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Abstract: Nanoscale materials have properties that frequently differ from those of their bulk form
due to the scale effect, and therefore a measurement technique that can take account of such material
characteristics with high accuracy and sensitivity is required. In the present study, advanced
nanomechanical metrology was developed for evaluation of elastic properties of thin-film materials.
A 52 nm thick chromium (Cr) film was deposited on a high-speed micromechanical resonator
using an e-beam evaporator, and the structure was excited to resonate using an ultrasonic platform.
The resonant frequencies for the first and second flexural vibration modes were measured using
laser interferometry, and they were compared to analytical estimation from the classical beam theory.
Results show that the experimental data are in excellent agreement with the theory, within 1% of
the relative error, and a mass sensitivity up to 10.5 Hz/fg was achieved. Thus, the scale effect that
reduced the Young’s modulus of Cr by 49.8% compared to its bulk property was correctly recognized
by the proposed method.

Keywords: micromechanical resonator; materials characterization; thin-film; elastic modulus

1. Introduction

Mechanical properties of nanoscale thin-films have drawn significant attention in the fields
of science and engineering, not only for intellectual reasons but for practical applications in
microelectromechanical systems (MEMS) and semiconductor devices. For example, the state-of-the-art
three-dimensional memory devices require micro/nanomechanical stability design and simulation
in order to prevent structural failures during the microfabrication process, unlike their predecessors
based on planar device technologies [1]. During the design, however, properties of bulk materials
cannot be used because they frequently deviate from literature values due to the scale effect and also
vary depending on process conditions. Therefore, it is essential to develop an evaluation technique
that accounts for such material characteristics.

Among many techniques such as acoustic microscopy [2], nanoindentation testing [3], microtensile
testing [4], laser ultrasonics [5], and so on, micromechanical resonator-based sensing provides an
effective and convenient way to study characteristics of thin-films and nanoscale materials [6]. In the
microresonator testing, attachment of molecules onto the surface of a cantilever beam-like MEMS
structure results in a shift of its resonant frequency. Therefore, properties of the attached materials
can be calculated once the frequency shift is measured and theoretically analyzed. To improve the
microresonator’s performance, the following measures have been taken: increasing the operating
frequency by using higher order resonance modes and decreasing the resonator mass by reducing
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the volume of the structure, due to the mass sensitivity (S) of the microresonator being equal to the
resonant frequency shift (∆f ) divided by the mass addition (∆m) [7]:

S = ∆ f /∆m (1)

Reducing the volume of the structure, however, addresses problems in microfabrication and
instrumentation [8]. For example, a position sensitive detector (PSD)-equipped atomic force microscopy
(AFM)-based approach is conventionally used for the evaluation, but its sensitivity is limited by
instrumentation issues arising from the minimum angle of beam deflection or, in turn, the minimum
length of the micromechanical resonator, since it depends on the optical lever method for detection.
Increasing the resonant frequency is also limited by the bandwidth of PSD. Although certain
approaches have been demonstrated to increase the operation frequency to the megahertz (MHz) and
gigahertz range [9–12], a typical AFM probe still resonates in the lower kilohertz frequency range.
Therefore, faster actuation and sensing are required to enhance the resolution.

Here, an advanced nanomaterials characterization method is introduced using a micromechanical
resonator actuating in the MHz frequency range. The resonant frequency shift of the resonator
upon deposition of a nanoscale thin-film, which is a chromium (Cr) layer for demonstration in this
study, is detected so that the film’s elastic modulus can be evaluated. The time-domain waveform
of the resonance signal is measured using a path-stabilized Michelson interferometer—instead of
using the optical lever method—for the high frequency detection, and the vibration mode of the
micromechanical resonator is identified using the Euler–Bernoulli beam theory. The advantage of the
proposed technique is that increasing the actuation and detection frequencies to the MHz range makes
it possible to evaluate nanomaterials with high sensitivity and accuracy.

2. Materials and Methods

2.1. Materials

A high-speed micromechanical resonator (SD-USC-F1.2-k7.3-TL, Nanoworld AG, Neuchâtel,
Switzerland) was used in this study, as shown in Figure 1. The length (L) and width (b) of the structure
are 20 µm and 10 µm, respectively. It has 30 nm thick gold (Au) layers on the top and bottom sides of
the 670 nm thick quartz core, for optical reflection of a detection laser beam.
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A 52 nm thick Cr layer was additionally deposited on the top surface using an e-beam evaporator 
(FC-2000, Temescal Systems, Livermore, CA, USA). The chamber pressure and deposition rate were 
maintained at 1.1 × 10−7 Torr and 2.0 Å/s, respectively, during the process. The film thickness was 
checked using a profilometer (P6, KLA Tencor, Milpitas, CA, USA) after the deposition was 

Figure 1. Field emission scanning electron microscopy pictures of the micromechanical resonator:
(a) top-view; (b) side-view.

A 52 nm thick Cr layer was additionally deposited on the top surface using an e-beam evaporator
(FC-2000, Temescal Systems, Livermore, CA, USA). The chamber pressure and deposition rate were
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maintained at 1.1 × 10−7 Torr and 2.0 Å/s, respectively, during the process. The film thickness
was checked using a profilometer (P6, KLA Tencor, Milpitas, CA, USA) after the deposition was
complete—since the film thickness is an important parameter that influences the Young’s modulus of
Cr film in this experiment, a bare silicon (Si) (100) wafer with a polished surface was also installed in
the chamber and partially covered to measure the thickness of the Cr layer. The measurement data in
Figure 2 show that the film thickness is approximately 52 ± 2 nm.
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2.2. Characterization Methods 

Figure 2. (a) A microscopy image of the chromium-coated silicon wafer. The dark area in the center
was partially covered during the film deposition for the thickness measurement along the blue arrow;
(b) thickness measurement data using a profilometer.

To study microstructures of the film, the surface morphology was imaged using an atomic force
microscopy (AFM L-trace II, Hitachi High-Tech Science Corporation, Tokyo, Japan) operating in a
tapping mode. 512 × 512 pixels were measured within an area of 1 × 1 µm2 at a scanning speed of
1 Hz. In addition, grazing incidence X-ray diffraction (GIXRD) patterns were measured (X’pert Pro,
PANalytical B.V., Almelo, Netherlands) in the range of 30◦–90◦ with an angular step of 0.02 at a scan
step time of 1 s. Due to the difficulty of directly measuring the chromium film on the microresonator
surface with an area of only 20 × 10 µm2, the reference sample (the same film on a 4 inch Si(100) wafer)
was measured instead. The AFM image introduced in Figure 3a reveals that the surface roughness
(Ra) is 0.79 nm. Figure 3b shows that the GIXRD patterns and peaks are located at 2θ = 44◦, 65◦, and
82◦, corresponding to the Cr(110), Cr(200), and Cr(211) planes, respectively, according to the Inorganic
Crystal Structure Database (ICSD), reference code No. 98-062-5717. The stick patterns for silicon (ICSD
reference code No. 98-005-1688) was also plotted together in Figure 3b.
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2.2. Characterization Methods 

Figure 3. Sample characteristics. (a) An atomic force microscopy image of the chromium film on
the micromechanical resonator. The surface roughness (Ra) is 0.79 nm; (b) grazing incidence X-ray
diffraction (GIXRD) peaks on the chromium film on a Si(100) substrate.
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2.2. Characterization Methods

Figure 4a shows a schematic of the test apparatus for the resonant frequency measurements.
Broadband ultrasonic contact transducers with different center frequencies (1.0 MHz, 2.25 MHz,
5.0 MHz, and 10.0 MHz) were prepared and the micromechanical resonator was placed on the
transducer, to which a 5-cycle tone burst signal was transmitted using a radio frequency ultrasonic
pulser. The repetition rate was adjusted to 200 Hz to allow sufficient time for the vibration of the
micromechanical resonator to fully decay before the next signal arrived.
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Figure 4. (a) A schematic representation of the experimental apparatus; (b) a picture of the actual
interferometer setup.

The vibration was measured using a Michelson interferometer with a light source of a
diode-pumped solid state laser (continuous wave at a 532 nm wavelength) in a single longitudinal
mode. It was path-stabilized using an analog proportional-differential-integral controller and a
piezo-actuated mirror to compensate the optical path length difference caused by low-frequency
disturbances and noises. Intensity changes of fringe patterns were converted to voltage signals
in a 50 MHz silicon fixed gain photodetector and recorded in a 500 MHz digital oscilloscope.
The experiment was performed on an optic table with active self-leveling vibration isolation supports.
Figure 4b shows a picture of the actual interferometer setup.
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3. Theory and Calculation

The resonant frequencies obtained from the experiment and corresponding vibration modes
were verified using the Euler–Bernoulli beam theory [13]. Suppose that the chromium-coated
micromechanical resonator is placed in the coordinate system shown in Figure 5. Again, the length
and width of the structure are L and b, respectively.
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Figure 5. Dimensions of the micromechanical resonator: (a) 3D-view, L is the length and b is the width;
(b) a cross-section, d is the thickness.

The equation of motion of the beam is expressed in the form of a fourth order partial differential
equation as follows:

EI
∂4w(x, t)

∂x4 + µ
∂2w(x, t)

∂t2 = 0 (2)

where E is the Young’s modulus, I is the moment of inertia, w(x,t) is the deflection of beam as a function
of length (x) and time (t), and µ is the mass per unit length. The term EI is also known as flexural
rigidity. The resonant frequency for the nth vibration mode, fn, can be obtained by solving the equation
using the method of separation of variables. Suppose that the solution is expressed by the product of a
spatial function, X(x), and a time function, T(t). Then, the deflection of beam is now written as follows:

w(x, t) = X(x)T(t) (3)

Then, Equation (2) becomes:
EI
µ

1
X

∂4X
∂x4 = − 1

T
∂2T
∂t2 (4)

To satisfy Equation (4), it has to be equal to a constant, w2
n, which is the square product of an

angular frequency of the micromechanical resonator. Then, the left-hand side of Equation (4) is given
as follows:

∂4X
∂x4 − k4

nX = 0 (5)

where k4
n is expressed as:

k4
n =

ω2
nµ

EI
(6)

From Equation (6), the resonant frequency of the micromechanical resonator is obtained as follows:

fn =
1

2π

(knL)2

L2

√
EI
µ

(7)

where knL is the coefficient associated with the vibration mode, and for a clamped-free boundary
condition, k1L = 1.8751, k2L = 4.6941, and so on [13].



Materials 2017, 10, 806 6 of 11

Since the micromechanical resonator is composed of four different layers, EI in Equation (7) is
equal to the summation of the flexural rigidity of each layer:

EI = EIAu,bottom + EIQuartz + EIAu,top + EICr (8)

The moment of inertia for each layer is calculated using the parallel axis theorem as follows [14]:

IAu,bottom =
1
12

bd3
Au + bdAu

(
hn −

dAu
2

)2
(9)

IQuartz =
1

12
bd3

Quartz + bdQuartz

(
dAu +

dQuartz

2
− hn

)2

(10)

IAu,top =
1

12
bd3

Au + bdAu
(
1.5dAu + dQuartz − hn

)2 (11)

ICr =
1

12
bd3

Cr + bdCr

(
2dAu + dQuartz +

dCr
2

− hn

)2
(12)

where d is the film thickness. Additionally, hn is the neutral axis calculated as follows:

hn =
[
EAud2

Au/2 + EQuartzdQuartz(dAu + dQuartz/2) + EAudAu(1.5dAu + dQuartz )

+ECrdCr(2dAu + dQuartz + dCr/2)
]
/
[
2(EAudAu) + EQuartzdQuartz + ECrdCr

] (13)

Lastly, µ in Equation (7) is also equal to the summation of the mass per unit length of each layer:

µ = b(ρquartzdquartz + 2ρAudAu + ρCrdCr) (14)

4. Results and Discussion

Figure 6 shows the measurement data for the 1st flexural vibration mode. The fast Fourier
transform (FFT) of the time domain waveforms in Figure 6a was taken and the frequency responses
are presented in Figure 6b. Resonant frequencies of 1.352 MHz and 1.468 MHz were obtained for the
uncoated and Cr-coated micromechanical resonators, respectively. Similarly, the waveforms for the
2nd mode were presented in Figure 7. In this case, the resonant frequencies of 8.306 MHz and 9.093
were observed for the uncoated and Cr-coated micromechanical resonators, respectively.
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Using Equation (7) with material properties introduced in Table 1, f 1 = 1.339 MHz and
f 2 = 8.390 MHz were obtained for the uncoated micromechanical resonator and taking the Young’s
modulus of Cr film as a fitting parameter, f 1 = 1.459 MHz and f 2 = 9.145 MHz were obtained for
ECr = 139 ± 3 GPa, considering the local fluctuation of the film thickness. Meanwhile, the bulk
properties of gold were used in the analytical estimation, even though the gold film is very thin
(~30 nm). This was due to the fact that the scale effect on gold is not consistent, as summarized
in Table 2. Although the elastic modulus of a gold thin-film often decreases with reduction of its
thickness [15], studies show that the property is still comparable to the bulk value [16–18]. In addition,
no dependency of the modulus on the film thickness was recognized in certain studies [19,20]. The scale
effect on the gold films used in the present experiment is not yet clear, but the analytical estimations
and experimental results agree excellently with each other, within 1% of the relative error as shown in
Figure 8, implying that the scale effect may not be significant in this particular sample.

Table 1. Material properties used in the analytical estimation.

Property
Material

Gold Quartz Chromium

Thickness (d) (nm) 30 670 52
Density (ρ) (kg/m3) 19,300 2200 7190

Young’s modulus (E) (GPa) 79 73 -

Table 2. Young’s moduli of gold thin-films from literature.

Reference Fabrication Method Characterization
Method

Film Thickness
(nm)

Young’s Modulus
(GPa)

[15] E-beam evaporation Nanoindentation
testing

100 55.5
300 64.1
500 88.76

[16]
Metal plasma immersion

ion implantation and
deposition

Microcantilever
beam testing 19–62 69.1

[17] E-beam evaporation
Microbeam testing

1000
57

Nanoindentation
testing 74

[18]
Multi-user

microelectromechanical
systems processes

Microcantilever
beam testing 500 78

[19] Sputtering Microtensile testing

180 61.0
310 49.5
500 53.9
680 53.1
950 51.2

1000 57.5

[20] E-beam evaporation
Membrane
deflection

experiment

300
53–55500

1000
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Figure 8. A comparison of resonant frequencies obtained from the experiment and the theory.

The elastic property of Cr in the present study is 49.8% lower than that of its bulk form, which is
typically 248–279 GPa [21]. This scale effect is often observed in sub-micron Cr films and coatings for
which Young’s modulus varies from 43 to 185 GPa [21–23].

The quality factor (Q) is an indication of damping characteristics in a resonating mechanical
structure, and it is related to the performance aspects of the microresonator such as sensitivity and
resolution. In general, a higher quality factor results in higher mass sensitivity, which is preferred for
sensing, since the minimum detectable mass (∆mmin) is inversely proportional to Q [24]:

∆mmin ∝ m/Q (15)

where m is the mass. The quality factor in the nth vibrational mode (Qn) is determined as follows:

Qn = fn/∆ fn (16)

where ∆fn is the full width at half maximum of the resonance peak. From Figures 6b and 7b, the
values Q1,uncoated = 148.5, Q1,Cr-coated = 108.0, Q2,uncoated = 207.5, and Q2,Cr-coated = 113.6 were obtained.
These values are higher than those of a 500 × 100 × 1 µm3 silicon microcantilever in air (Q1 = 19
and Q2 = 73) [25] and comparable to those of a 225 × 30 × 3 µm3 one (Q1 = 146.2) [7]. In addition,
an increase of Q was observed with the higher vibration mode and this is consistent with what was
reported [7,25].

The mass sensitivity (S) is again given by [7]:

S = ∆ f /∆m (17)

Since the Cr film has a volume of 20 × 10 × 0.052 µm3, S is calculated to be 1.6 Hz/fg for the
first mode and 10.5 Hz/fg for the second mode. These are three orders of magnitude higher than
those of conventional low-frequency silicon resonators [7,8,26], and thus the present study proposes
a characterization technique with high sensitivity that makes it suitable for evaluating nanoscale
thin-film materials.

5. Conclusions

The Young’s modulus of a 52 nm thick Cr film was evaluated by advanced micromechanical
resonator testing. Actuation and detection of a micromechanical resonator oscillating in the high
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frequency range (~9.093 MHz) were performed using an ultrasonic tone burst signal generator and
laser interferometry. The resonant frequencies for the first and second flexural vibration modes were
analyzed using the Euler–Bernoulli beam theory and results showed that the measurement data are
in excellent agreement with the theory, within 1% relative error. The resonant frequency shift upon
deposition of the Cr layer revealed that the film’s elastic modulus is 139 ± 3 GPa, which is 49.8%
smaller than its bulk value; this is attributable to the scale effect. This approach therefore provides
an improved characterization technique for the Young’s modulus of nanoscale thin-films, with high
accuracy and sensitivity up to 10.5 Hz/fg.
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