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Abstract: In this research, we focus on the use of Unmanned Aerial Vehicles (UAVs) for the delivery of
payloads and navigation towards safe-landing zones, specifically on the modeling of flight dynamics
of lightweight vehicles denoted Precision Aerial Delivery Systems (PADSs). While a wide range
of nonlinear models has been developed and tested on high-end applications considering various
degrees of freedom (DOF), linear models suitable for low-cost applications have not been explored
thoroughly. In this study, we propose and compare two linear models, a linearized version of a
6-DOF model specifically developed for micro-lightweight systems, and an alternative model based
on a double integrator. Both linear models are implemented with a sensor fusion algorithm using a
Kalman filter to estimate the position and attitude of PADSs, and their performance is compared to a
nonlinear 6-DOF model. Simulation results demonstrate that both models, when incorporated into a
Kalman filter estimation scheme, can determine the flight dynamics of PADSs during smooth flights.
While it is validated that the double integrator model can adequately operate under the proposed
estimation scheme for up to small acceleration changes, the linearized model proves to be capable of
reproducing the nonlinear model characteristics even during moderately steep turns.

Keywords: flight dynamics; Kalman filter; linear model; precision aerial delivery system (PADS);
sensor fusion; unmanned aerial vehicle (UAV)

1. Introduction

The use of Unmanned Aerial Vehicles (UAVs) has spread to numerous disciplines and will
continue to expand in the foreseeable future, as more affordable sensors, actuators, and processing
units become available, together with the advances in their legislation around the globe. Nowadays,
UAVs are used in several applications in the scientific, civil, and commercial fields; for instance,
in precision agriculture, weather monitoring, search and rescue, mining, remote sensing, and delivery
of goods [1,2].

In this research, we focus on the use of UAVs for the delivery of payloads. A large number of
applications make use of UAVs to deliver food, merchandise, medical supplies, or rescue equipment,
among others. When natural disasters occur, such as earthquakes, landslides, blizzards, wildfires,
or floods, affecting the terrestrial infrastructure, UAVs can promptly deliver emergency supplies.
Additionally, UAVs provide a solution in situations where the rugged topography of a region inhibits
fast transportation. For example, the company Zipline is delivering daily blood and blood products
to health centers in the regions around the countries of Rwanda and Ghana, in Africa [3]. Given the
coronavirus disease 2019 (COVID-19) pandemic, Zipline is also distributing medical supplies and
personal protective equipment, and recently pursuing the possibility to provide COVID-19 supplies in
the USA [4].
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Several applications of UAVs rely on vehicles instrumented with expensive and delicate sensors.
For instance, in remote sensing scenarios, it is common the use of Light Detection and Ranging (LiDAR);
optical, multispectral, hyperspectral, and thermal cameras; radar; global navigation satellite system
(GNSS) receivers; and processing units [5]. In the case of a vehicle malfunction, these instruments
could be damaged given a collision with the ground, or lost in the event of loss of flight control
or communication, causing landing in an unknown or unreachable location. In these situations,
a safe-landing feature is most needed to recover the vehicle and its equipment. Precision Aerial Delivery
Systems (PADSs) make use of guidance, navigation, and control, to maneuver parafoil-payload systems
towards safe-landing zones, increasing the chances of successfully delivering payloads on target,
and diminishing the possible damage while landing. A typical descent flight of a PADS is illustrated
in Figure 1. The trajectory is composed of three segments: an initial flight towards the intended
landing point (homing); a lemniscate (figure-eight) or circular pattern while losing altitude (energy
management); and finally, a narrow turn to reach the target facing into the wind (landing). In this
illustration three vehicles are depicted to represent different application scenarios, for example, a cargo
aircraft for the delivery of goods, or as a recovery system for a weather balloon or a multicopter.
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Figure 1. Typical PADS flight profile.

Design, modeling, and characterization of PADSs have been taking place since the beginning of
the 1970s. Static and dynamic longitudinal stability was first studied by Goodrick, together with the
early development of the equations of motion governing parafoil-payload systems, considering 3- and
6-degrees of freedom (DOF) [6,7], and the characterization of a 150 kg test payload. In the following
years, the Small Autonomous Parafoil Landing Experiment (ALEX I and II), described in detail by
Jann [8,9], set a milestone on modeling, validation, and verification of PADSs using 3- and 4-DOF,
employing a ram-air parachute with a payload of 100 kg.

Different models have been developed for a varying range of DOF, either considering the
parafoil-payload system as a rigid body or allowing relative motion between their components [10–13].
Comparisons between models happen to be a complex task, since different considerations, payload
masses, parafoil aerodynamic properties, and general assumptions are used by different authors.
To be able to compare the effectiveness between models ranging from 6- to 9-DOF, Gorman and
Slegers [14,15] developed a parafoil model using the same aerodynamic properties for each scenario,
realizing different DOF by modifying the kinematics constraints between the parafoil and the payload,
under the same control inputs and initial conditions. The 6-DOF model represents the three inertial
position components of the joint connecting the parafoil and the payload, as well as three Euler
orientation angles. The 7-, 8-, and 9-DOF models incorporate extra Euler orientation angles for the
payload, depending on the connection constraints. The 7-DOF model allows for yaw relative motion,
the 8-DOF model allows yaw and pitch, whereas the 9-DOF model allows yaw, pitch, and roll relative
motion between the parafoil and the payload. By contrasting experimental data with the models,
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Gorman and Slegers were able to conclude that the 6-DOF trajectory differed from the 7-, 8-, and 9-DOF
trajectories mainly because of the great yaw relative motion (parafoil-payload twist). Since the relative
roll and pitch motion is negligible in comparison to the relative yaw motion, the 7-DOF represents the
model with the minimum DOF that captures the most significant flight dynamics, while the 6-DOF
successfully characterizes the parafoil-payload system as a rigid body, presenting lower complexity
than the rest of the proposed models. Since the PADS analyzed in this investigation is considered a
rigid body, a 6-DOF model is adopted.

Due to the versatility of these delivery systems, and their possible applications in military
scenarios, different sectors of the US Army teamed to form the Joint Precision Airdrop System (JPADS),
categorizing their systems by weight as micro-light (4.5 kg to 68 kg), ultra-light (113 kg to 318 kg),
extra-light (318 kg to 998 kg), light (2268 kg to 4536 kg) and medium (6804 kg to 19,051 kg) [16,17].
Initially, one of the JPADS requirements was to achieve $13.22 USD per kilogram of payload, a goal
only met for the heavy categories, but far from being met for the light categories (micro-, ultra-,
and extra-light) [18]. Making more affordable systems has been a priority, even at the expense of
reducing their delivery precision. The Affordable Guided Airdrop System (AGAS), formed in 1999 [19],
has the goal to minimize as much as possible the cost of delivery systems, obtaining the best achievable
accuracy within a threshold of 100 m circular error probability (CEP). The AGAS initiative has been
focusing on the extra-light and lightweight ranges, where mainly 900 kg payload implementations
have been tested using circular parachutes, achieving 211 m CEP when 12 hour-old wind forecast
information was used, and 38 m CEP when near real-time wind profiles were used [20]. Lighter systems
have been able to achieve up to 10 m in specific cases [18]. Reduction in the actual landing distance to
the intended point of impact, which translates to small CEP, has been achieved by the development of
optimal control and guidance [21,22], strongly dependent on high-quality information about the wind
profiles during the entire flight, from the beginning of the descent up to touchdown, and the capability
to account for variable winds [23]. Nevertheless, achieving such high precision comes with a price,
requiring computational power and elevated costs on sensors, actuators, and parachutes.

Although the 5 to 19,000 kg weight-range has been widely analyzed and tested, delivery systems
for lighter applications have not been thoroughly explored, especially for low-cost solutions.
Lightweight applications of PADSs face the challenge of relying on light hardware to perform guidance,
navigation, and control. Current parafoil-payload systems make use of high-end processing units,
capable of handling sophisticated real-time implementations of highly nonlinear dynamical models to
estimate their attitude and position to operate their guidance system. If low-cost miniaturized versions
of these delivery systems are to be explored, simplified models that capture their flight dynamics need
to be developed. Additionally, estimation schemes for their position and attitude need to be taken into
account, especially for further guidance and control implementations on vehicles with limited sensors,
actuators, and processing capabilities.

The state estimation process based on the fusion of dynamic models and measurements obtained
from different sensors is commonly and efficiently performed through a model-based Kalman filter.
Whether a total state-space formulation of a Kalman filter is used; an error state-space, either with
a feedforward or feedback implementation; an extended Kalman filter; an unscented Kalman filter;
or any of modern developed variants, a Kalman filter is one of the most used algorithms for sensor
fusion, particularly in navigation applications [24–27]. The type of Kalman filter implementation
strongly depends on the intended application, the dynamics of the process to estimate, the required
accuracy, and the computational capabilities at disposal.

According to a study performed by Zhang et al. [28], in which the performance of a Kalman filter,
an extended Kalman filter, an unscented Kalman filter, and variations of these types of filters were
compared for inertial navigation systems, the best accuracy is obtained by the unscented Kalman filter
for their experiments. However, the unscented Kalman filter is the algorithm that demands the most
computational effort among their comparison. On the other hand, the computational time required for
the Kalman filter (not extended nor unscented) showed to be the lowest, 3 to 10 times smaller than the
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extended or unscented Kalman filter implementation, at the cost of having six to eight times smaller
accuracy in the estimates.

Following the current development needs of PADSs, particularly for the micro-lightweight
category, as well as the goals established by the AGAS program, in which the improvements of low-cost
systems are prioritized even at the expense of decreasing the landing accuracy, a total state-space
formulation of a Kalman filter is adopted for the estimation scheme proposed in this investigation.
This type of implementation enables the use of low-cost, small, and lightweight sensors and processing
units, requiring a linear model that represents the flight dynamics of the system.

This research presents the development, implementation, and comparison of a sensor fusion
algorithm and estimation scheme for the position and attitude of PADSs, employing a Kalman
filter based on two proposed 6-DOF dynamic models, suitable for lightweight low-cost applications.
Section 2 details the proposed estimation scheme. The dynamic models that characterize the flight of
the parafoil-payload system are presented in Section 3, firstly introducing a nonlinear 6-DOF dynamic
model, and then the development of two linear alternatives: a linearized version of the nonlinear
6-DOF model, and a double integrator model. The required sensors and their characteristics suitable
to perform the position and attitude estimation are presented in Section 4, whereas Section 5 presents
the Kalman filter algorithm that incorporates the dynamic models and measurements from different
sensors. The performance of the proposed estimation scheme is evaluated through simulations in
Section 6, followed by the discussion of the results in Section 7. Finally, the conclusions of the proposed
estimation scheme are outlined and the considered future work is depicted.

2. Proposed Estimation Scheme

The purpose of the estimation scheme is the determination of the position and attitude of
PADSs, given the availability of onboard sensors as an inertial measurement unit (IMU) and a GNSS
receiver, together with a model that represents the flight dynamics of the parafoil-payload system.
The estimation scheme developed and implemented in this research is presented in Figure 2.
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u(t)

ADC Kalman Filter

Delay
x̂k−1
Pk−1

x̂−k , P−kuk x̂k, Pk
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Delivery System
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Sensors

Figure 2. Proposed estimation scheme.

The estimation process begins with the control inputs u(t), which are executed by the actuators
of the PADS as brake deflections that modify the shape of the canopy, steering the system towards
the desired landing target. The control inputs are initially processed through an analog-to-digital
converter (ADC), to be incorporated into a discrete linear model representative of the flight dynamics
of the system, with process noise W. The complete description of the linear models developed for this
implementation is detailed in Sections 3.1 and 3.2. The epoch-wise output states of the linear model x̂−k
are combined with the measurements zk from the IMU and GNSS receiver, contaminated with noise V,
through the implementation of a total state-space Kalman filter, providing the best estimate x̂k of the
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position and attitude of the system, together with its error covariance Pk. A detailed explanation of the
filter implementation is presented in Section 5.

The estimation process is performed every time a set of measurements is received from the sensors,
depending on the sample rate defined for the system represented by the delay block. A comprehensive
description of the sample rate and the characteristics of the sensors used is presented in Section 4.
The a posteriori estimates of the filter (x̂k, Pk) are used to predict the new a priori estimates (x̂−k , P−k ),
completing the recursive prediction-correction nature of the filter.

3. PADS Dynamic Models

To validate the accuracy of the models proposed in this research, and for comparison purposes,
the 6-DOF model developed and tested by Ward et al. [29] is adopted as reference (henceforth denoted
as the reference model). This model is based on the system identification of a series of flight tests,
using a micro-lightweight PADS with a total mass of 2.37 kg and a canopy with a wingspan of 1.77 m,
fitting the objective of this investigation. It captures the nonlinearities of the flight dynamics of the
parafoil-payload system, therefore, it will serve as a reference to evaluate the performance of the linear
models developed in this study.

The equations of motion of the reference model are derived from Newtonian mechanics,
considering the parafoil-payload system as a rigid body, i.e., without relative motion between
the parafoil and the payload. These equations are described in the body reference frame with a
North-East-Down (NED) coordinate system, accounting for 6-DOF corresponding to the linear (v)
and angular (ω) velocity vectors, with components (u, v, w) and (p, q, r), respectively. The dynamic
equations are obtained by relating the time derivative of the linear and angular momentum to the sum
of forces and moments, about the center of gravity in the body reference frame.

The forces under consideration include the aerodynamic forces that act on each element of the
canopy (FA,i). The canopy is discretized in seven elements, allowing for brake deflections only in
the outermost elements. The deflection of the left (δL) and right (δR) brakes provide steerability to
the system, by changing the lift and drag coefficients of the corresponding element of the canopy.
These deflections can take any value from −1 to 1 (dimensionless).

Additionally, the aerodynamic forces acting on the payload (FA,P), and the weight of the
parafoil-payload system (FW) are included. Finally, apparent mass forces and moments, caused
by the acceleration of the fluid through which the vehicle moves, are considered according to [30].
Since the dynamic equations are obtained in a rotating reference frame (non-inertial), fictitious forces
(FF) and moments (MF) emerge in the equations for the change of linear and angular momentum.
For a detailed explanation of the computation of each term, as well as the system identification for the
parafoil-payload system, refer to the full articles [29,31].

The resulting dynamic equations of the reference model [29] (p. 591, Equations (16)–(18)),
are presented in compact form in Equation (1), representing the change of the state vector as the
change in linear and angular velocity in the body reference frame ẋ = (u̇, v̇, ẇ, ṗ, q̇, ṙ)T ,

ẋ = [GM]−1

[
FF + FW + FA,P + FA,i

MF + MW + MA,P + MA,i

]
(1)

where the matrix GM incorporates the geometry, mass, and inertial properties of the parafoil-payload
system of the reference model. While the forces and moments acting on the system are functions of the
state variables in x, the aerodynamic forces and moments of the parafoil and payload, FA,i, FA,P, MA,i,
and MA,P, are also functions of an external wind vector λ. For the purpose of the development and
simulation of the estimation scheme proposed in this research, the three components of the external
wind vector λ are assumed to be constant and equal to zero throughout the descent trajectory.

By assigning initial conditions and control inputs Equation (1) can be solved, and the resulting
components can be transformed to the inertial reference frame by rotating according to the Euler



Sensors 2020, 20, 5227 6 of 21

orientation angles. Instead of adopting the start of the descent trajectory as the origin of the inertial z
component, this is translated to the intended point of landing to better represent visually the followed
trajectory of the PADS. Figure 3 presents the trajectory under study, constructed by implementing
the reference model executing the three maneuvers described in Table 1 as constant control inputs.
The control inputs remain constant during the flight until the next maneuver is executed. This trajectory
will serve as a reference for the analysis of the linear models presented in the following sections of
this work. A video showing the reference trajectory flight is available as Supplementary Material.
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Figure 3. Descent trajectory under study, followed by a Precision Aerial Delivery System (PADS)
navigating towards a landing target (parafoil-payload system not to scale). The trajectory corresponds
to the implementation of the 6-degrees of freedom (DOF) nonlinear reference model.

Table 1. Control maneuver segments.

Maneuver Id. Start (s) δL δR

t1 0 0 0

t2 26 0.1 0

t3 80 0 −0.4

3.1. Linearized Dynamic Model

The linear approximation of the equations of motion is computed as the first-order Taylor series,
evaluated around stable points of the states and inputs (xs, us). For the multivariable case under study
f (x, u) = f (u, v, w, p, q, r, δL, δR), each of the forces and moments that the system experiences can be
expressed as a power series representation in the form:

f (x, u) = f (xs, us) +
∂ f
∂u

∣∣∣∣
xs

(u− us) +
∂ f
∂v

∣∣∣∣
xs

(v− vs) +
∂ f
∂w

∣∣∣∣
xs

(w− ws) +
∂ f
∂p

∣∣∣∣
xs

(p− ps)

+
∂ f
∂q

∣∣∣∣
xs

(q− qs) +
∂ f
∂r

∣∣∣∣
xs

(r− rs) +
∂ f
∂δL

∣∣∣∣
us

(δL − δLs) +
∂ f
∂δR

∣∣∣∣
us

(δR − δRs) +O (2)

where O represents higher-order terms of the Taylor series, neglected for the linearization.
Since no wind, nor other perturbations are considered, fixing the control inputs in the reference

model to a given deflection brake value (us), result in stable states after a stabilization period of
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approximately 10 s, depending on the magnitude of the maneuver. Thus, for each of the three segments
of constant inputs on the flight trajectory, a set of stable points is determined from the reference model
as the resulting state vector. The sable points obtained for each maneuver segment, applying the
deflection brakes reported in Table 1 as stable control inputs δLs and δRs, are listed in Table 2.

Table 2. Stable points.

State Variable Maneuver Segment
xs t1 t2 t3

us (m/s) 7.49 7.49 7.59
vs (m/s) 0 0 −0.01
ws (m/s) 4.09 4.09 4.12
ps (deg/s) 0 0.06 0.50
qs (deg/s) 0 0.04 1.46
rs (deg/s) 0 1.67 10.55

Applying this linearization method to Equation (1) and grouping common terms, results in the
equation of motion of the linear 6-DOF model:

ẋ = [GM]−1


[

Fs

Ms

]
+

 ∂F
∂u

∂F
∂v

∂F
∂w

∂F
∂p

∂F
∂q

∂F
∂r

∂M
∂u

∂M
∂v

∂M
∂w

∂M
∂p

∂M
∂q

∂M
∂r




u− us

v− vs

w− ws

p− ps

q− qs

r− rs


+

[ ∂F
∂δL

∂F
∂δR

∂M
∂δL

∂M
∂δR

](
δL − δLs
δR − δRs

)


(3)

ẋ = [GM]−1

[[
Fs

Ms

]
+ Jx (x− xs) + Ju (u− us)

]
(4)

where Fs and Ms denote the forces and moments evaluated at the stable points. In addition, Jx and Ju

represent the corresponding Jacobian matrices. For convenience, the linearized equation of motion is
presented in a state-space representation:

ẋ = Ax + Bu + ε (5)

A = [GM]−1 [Jx], B = [GM]−1 [Ju],

ε = [GM]−1

[[
Fs

Ms

]
− Jx(xs)− Ju(us)

]
.

Notice that matrices A and B are constant as long as the control inputs remain fixed, considerably
simplifying the number of computations to be performed during flight. Similarly, all components of
the vector ε are constant under the same condition, except for the components of the force produced
by the weight of the vehicle (FW), which depend on its attitude. Matrices A and B, as well as vector ε,
evaluated at the stable points for each maneuver segment, are given in Appendix A.

The complete description of the position and attitude of the PADS in the inertial reference frame,
as well as the linear and angular velocity in the body reference frame, can be expressed in a concise form
by combining the kinematic and dynamic equations of motion in a single state-space representation:

ṗ
Ω̇

v̇
ω̇

 =


0 0 TBI 0
0 0 0 SBI
0 0 A11 A12

0 0 A21 A22




p
Ω

v
ω

+


0 0
0 0

B11 B11

B21 B22


[

δL
δR

]
+


0
0
ε1

ε2

 (6)
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where matrices A and B, as well as the vector ε are distributed in components Aij, Bij,
and εi respectively, to accommodate an adequate state-space representation. Additionally, TBI and SBI
are the rotation matrices that transform the linear and angular velocity components from the body to
the inertial reference frame:

TBI =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

 (7)

SBI =

1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

 (8)

where the shorthand notation c∗, s∗, and t∗ denotes cos (∗), sin (∗), and tan (∗), respectively.
Rewriting Equation (6) leads to a compact equation, where the superscript Li is used to indicate
that an element corresponds to the linearized model:

ẋLi = ALixLi + BLiuLi + εLi. (9)

While Equation (9) represents a time-continuous model, information from the onboard sensors
arrive at discrete times. Solving the differential equation for the state vector using Euler’s method,
with time step ∆t, a time-discrete model is obtained as

xLi
k =

(
ALi∆t + I

)
xLi

k−1 + BLi∆tuLi
k−1 + εLi

k−1∆t

xLi
k = FLixLi

k−1 + GLiuLi
k−1 + εLi

k−1. (10)

where I represents the identity matrix. It is relevant to observe that Equation (10) describes 12
components in total, three for each vector: the position vector p = (x, y, z)T and the angular position
vector Ω = (φ, θ, ψ)T , expressed in the inertial reference frame, with the latter corresponding to the
Euler orientation angles (roll, pitch, yaw); and the linear velocity vector v = (u, v, w)T and angular
velocity vector ω = (p, q, r)T , expressed in the body reference frame.

3.2. Double Integrator Dynamic Model

The development of an alternative linear model is achieved by exploiting the properties of
the flight dynamics of PADSs. Since these are vehicles navigating in an underactuated controlled
descent flight, typically without propulsion, and subject only to variations in the wind profiles,
the flight dynamics are normally smooth, i.e., without sudden changes in the state variables
of the parafoil-payload system, except for the voluntary control inputs exerted on the vehicle.
Taking this into consideration, a double integrator model is proposed, based on the assumption
that between consecutive measurements of the sensors acquiring information regarding the position
and attitude of the vehicle, the linear (p̈) and angular (Ω̈) accelerations remain constant for ∆t seconds.
Integrating twice these accelerations with respect to time leads to the following equations of motion
for the position and attitude, in the inertial reference frame:

pk = pk−1 + ṗk−1∆t + p̈k−1∆t2/2 (11)

Ωk = Ωk−1 + Ω̇k−1∆t + Ω̈k−1∆t2/2 (12)
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which can be expressed in compact form as
p
ṗ
Ω

Ω̇


k

=


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1




p
ṗ
Ω

Ω̇


k−1

+


∆t2

2 0
∆t 0
0 ∆t2

2
0 ∆t


[

p̈
Ω̈

]
k−1

(13)

xD
k = FDxD

k−1 + GDuD
k−1 (14)

where the superscript D is used to indicate that an element corresponds to the double integrator
model. Notice that Equation (14) also describes 12 components in total, corresponding to the
position, linear velocity, angular position, and angular velocity vectors, in the inertial reference frame.
The position and angular position vectors can be directly compared with the analogous components
of the nonlinear and linearized models. Contrarily, the linear and angular velocity vectors obtained
from the double integrator model cannot be directly compared with the similar components from the
nonlinear or linearized models, since they are expressed in different reference frames. To be able to
compare them, the linear and angular velocity vectors obtained from the double integrator model are
transformed to the body reference frame with the rotation matrices T−1

BI and S−1
BI , respectively.

4. Sensors Characterization

The hardware under consideration must comply with the requirements of a lightweight mission,
where the allocated volume and weight for the low-cost sensors are very limited. Since this estimation
scheme is intended to be used in low-cost applications.

To evaluate the performance of the estimation scheme, simulated measurements are generated at
5 Hz sample rate, based on the state variables of the reference model and the statistical characteristics
of the sensors acquiring this information in practice. This characterization is obtained through
experimentation with real flight data from similar vehicles. Specifically, measurements from a GNSS
receiver, a magnetometer, a gyroscope, and an accelerometer, are simulated by corrupting the position,
angular position, angular velocity, and linear acceleration, of the reference model with white Gaussian
noise, according to the statistical parameters reported in Table 3.

Table 3. Sensors statistical parameters.

Sensor Measurement Standard Deviation

GNSS (xy) 1.8 m

GNSS (z) 5 m

Magnetometer 0.5 deg

Gyroscope 0.1 deg/s

Accelerometer 0.12 m/s2

The obtained deviation values from experimentation are similar in comparison to the noise and
bias values reported in similar experiments. For example, Slegers and Yakimenko [32] present a bias in
global positioning system (GPS) measurements of 2 m, plus noise of 0.5 m; 2 deg bias and 1 deg noise
for the angular position; and finally, 1 deg/s bias and 1 deg/s noise for the angular velocity. In their
study, they also draw upon a linearization process of the flight dynamics with a sample rate of 2 Hz,
assuming constant aerodynamic velocity. Cacan et al. [23] report 4 Hz sample rate for their guidance,
navigation, and control algorithm, of a micro-lightweight PADS. Ward et al. [31] report noise with a
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standard deviation of 2 m in positioning measurements, and a standard deviation of 10 deg and 2 deg
for the heading measurement bias and noise respectively, using 4 Hz sampling rate.

The sampling rate of 5 Hz for our investigation was chosen according to the processing capabilities
of typical low-end microprocessors and sensors. For example, low-cost GNSS receivers as the
u-blox NEO-6M or NEO-M8N can provide navigation information up to 1 Hz to 5 Hz, limiting the
measurement availability [33,34].

Typical performance of processing units for this lightweight and low-cost application range from
a microprocessor with 8-bit, 20 MHz capabilities, as the ATmega328 chip [35]; 32-bit, 216 MHz as the
STM32F765 chip [36]; up to 64-bit, 1.5 GHz as the BCM2711 chip [37].

5. Kalman Filter Estimation Algorithm

Typically, PADSs are equipped with a GNSS receiver and an IMU, that provide information at
discrete times about the position and attitude of the vehicle during its flight. The objective of any
guidance, navigation, and control scheme is to process the incoming information from the sensors,
in order to estimate the state variables of the system, to plan the most suitable trajectory towards the
landing target while managing the energy budget. Given a linear discrete-time model for the state
vector x and a measurement vector z:

xk = Fk−1xk−1 + Gk−1uk−1 +Wk−1 (15)

zk = Hxk + Vk (16)

with process noise W and measurement noise V, both assumed to be white, uncorrelated, zero-mean,
and normally-distributed, the Kalman filter provides the best estimate of the states x̂k. In the
following, the implementation of a model-based Kalman filter is described using a total state-space
formulation [38].

Initially, an a priori state estimate x̂−k and error covariance estimate P−k are obtained by
propagating the a posteriori estimate from epoch k− 1 to k:

x̂−k = Fk−1x̂k−1 + Gk−1uk−1 (17)

P−k = Fk−1Pk−1FT
k−1 + Qk−1 (18)

where Q represent the process noise covariance matrix, estimated using the autocorrelation function
Q = Gσ2GT , with σ2

Li = 800 and σ2
D = 10 for each model, determined by tuning the filter during its

implementation. Note that Equation (17) has the same form as the state vector obtained in Equation (10)
for the linearized model, as well as in Equation (14) for the double integrator model, developed in the
previous sections. Next, the a posteriori state estimate x̂k is computed as a linear combination of the
a priori estimate x̂−k , and the difference between the measurement vector zk and the prediction Hx̂−k ,
weighted by the Kalman gain Kk, designed to minimize the a posteriori error covariance Pk:

Kk = P−k HT
(

HP−k HT + Rk

)−1
(19)

x̂k = x̂−k + Kk
(
zk − Hx̂−k

)
(20)

Pk = (I − Kk H) P−k (I − Kk H)T + KkRkKT
k (21)

where H denotes the observation matrix, R represents the measurement noise covariance matrix,
and I corresponds to the identity matrix. The simulated measurements are incorporated into the
Kalman filter as the measurement vector z, while the squared of the standard deviations of the
characterized sensors are used as the elements of the diagonal measurement noise covariance matrix
R. The observation matrix H communicates the availability of the measurements, relating them with
the state vector.
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The implementation of the filter using the linearized model is realized by executing the constant
brake deflections described in Table 1 as control inputs, fusing the simulated measurements obtained by
the sensors. On the other hand, the double integrator model requires linear and angular accelerations
as control inputs, which typically can be deduced from measurements employing onboard sensors.
These accelerations are also simulated based on the reference model, by transforming the linear
and angular acceleration from the body reference frame to the inertial reference frame, and adding
white Gaussian noise with standard deviations of 0.12 m/s2 and 2 deg/s2 respectively, according to
experimental data.

6. Simulation Results

Two separate implementations of the described discrete Kalman filter scheme were performed:
one using the linearized model and brake deflections as control inputs, and another using the double
integrator model and the simulated accelerations as control inputs. Both implementations were
performed using the same initial conditions and simulated measurements.

The Kalman filter estimates based on the proposed linearized model (x̂Li) and the double integrator
model (x̂D) are presented in Figures 4–7, together with the reference model (xR) for comparison
purposes. The different maneuver segments are presented in all figures with vertical dashed lines at the
time of execution, with the maneuver identifier displayed at the bottom to facilitate the interpretation.
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Figure 4. Kalman filter inertial position estimates based on the proposed linearized model (x̂Li) and
the double integrator model (x̂D), together with the components of the inertial position vector from
the reference model (xR).

From Figure 4, it can be observed that the Kalman filtering scheme based on each of the proposed
models was capable of reproducing the components of the inertial position of the vehicle, for any of
the flight scenarios corresponding to the maneuver segments. Due to the smooth evolution of each of
the components of the inertial position, both the linearized model and the double integrator model
were suitable for emulating the behavior of the position of the nonlinear reference model. This mild
progression of the inertial position of the PADS closely represented a real flight scenario. From the
beginning of the descent trajectory, after the full inflation of the canopy and stabilization of the gliding
flight, the only external perturbation experienced by the parafoil-payload system originated from
the wind. While strong wind profiles could substantially affect the flight dynamics of small vehicles,
a fuselage designed to reduce drag could be employed to mitigate this effect. Additionally, the heavier
the payload, the less prone it was to suffer abrupt changes in position due to its inertia.
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Figure 5. Kalman filter angular position estimates based on the proposed linearized model (x̂Li) and
the double integrator model (x̂D), together with the components of the angular position vector from the
reference model (xR). These components are expressed in the inertial reference frame, corresponding
to the Euler orientation angles roll, pitch, and yaw, respectively.
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Figure 6. Kalman filter linear velocity estimates based on the proposed linearized model (x̂Li) and
the double integrator model (x̂D), together with the components of the linear velocity vector from the
reference model (xR). These components are expressed in the body reference frame.

The components of the linear velocity, presented in Figure 6, demonstrate that the lateral
component of the velocity (v) was virtually zero along the complete descent trajectory. This reflects
the fact that there were no perturbations that modify the lateral movement of the vehicle aside from
the control inputs, and that the flight was dominated by its longitudinal dynamics. In the three
linear velocity components, it was distinctly recognizable that the estimations based on the double
integrator model strongly varied around the reference model, in comparison with the estimates from
the linearized model. While the bounded variation confirmed that the Kalman filter estimation scheme
converged towards the reference model, it was an indication that the Kalman gain was favoring the
measurements instead of the model.

Note that along the descent trajectory, the deflection brakes applied on each maneuver were held
constant until the next maneuver was reached, or the vehicle landed. Furthermore, the maneuvers
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were applied instantaneously, as step functions. This means that the delayed response of the actuators,
and the elasticity of the lines used to apply the deflection brakes were not taken into account,
which would modify the transient response of the state variables. Despite the condition analyzed in this
investigation where the brake deflections were applied infinitely fast, the estimation process based on
the proposed linearized model was able to follow the dynamics of the reference model, suggesting that
for smoother executions of the maneuvers, the performance only could improve. In real applications,
the maneuvers cannot be applied instantaneously, but gradually, leading to a smoother response on
the state variables. The consequence of this abrupt change in the maneuver segments can be observed,
for example, in the angular velocity components (p, q, r) in Figure 7, especially when the last maneuver
(t3) is applied.
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Figure 7. Kalman filter angular velocity estimates based on the proposed linearized model (x̂Li) and
the double integrator model (x̂D), together with the components of the angular velocity vector from
the reference model (xR). These components are expressed in the body reference frame.

While Figures 4–7 provide valuable information about the 12 components of the state vector
estimated by virtue of the proposed Kalman filter scheme, it is difficult to appreciate the shape
and magnitude of the error with respect to the reference model. The error was computed as the
difference between the reference model xR and the Kalman filter state estimates based on the linearized
model x̂Li and the double integrator model x̂D, respectively. This error is denoted as xLi and xD for
each implementation.

To obtain a better understanding of how closely the estimation scheme followed the reference
model for the inertial position, the error in the magnitude of the position vector obtained with the
reference model and the magnitude of the Kalman filter position vector estimates are presented in
Figure 8, denoted as ‖p‖. It can be appreciated that both models were capable of representing the
tridimensional position of the vehicle during the different flight segments since in general, the error
oscillated around zero. In contrast, the filter estimates based on the linearized model presented a
smoother variation, with an error magnitude approximately two times smaller.
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Figure 8. Error in the magnitude of the inertial position vector between the reference model and the
Kalman filter estimates from the linearized model (xLi) and the double integrator model (xD).

To evaluate the performance in estimating the attitude of the PADS, Figure 9 presents the
error between the Euler angles of the reference model and the Kalman filter estimates using each
of the proposed models. Notice that during the first and second maneuver segments (t1 and t2),
corresponding to a straight flight and a wide turn, the two models captured the same behavior as the
reference model. Nevertheless, the double integrator model presented a larger and consistent error
for roll (φ) and pitch (θ) angles, and a smaller but still noticeable constant error for the yaw angle
(ψ), after the third maneuver was applied (t3), where the flight trajectory with a narrower turn was
followed. This is a consequence of the higher rate of change in the angular position that the vehicle
experienced during the last flight segment, where a −0.4 right brake deflection was being applied.
The double integrator model relied on the assumption that the parafoil-payload system experienced
epoch-wise constant inertial acceleration during the integration period. Consequently, the higher the
body-fixed angular velocity, the less this assumption was fulfilled, as can be verified from the error in
the angular velocity components presented in Figure 10.

The achievable turn rate for any PADS has a practical limit, since a steep turn rate could
induce spiral divergence. For a vehicle with similar characteristics as the simulated in this study,
Ward et al. [39,40] report maximum turn rates from 15 deg/s up to 25 deg/s, depending on the flight
mode and control scheme. For the case of larger parafoil-payload vehicles, Lingard [11] reports a
maximum constant turn rate of 11.5 deg/s for a canopy with 30 m of wingspan.
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Figure 9. Error in the inertial angular position components between the reference model and the
Kalman filter estimates from the linearized model (xLi) and the double integrator model (xD).
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Figure 10. Error in the angular velocity components, expressed in the body reference frame, between the
reference model and the Kalman filter estimates from the linearized model (xLi) and the double
integrator model (xD).

7. Discussion

It is relevant to highlight some properties and prerequisites for the operation and deduction of
the linearized model and the double integrator model. The linearized model requires the calculation
of the Jacobian matrices, increasing the complexity of its deduction depending on the forces and
moments representing the interaction between the vehicle and its surroundings. This requires the
characterization of the parafoil-payload system, limiting the flexibility of this model to be applied
in any other vehicle with different properties. Moreover, the stable points need to be computed
prior to the descent trajectory. While this demands additional effort, it is important to note that
this task is performed on the ground, where typically more computational resources are available,
without increasing the real-time computational burden during the flight. Since the flight conditions
variate from flight to flight, it is required to calculate a set of stable points assuming the planned
maneuvers to reach the target. If the computed stable points differ greatly from the actual conditions
during flight, the performance would deteriorate.

In contrast, the double integrator model does not depend on the physical properties of the
parafoil-payload system, simplifying the implementation of this model on vehicles with different
characteristics. As a consequence, this model does not directly relate the brake deflections to the state
variables, making it not suitable for a straightforward application of a control scheme for guidance.
While the implementation of this model is much simpler than the linearized model, without requiring
the computation of the stable points or other parameters before the flight, it heavily depends on the
sample rate and quality of the measurements provided by the sensors.

The selected 5 Hz sample rate for the measurements is a conservative choice that complies with
the capacities of any relatively modern low-cost processing unit and sensors for real-time applications.
The higher the capabilities of the sensors and the processing unit, the larger the achievable sample
rate during flight. This might be desirable when fast maneuvers are required or strong wind profiles
modify the trajectory of the vehicle, although this implies higher costs associated with instrumentation,
energy storage, and a heavier payload, sometimes not feasible for micro-lightweight PADSs.

In the case that exogenous forces are present during the flight as a consequence of strong winds,
which are not incorporated into the flight dynamic models as the external wind vector λ, it is expected
that the predictions provided by the models would deteriorate. Another source of perturbations
could be the effect of mismodeled interactions in the parafoil-payload system, due to the relative
motion of its components. Nevertheless, the overall performance of the proposed estimation scheme
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would not be necessarily deteriorated proportionally to the magnitude of the perturbations, since the
Kalman gain would favor the measurements from the sensors or the predictions of the dynamic models,
attempting to compensate for these effects by minimizing the a posteriori error covariance.

8. Conclusions

Throughout this research article, two models that represent the flight dynamics of
micro-lightweight PADSs were developed: a linearized version of a 6-DOF nonlinear model and
a double integrator model. Additionally, simulated measurements representative of sensors onboard
the vehicle were fused by implementing a Kalman filter algorithm based on the developed models,
to estimate the position and attitude of the parafoil-payload system.

The simulation results demonstrate that both models capture the flight dynamics of
micro-lightweight PADSs when incorporated into a Kalman filtering scheme for smooth flights.
While the double integrator model excels in simplicity, and it is independent of the physical properties
of the parafoil-payload system, it falls behind in precision capturing the flight dynamics, especially
when the vehicle is subject to intense accelerations. On the other hand, the linearized model is capable
of representing the flight dynamics of the vehicle more accurately and preserves precision even during
narrow maneuvers, but depends on the determination of stable points close to the operation point of
the vehicle.

Further investigation is required on the inclusion of the proposed estimation scheme into a global
closed-loop control strategy for the vehicle. In particular, tracking of constant waypoints is usually a
control objective for this type of system. The utilization of the obtained linearized model could be a
solid starting point for the development of a model-based robust controller. The design of a suitable
control strategy, that includes the proposed estimation scheme, and its stability analysis is left as
future work.
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ADC Analog-to-Digital Converter
AGAS Affordable Guided Airdrop System
ALEX Small Autonomous Parafoil Landing Experiment
CEP Circular Error Probability
COVID-19 Coronavirus Disease 2019
DOF Degrees of Freedom
GNSS Global Navigation Satellite System
GPS Global Positioning System
IMU Inertial Measurement Unit
JPADS Joint Precision Airdrop System
LiDAR Light Detection and Ranging
NED North-East-Down
PADS Precision Aerial Delivery System
UAV Unmanned Aerial Vehicles

Appendix A

In the following, the components of matrices A and B, and vector ε, are presented,
corresponding to each of the maneuver segments for the linearized model. These values are obtained
by evaluating the forces, moments, and Jacobian matrices at the stable points reported in Table 2 for
the state variables xs, and the brake deflections reported in Table 1 as control inputs us. Consequently,
their values remain constant throughout each of the control segments. The only elements that are
not constant are the components of the force vector caused by the weight of the parafoil-payload
system (FW), which depend on the instant attitude and need to be calculated epoch-wise. Recalling:

A = [GM]−1 [Jx]

B = [GM]−1 [Ju]

ε = [GM]−1

[[
Fs

Ms

]
− Jx(xs)− Ju(us)

]
.

The matrix GM incorporates information regarding the geometry, mass, and inertia of the
parafoil-payload system [29] (p. 591, Equation (16)). These attributes are fixed, since the vehicle is
considered a rigid body, and therefore this matrix remains constant throughout the descent trajectory:

[GM]−1 =



0.42 0 0 0 0.02 0
0 0.41 0 −0.1 0 0.05
0 0 0.33 0 0 0
0 −0.1 0 1.76 0 −0.89

0.02 0 0 0 2.28 0
0 0.05 0 −0.89 0 17.43


Maneuver segment 1:

A =



−0.97 0 1.61 0 −2.99 0
0 −1.09 0 3.19 0 −7.14

0.54 0 −4.76 0 5.24 0
0 −4.23 0 −5.18 0 2.34

6.11 0 −11.2 0 −7.32 0
0 8.74 0 7.26 0 −6.68
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B =



−0.047 −0.047
0.01 −0.01

−0.021 −0.021
−0.174 0.174

0.193 0.193
1.683 −1.683



ε = [GM]−1



FW x
FW y
FW z

0
0
0


+



0.35
0

7.721
0

0.018
0


Maneuver segment 2:

A =



−0.97 0.03 1.61 0 −2.99 0
−0.03 −1.1 0 3.19 0 −7.14

0.54 0 −4.76 0 5.23 0
0.01 −4.24 −0.01 −5.19 0.01 2.35
6.11 −0.01 −11.19 −0.04 −7.32 0
0.01 8.75 0.02 7.28 0 −6.72



B =



−0.052 −0.048
0.011 −0.01
−0.023 −0.021
−0.19 0.175

0.21 0.194
1.838 −1.693



ε = [GM]−1



FW x
FW y
FW z

0
0
0


+



0.359
0.201
7.721
−0.031
−0.003
−0.158


Maneuver segment 3:

A =



−0.98 0.21 1.6 0.02 −3.02 −0.02
−0.17 −1.1 0 3.21 −0.01 −7.24

0.57 0 −4.79 0.01 5.31 0
0.06 −4.24 −0.06 −5.18 0.08 2.36
6.13 −0.09 −11.27 −0.25 −7.35 0
0.05 8.72 0.13 7.19 0.02 −6.51



B =



−0.047 −0.13
0.01 −0.026

−0.021 −0.057
−0.17 0.48
0.188 0.532
1.645 −4.65
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ε = [GM]−1



FW x
FW y
FW z

0
0
0


+



0.4
1.279
7.622
−0.128

0.235
−1.698
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