystals10. Understanding and controlling the ordering and
relative stability of different crystalline structures could indeed be
relevant for applications of colloidal crystals themselves33,34, such
as photonic band-gap materials, but also of atomic alloys in the
nanotechnological domain35,36. In this respect, our work could
provide a basis for the search of new self-assembly strategies, in

particular related to the possibility of tuning the spatial
organization of crystalline structures in 2D materials.

Methods
Experiments. The periodic magnetic substrate is a uniaxial ferrite garnet film
grown by liquid phase epitaxy. An aqueous suspension of paramagnetic colloidal
particles (Dynabeads Myone) is deposited on top. The external magnetic field is
generated by custom-made coils. Particle positions are tracked by a custom-made
software from video microscopy recordings at 60 Hz over an area of
140� 105mm2.

Dynamical field model of the LIPT. We build a Ginzburg–Landau-like model for
the dynamics of the LIPT by formulating a coarse-grained free energy functional of
a scalar order parameter j(r, t)37:

F j½ �¼u
Z
O

f0 j½ � þ k
2
rjð Þ2

� �
ddr: ð1Þ

where u and k are phenomenological parameters governing the energy scale and
the spatial coupling, respectively.

The dimensionless local free energy density f0 must capture the essential
features of the actual potential of the LIPT (Fig. 1c). Therefore, f0 must feature, at
least, a stable and a metastable state, and it must allow for a complete inversion
under change of a control parameter. The order parameter must have the topology
of an angle, hence identifying the two extremum values of its range (aa2� aa in
Fig. 1c, and 90�2� 90� in this model, Fig. 3b). A model free energy including all
these ingredients is

f0 j½ �¼h sin2j 1�A sin2j
� �

; ð2Þ

where h and A are two control parameters. Here we have defined the landscape-
inversion parameter h� 1�H2/H2

s , while the role of the particle density is played
by A, which we take to be A¼ 2. Indeed, 0ohr1 corresponds to 0rHoHs, and
ho0 corresponds to H4Hs, so that h changes sign to invert the energy landscape.
In turn, A41 controls the relative stability of the stable j¼ 90� and metastable
j¼ 0 states for h40, and the energy barrier between the two degenerated states at
j¼±arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= 2Að Þ

p
¼ 30� for ho0.

Then, the dynamics of the nonconserved order parameter is specified by the
time-dependent Ginzburg–Landau equation

@j
@t
¼� G

u
dF j½ �
dj

þ x¼G � @f0

@j
þ kr2j

� �
þ x; ð3Þ

where G is a kinetic coefficient and x(r, t) is a Gaussian white noise field with
hx(r, t) x(r0 , t0)i¼ 2Dd(r� r0)d(t� t0). A linear stability analysis of the unstable
states j¼±30� at HoHs leads to their dispersion relation:

o qð Þ¼ G 3h� kq2
� �

; ð4Þ

where q is the modulus of the wave vector.
Finally, an extended model including the possibility of liquid interfaces between

crystalline regions is introduced in the Supplementary Method (Supplementary
Fig. 1), which is closer to the experimental situations of Fig. 1 or liquid-mediated
transitions14.
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Figure 5 | Comparison of the phase-ordering kinetics of the LIPT and classical scenarios. Initial stages of phase separation (domain formation) are
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Supplementary Discussion. Only the results of quenches to temperatures below critical, ToTc, are shown for the classical models, since quenches to T4Tc

lead to a homogeneous relaxation without phase separation. In the LIPT scenario, phase separation processes occur at both sides of the transition.
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Front dynamics. The properties and motion of the interfaces follow from
the order parameter dynamics28,29. Particularly, a closed equation for the profile of
a steadily moving flat interface can be derived from equation 3. In the comoving
frame of reference of a planar front advancing at a constant velocity v, the
evolution of the order parameter can be written as @tj¼ � v � rj, so that the
time-dependent Ginzburg–Landau equation (equation 3) becomes

� v
dj
dz
¼ G � @f0

@j
þk

d2j
dz2

� �
; ð5Þ

where we have taken v¼vẑ and disregarded fluctuations. This equation can not be
solved analytically for the model free energy functional of the LIPT (f0[j] in
equation 2), but a dimensional analysis of equation 5 predicts the interface width
and speed to scale as dp

ffiffiffiffiffiffiffiffi
k=h

p
and vpG

ffiffiffiffiffiffi
kh
p

, respectively. In addition, the
projection of equation 5 onto the Goldstone mode dj/dz (ref. 29) also predicts a
scaling sp(A� 1)

ffiffiffi
h
p

for the interfacial tension.

Simulation details. In all cases, numerical results are obtained from simulations
of equation 3 under periodic boundary conditions, following usual stochastic
algorithms for the noise field38, and with a rescaled time step GDt¼ 5 � 10� 3.

Results in Fig. 3a,d,e are obtained on a 200� 200 grid in simulation units
ffiffiffi
k
p

,
and for D¼ 0.02kG. A quench from h¼ � 2 to h¼ 0.25 is applied at time t¼ 0. In
Fig. 3d, the fit of the predicted scaling v¼ bG

ffiffiffiffiffiffi
kh
p

to the simulation results gives
the prefactor b¼ 1.36±0.01. In Fig. 3e, the simulation grid points contributing to
the area covered by the metastable state are those featuring a value of the order
parameter within its free energy basin. The limits of this basin are set by the
inflection points of the local free energy (see Fig. 3b), which define the
corresponding region of local thermodynamic stability, giving jE±20�.

In turn, simulations in Fig. 4b are performed on a 100� 100 grid, for the same
value of D, and the quench is applied from h¼ 1 to h¼ � 2.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon request.
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