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Abstract: The human L-type amino acid transporters LAT1 and LAT2 mediate the transport of
amino acids and amino acid derivatives across plasma membranes in a sodium-independent,
obligatory antiport mode. In mammalian cells, LAT1 and LAT2 associate with the type-II membrane
N-glycoprotein 4F2hc to form heteromeric amino acid transporters (HATs). The glycosylated ancillary
protein 4F2hc is known to be important for successful trafficking of the unglycosylated transporters
to the plasma membrane. The heavy (i.e., 4F2hc) and light (i.e., LAT1 and LAT2) chains belong to
the solute carrier (SLC) families SLC3 and SLC7, and are covalently linked by a conserved disulfide
bridge. Overexpression, absence, or malfunction of certain HATs is associated with human diseases
and HATs are therefore considered therapeutic targets. Here, we present a comparative, functional
characterization of the HATs 4F2hc-LAT1 and 4F2hc-LAT2, and their light chains LAT1 and LAT2.
For this purpose, the HATs and the light chains were expressed in the methylotrophic yeast Pichia
pastoris and a radiolabel transport assay was established. Importantly and in contrast to mammalian
cells, P. pastoris has proven useful as eukaryotic expression system to successfully express human LAT1
and LAT2 in the plasma membrane without the requirement of co-expressed trafficking chaperone
4F2hc. Our results show a novel function of the heavy chain 4F2hc that impacts transport by
modulating the substrate affinity and specificity of corresponding LATs. In addition, the presented
data confirm that the light chains LAT1 and LAT2 constitute the substrate-transporting subunits of
the HATs, and that light chains are also functional in the absence of the ancillary protein 4F2hc.

Keywords: 4F2hc; amino acid transporter; heterodimeric amino acid transporter; LAT1; LAT2; solute
carrier 3 family; solute carrier 7 family

1. Introduction

Amino acids are essential biomolecules, which are involved in cellular processes ranging from
energy production to protein synthesis and signaling. Membrane proteins belonging to different solute
carrier (SLC) families mediate the transport of amino acids and their derivatives across biological
membranes [1]. Among these transporter families, the SLC7 family consists of 15 genes [2], which
encode amino acid transporters that belong to the amino acid, polyamine and organocation (APC)
superfamily of transporters (transport classification (TC) system No. 2.A.3; http://www.tcdb.org) [3].
The SLC7 family consists of two subgroups: the cationic amino acid transporters (CATs; SLC7A1-A4
and SLC7A14) and the glycoprotein-associated L-type amino acid transporters (LATs; SLC7A5-A11,
Slc7a12, SLC7A13, and Slc7a15) [2]. CATs are N-glycosylated, while LATs are not. In contrast to
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CATs, LATs associate with type-II membrane N-glycoproteins, which belong to the SLC3 family,
e.g., 4F2hc (SLC3A2; CD98) and rBAT (SLC3A1), to form heterodimeric amino acid transporters (HATs).
These ancillary proteins, also called heavy chains, contain an intracellular, N-terminal domain, a single
transmembrane α-helix, and a large extracellular C-terminal domain. The atomic structure of the
extracellular domain of the heavy chain 4F2hc is similar to the structure of bacterial glucosidases,
but does not possess glucosidase activity [4]. The ancillary glycoproteins 4F2hc and rBAT, which are
covalently linked to corresponding LATs, i.e., the light chains of HATs, by conserved disulfide bridges
are essential for the correct trafficking of the heterodimer to the plasma membrane in mammalian
cells [2,5,6].

HATs have major impacts on human health being implicated in several human diseases such as
aminoacidurias (cystinuria and lysinuric protein intolerance), tumor cell growth, glioma invasion,
Kaposi’s sarcoma-associated herpesvirus infection, and cocaine relapse [2,5,7]. 4F2hc-LAT1 and
4F2hc-LAT2 are expressed in different tissues, e.g., LAT1 (SLC7A5) in brain, ovary, testis, placenta,
spleen, colon, blood-brain barrier, fetal liver, activated lymphocytes, tumor cells and LAT2 (SLC7A8)
in small intestine, kidney, lung, heart, spleen, liver, brain, placenta, prostate, ovary, fetal liver, testis,
skeletal muscle [2]. They mediate sodium-independent obligatory exchange of substrates across cell
membranes with a 1:1 stoichiometry [2,5]. Predominant substrates of 4F2hc-LAT1 are large neutral
L-amino acids [8], L-DOPA [9], and the thyroid hormones T3 and T4 [10,11]. 4F2hc-LAT2 has specificity
toward neutral L-amino acids including small ones [8,12,13], and T3 and T4 [11]. 4F2hc-LAT1 is a target
for cancer diagnosis and treatment [1,2,14–16]. In several cancer cells, 4F2hc-LAT1 is overexpressed
mediating increased uptake of L-leucine. Relative high concentrations in L-leucine result in increased
mammalian target of rapamycin (mTOR) activation [17], which supports growth and survival of cancer
cells [18]. Because of its localization in the blood-brain barrier, 4F2hc-LAT1 is a promising transport
system, which is also utilized to shuttle drugs and prodrugs into the brain [19]. Recently, it was
suggested that lack or defects in LAT2 are implicated in age-related hearing loss [20] and cataract
formation [21].

Cryo- and negative stain-electron microscopy (EM) elucidated the supramolecular organization
and structures of selected HATs, i.e., of 4F2hc-LAT1 [22–24], 4F2hc-LAT2 [25–28], and rBAT-b0,+AT [29].
Furthermore, the high-resolution cryo-EM structures of 4F2hc-LAT1 [22,23] and rBAT-b0,+AT [29]
provided detailed insights into the interactions between the ancillary glycoproteins and the
corresponding membrane transporters at the molecular level.

The methylotrophic yeast Pichia pastoris has been successfully used for the overexpression of
eukaryotic membrane proteins [30,31] and for large-scale production of recombinant soluble and
membrane proteins at high cell densities [32]. In an overexpression screening campaign using
P. pastoris, the human HAT 4F2hc-LAT2 was successfully identified as a promising candidate for
milligram protein production [33]. Expression in P. pastoris resulted in functional recombinant human
4F2hc-LAT2 containing the conserved disulfide bridge between light and heavy chain [25,26,33].
Importantly, when LAT2 is expressed in P. Pastoris, the recombinant protein is properly folded, correctly
trafficked to the plasma membrane and functional even in the absence of co-expressed 4F2hc [25].
In contrast, surface expression of LAT2 in the absence of its ancillary glycoprotein is severely impaired
in mammalian cells [6]. This important difference makes the Pichia expression system special, and gives
the opportunity to study LATs alone, e.g., LAT1 and LAT2, and to explore possible effects of the ancillary
glycoprotein 4F2hc on their transport function. To this aim, we expressed the HATs 4F2hc-LAT1 and
4F2hc-LAT2, and the LATs LAT1 and LAT2 in the methylotrophic yeast P. pastoris, and characterized
and compared their L-leucine transport kinetics and amino acid specificities using [3H]L-leucine-based
uptake and competition assays. We found that the heavy chain 4F2hc modulates the substrate affinity
and specificity of LATs. In addition, the presented data confirm that the light chains LAT1 and LAT2
constitute the substrate-transporting components of the HATs and that these two light chains are also
functional in the absence of 4F2hc. Thus, P. pastoris has proven useful as eukaryotic system to express
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and characterize the transport function of the human light chains LAT1 and LAT2 in the absence of
co-expressed heavy chain/ancillary protein 4F2hc.

2. Results and Discussion

The human HATs: 4F2hc-LAT1 and 4F2hc-LAT2, and LATs: LAT1 and LAT2 were expressed in the
methylotrophic yeast Pichia pastoris. Western blot analysis indicated expression of the corresponding
HATs and LATs (Figure S1). Transport activities were determined by measuring the uptake of
[3H]L-leucine into P. pastoris cells expressing the corresponding HAT or LAT. Time-course experiments
showed clear HAT- and LAT-specific transport activities, which were much higher than the [3H]L-leucine
uptake into untransformed host cells (Figure 1).

1 
 

 

Figure 1. Time-dependent uptake of 100 nM [3H]L-leucine into P. pastoris KM71H cells expressing
4F2hc-LAT1 ((A); orange), LAT1 ((B); green), 4F2hc-LAT2 ((C); blue), or LAT2 ((D); violet). [3H]L-leucine
uptake into untransformed P. pastoris KM71H cells is shown in black. In all cases, a saturation of
the transport process was observed. Time-course experiments show clear LAT-specific transport,
which is much higher than the uptake into untransformed host cells. Uptake assay times of 10 min
for 4F2hc-LAT1, LAT1, and 4F2hc-LAT2, and of 2 min for LAT2 were chosen for all subsequently
presented experiments (time points indicated by *). Data points are represented as mean with SD from
a representative triplicate experiment. If not visible, error bars are smaller than symbols.

We determined the half maximal inhibitory concentrations (IC50s) of L-leucine by homologues
competition for all constructs using the obtained time points, i.e., 10 min (4F2hc-LAT1, LAT1,
4F2hc-LAT2) and 2 min (LAT2) (Figure S2). These IC50s (Figure S2) gave first impressions of the
affinities of the HATs and LATs for L-leucine. HAT- and LAT-mediated transport of [3H]L-leucine was
saturable and followed Michaelis–Menten kinetics with Km values of 25 µM (4F2hc-LAT1), 11 µM
(LAT1), 249µM (4F2hc-LAT2), and 42µM (LAT2) (Figure 2). As reflected from this data, the impact of the
heavy chain 4F2hc on the affinity of the light chain for L-leucine was most pronounced for LAT2, where
the Km value increases almost six-fold upon association with 4F2hc. The measured Kms of L-leucine for
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the two HATs were comparable with values from previous publications, i.e., 18 µM [34] and 20 µM [35]
for 4F2hc-LAT1, and 220 µM for 4F2hc-LAT2 [13]. Recently, a study using proteoliposomes showed
that human LAT1 has no transport activity in the absence of 4F2hc and concluded that the ancillary
protein is essential for the transport activity of the complex [23]. In contrast, we demonstrate that LAT1
and LAT2 are able to transport [3H]L-leucine in the absence of the heavy chain 4F2hc. This finding is
further supported by studies, in which LAT1 was reconstituted into liposomes, and transport activity
of this light chain was shown in the absence of the heavy chain 4F2hc [36,37].
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Figure 2. Kinetic analysis of [3H]L-leucine uptake into P. pastoris KM71H cells expressing 4F2hc-LAT1
((A); orange), LAT1 ((B); green), 4F2hc-LAT2 ((C); blue) or LAT2 ((D); violet). Data points represent
means with SD of at least nine [3H]L-leucine uptake replicates from three independent experiments
normalized to Vmax (100%). Km values were obtained by fitting a Michaelis–Menten kinetics model
curve to data points.

The substrate specificities of 4F2hc-LAT1 and 4F2hc-LAT2, and LAT1 and LAT2 were determined
by measuring the ability of proteinogenic amino acids and D-leucine at concentrations of about ten
times Km to compete with [3H]L-leucine uptake (Figure 3). 4F2hc-LAT1 showed a relatively broad
substrate specificity with highest for L-leucine and L-histidine, in line with previous reports [34–36].
The specificity for D-leucine was significantly lower compared to its L-isomer indicating stereospecificity
of 4F2hc-LAT1 (Figure 3). Having established an [3H]L-leucine-based uptake assay and for comparison
with kinetic values in the literature, we determined the half maximal inhibition concentration (IC50)
for L-histidine to 23 µM using P. pastoris cells expressing human 4F2hc-LAT1 (Figure 4). This IC50

is comparable to previously reported Km values for L-histidine, i.e., 12.7 µM [35] and 24.6 µM [36].
Competition data clearly showed that this HAT, 4F2hc-LAT1, has no considerable affinity (i.e., more
than 50% residual [3H]L-leucine uptake; Figure 3A) for glycine, L-proline, L-serine and the negatively
charged amino acids L-aspartate and L-glutamate. The specificity for most tested amino acids decreased
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when [3H]L-leucine transport competition was studied for the light chain LAT1 alone (Figure 3B).
The stereospecificity with respect to L-leucine increased significantly compared to 4F2hc-LAT1,
i.e., almost no observed inhibition of [3H]L-leucine transport by D-leucine (Figure 3B). L-alanine,
which was competing with HAT-mediated L-leucine transport, was not recognized by LAT1 at all.
In summary, LAT1 is highly specific for L-leucine and has a modest affinity for other amino acids
(Figure 3B). Interestingly, the effect of competition for L-histidine in LAT1 is significantly decreased in
the absence of the heavy chain 4F2hc (Figure 3A,B), which suggests a markedly lower affinity for this
amino acid compared to the heterodimer. As observed for 4F2hc-LAT1, the HAT 4F2hc-LAT2 has also
a relatively broad substrate specificity (Figure 3C). Most amino acids with the exception of L-proline,
L-serine, L-glutamate, and the positively charged amino acids L-lysine, L-arginine, and L-histidine
reduced the residual [3H]L-leucine uptake below 45%.
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Figure 3. Determination of the substrate specificity of 4F2hc-LAT1 (A), LAT1 (B), 4F2hc-LAT2 (C),
and LAT2 (D) by 100 nM [3H]L-leucine uptake competition assay. With the exception of D-leucine,
proteogenic L-amino acids were used as competitors. Competitor concentrations of 250 µM ((A);
4F2hc-LAT1), 100 µM ((B); LAT1), 2500 µM ((C); 4F2hc-LAT2), and 500 µM ((D); LAT2) were used. These
concentrations correspond to about ten times the determined L-leucine Km values of the corresponding
transporters (Figure 2). Residual uptake in the presence of competitor was normalized with respect to
control samples without competitor (Ctrl). The amino acids are abbreviated using their three-letter-code.
Means with SD from normalized data of three independent experiments, each at least in triplicate are
shown. If not visible, error bars are smaller than symbols.

In contrast to 4F2hc-LAT1, specificities of 4F2hc-LAT2 for the branched chain amino acids (BCAA)
L-leucine, L-isoleucine, and L-valine were comparable (Figure 3C). Again, in the absence of the heavy
chain 4F2hc the competition pattern changed significantly (Figure 3D). As observed for LAT1, L-leucine
showed the strongest reduction of LAT2-mediated [3H]L-leucine uptake in contrast to its D-isomer,
reflecting stereospecificity of the transporter (Figure 3D). Only L-isoleucine and L-valine also reduced
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the residual [3H]L-leucine uptake below 35%, which shows that LAT2 has a preferred affinity for
BCAA. The strongest increase in competition associated with co-expression of the heavy chain 4F2hc is
observed for L-tyrosine, L-cysteine, L-threonine, L-asparagine, L-glutamine, and L-aspartate. In general,
association of the light chain LAT2 with the heavy chain 4F2hc expands the substrate specificity of the
HAT compared to the BCAA-specific light chain LAT2 alone. Interestingly, the stereospecificity for
leucine of the light chains LAT1 and LAT2 is more pronounced in the absence of the heavy chain 4F2hc
(Figure 4).
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Figure 4. IC50 determination of L-histidine for human 4F2hc-LAT1 transporter. The determined IC50

value for 4F2hc-LAT1 transporter is 23 µM (95% confidence interval (CI): 19–28 µM). For data analysis,
the signal of the untransformed P. pastoris KM71H was subtracted from 4F2hc-LAT1 transporter.
Cpm values of each experiment were normalized with respect to the determined upper plateau value,
i.e., the fitted upper plateau value corresponds to 100%. A sigmoidal model curve (orange) was fitted
to the net transport signals to obtain the IC50. Data points represent means with SD from normalized
data of three independent experiments, each at least in triplicate are shown. If not visible, error bars are
smaller than symbols.

3. Conclusions

We have shown and confirmed that the light chains LAT1 and LAT2 are the substrate-transporting
subunits of the corresponding HATs 4F2hc-LAT1 and 4F2hc-LAT2, and that 4F2hc is not essential for
the transport activity of the corresponding LATs. LAT1 and LAT2 have relatively high specificities for
L-leucine, and modest specificities for other amino acids. That the ancillary protein 4F2hc is responsible
for chaperoning the trafficking of light chains (i.e., LATs) to the plasma membrane of mammalian
cells is a well-accepted and described concept. Our comparative transporter study revealed a novel
function of 4F2hc, i.e., upon association of this ancillary protein with LAT1 and LAT2, the substrate
affinity and specificity of these light subunits is modulated by significantly broadening their substrate
specificities. The methylotrophic yeast P. pastoris has proven useful for the here-presented comparative
transporter study. In contrast to mammalian cells, the substrate-transporting subunits LAT1 and LAT2
could be successfully expressed functional in Pichia in the absence of their ancillary N-glycoprotein
4F2hc. Therefore, this eukaryotic expression system, which also allows post-translational modifications
such as glycosylation and disulfide bridge formation, opens the possibility to investigate the influence
of pharmacologically relevant compounds on the function of heteromeric complexes and their
transporters alone.

4. Materials and Methods

4.1. Cloning of Human 4F2hc-LAT1, 4F2hc-LAT2, LAT1, and LAT2

The making of the 4F2hc-LAT2 and LAT2 expression constructs, i.e., pPICZB-4F2hc-LAT2 and
pPICZB-LAT2 in the pPICZB vector (Thermo Fisher Scientific, Waltham, MA, USA), and of the
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Pichia pastoris clones expressing human 4F2hc-LAT2 or LAT2 was described in detail previously [33].
These same two Pichia clones expressing 4F2hc-LAT2 and LAT2 were used in the here-presented study.
We generated a pPICZB-based expression construct for human 4F2hc-LAT1 (pPICZB-4F2hc-LAT1)
as described for 4F2hc-LAT2 [33], but using the cDNA of the light chain LAT1 (UniProt ID code
Q01650) instead of LAT2. For the LAT1 construct, the human gene (UniProt ID code Q01650)
was synthesized codon-optimized for expression in the methylotrophic yeast Pichia pastoris with
5′-HindIII and 3′-XhoI restriction sites (GenScript). In contrast to this codon-optimized LAT1 gene,
the previously mentioned constructs were generated from cDNA. The LAT1 gene was ligated into
the vector pZUDFPICZ-10His3C using 5′-HindIII and 3′-XhoI restriction sites yielding the construct
pZUDFPICZ-10His3C-LAT1. pZUDFPICZ-10His3C is a modified version of the pPICZB plasmid
(Thermo Fisher Scientific), which has been modified as follows. First, the single HindIII restriction
site of pPICZB was removed by site-directed mutagenesis using the primer (5′-3′) TGG TTC CAA
TTG ACA AAC TTT TGA TTT TAA CGA. Then, an XbaI restriction site was introduced after the
polyhistidine tag of the modified pPICZB plasmid using the primer (5′-3′) ATC ATC ATC ATC ATC
ATT CTA GAT GAG TTT GTA GCC TTA GA. Both mutagenesis reactions were performed using
the QuikChange site-directed mutagenesis kit (Agilent Technologies, Santa Clara, CA, USA). Finally,
the region of the modified plasmid between the unique EcoRI restriction site and the newly created
XbaI restriction site was replaced by the synthetic polynucleotide (5′-3′) GAA TTC ACC ATG GCA
CAT CAT CAT CAT CAT CAT CAT CAT CAC CAC GAG CTC CTT GAG GTC CTT TTT CAG GGT
CCT AAG CTT GCG GCC GCC CTC GAG TCT AGA. This results in the new expression plasmid
pZUDFPICZ-10His3C with a Kozak sequence (in bold), an N-terminal decahistidine-tag (His-tag)
followed by a human rhinovirus 3C (HRV3C) protease cleavage site and a multicloning site (HindIII,
NotI, XhoI, and XbaI).

4.2. Pichia Pastoris Culture and Expression

Electrocompetent P. pastoris strain KM71H cells (Thermo Fisher Scientific) were transformed with
PmeI-linearized human 4F2hc-LAT1 and LAT1 plasmids by electroporation using a Gene Pulser II
system (Bio-Rad, Hercules, CA, USA) and the settings 1.5 kV, 200 Ω, and 25 µF. To select for plasmid
integration, transformed P. pastoris cells were plated on YPD-agar plates (1% (v/v) bacto yeast extract
(BD Biosciences, Franklin Lakes, NJ, USA), 2% (w/v) peptone (Condalab, Madrid, Spain), 2% (w/v)
dextrose (Sigma, St. Louis, MO, USA), 2% (w/v) agar (BD Biosciences) supplemented with 200 µg/mL
zeocin (InvivoGen, San Diego, CA, USA) and incubated for 2–3 days at 30◦C. Colonies, which grew
in the presence of 200 µg/mL zeocin, were streaked on new YPD-agar plates containing increasing
zeocin concentrations (500, 1000, 2000, and 4000 µg/mL). Each plate was incubated for 2–3 days at
30 ◦C. To screen for clones, which grew in the presence of 4000 µg/mL zeocin with high transport
activity, individual colonies were cultivated under expression conditions and their transport activities
were assessed. Clones of corresponding constructs showing the highest uptake of [3H]L-leucine
were selected for further experiments and verified for correct integration by PCR. Selected clones
and untransformed P. pastoris KM71H cells were initially inoculated in 10 mL of YPD media as a
seed culture in 50 mL culture tubes and grown for 24 h at 30 ◦C and 300 rpm in an incubator shaker
(Multitron, Infors HT, Bottmingen, Switzerland). From seed cultures, 5 mL of inoculum were added
to 500 mL buffered glycerol-complex medium (BMGY; 1% (v/v) glycerol, 1% (w/v) bacto yeast extract
(BD Biosciences), 2% (w/v) peptone (Condalab), 100 mM potassium phosphate pH 6.0, 1.34% (w/v)
yeast nitrogen base YNB (Condalab), 4 × 10−5% (w/v) biotin) and grown overnight (12–14 h) to OD600

4–6 at 30 ◦C and 200 rpm using 2 L Erlenmeyer culture flasks in an incubator shaker (Multitron, Infors
HT). For protein expression, cells were pelleted by centrifugation (3000× g, 15 min, room temperature)
and resuspended in 1/5 to 1/10 of the original culture volume (as described in the manufacturer’s
manual for Muts strains; Thermo Fisher Scientific) in buffered methanol-complex medium (BMMY;
buffered-complex medium with the same composition as BMGY except having a final concentration of
1% (v/v) methanol instead of 1% (v/v) glycerol) to a final cell density of OD600 40. Resuspended cells
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(50–75 mL) were grown in 1 L Erlenmeyer culture flasks at 30 ◦C and 300 rpm in an incubator shaker
(Multitron, Infors HT). Conditions for induction were maintained by supplementing the expression
culture with methanol after 20 and 24 h to a final concentration of 1% (v/v). Cells were harvested
28 h post induction by centrifugation (3000× g, 15 min, room temperature). The resulting pellet was
resuspended in transport buffer (150 mM choline chloride (ChCl), 1 mM MgCl2, 1 mM CaCl2, 10 mM
HEPES and 10 mM Tris, pH 7.4) containing 50% (v/v) glycerol, the OD600 was adjusted to 40, and the
cells were finally stored at −18 ◦C.

4.3. Western Blot Analysis

Immunoblotting experiments were performed using P. pastoris cells expressing the corresponding
HAT or LAT used in the here-presented functional studies. For Western blots, ~15 mg Pichia cells
expressing HATs or LATs were suspended in 1 mL of 50 mM potassium phosphate pH 7.4, 1 mM EDTA,
5% (v/v) glycerol, 2% (w/v) SDS, 5 mM oxidized glutathione and protease inhibitor (SigmaFASTTM

Protease Inhibitor Cocktail Tablet, EDTA Free, Sigma-Aldrich, St. Louis, MO, USA). Cells were lysed at
room temperature by homogenization with 20 strokes using a glass Teflon homogenizer. This lysis
procedure was repeated four more times after 30 min incubation between each pass. Insolubilized cells
and debris were separated by centrifugation at 12,000× g (10 min, 4 ◦C). The supernatant was mixed
with 5x non-reducing sample buffer (60 mM Tris-HCl, pH 6.8, 10% (v/v) glycerol, 2% (w/v) SDS, 0.01%
(w/v) bromophenol blue) to a final concentration of 2.5x non-reducing sample buffer and separated
on a 10% SDS-PAGE gel. The His-tagged transporter LAT1 was detected using a mouse anti-His5
primary antibody (Qiagen, catalog number 34660, Hilden, Germany) at a dilution of 1:3000 and a
goat anti mouse IgG (H+L) horse radish peroxidase (HRP) conjugated secondary antibody (Bio-Rad,
catalog number 172-1011) at a dilution of 1:3000. Strep-tagged transporters (4F2hc-LAT1, 4F2hc-LAT1,
and LAT2) were detected with HRP-conjugated streptavidin (StrepMAB-Classic-HRP, IBA Lifesciences,
catalog number 2-1509-001) at a dilution of 1:30,000.

4.4. [3H]L-Leucine Radioligand Transport Assay

For transport experiments, 3 mL P. pastoris cells at OD600 40 expressing the corresponding
transporter were thawed, diluted 1:50 in transport buffer, and pelleted by centrifugation (3000× g,
15 min, room temperature). Subsequently, the pellet was washed by resuspending in 50 mL transport
buffer and pelleted again. The washing step was repeated twice. Finally, the cell pellet was resuspended
in 4 mL of transport buffer and incubated for 20 min at 30 ◦C under agitation (300 rpm, Multitron,
Infors HT). The density of the yeast suspension was adjusted with transport buffer to OD600 25
(LAT1, 4F2hc-LAT2 or 4F2hc-LAT1) and 7.5 (LAT2). All transport experiments were performed in a
reaction volume of 100 µL. For time course experiments, the reaction mixture contained 40 µL cell
suspension and 60 µL substrate master mix (167 nM L-leucine spiked with [3H]L-leucine (American
Radiolabeled Chemicals)) to a specific activity of 20 Ci/mmol resulting in a final L-leucine concentration
of 100 nM. For the determination of the Michaelis–Menten constant (Km), the reaction mixture contained
40 µL cell suspension and 60 µL of L-leucine solution yielding final concentrations ranging from
1–3000 µM (4F2hc-LAT2 and LAT2) and 1–1000 µM (4F2hc-LAT1 and LAT1), which were spiked with
[3H]L-leucine to a specific activity of 0.033 Ci/mmol. For L-leucine and L-histidine IC50 experiments,
the reaction mixture contained 40 µL cell suspension, 50 µL of competitor solution at different
concentrations, i.e., 0.01–8000 µM (L-histidine, 4F2hc-LAT1), 0.01–10,000 µM (L-leucine, 4F2hc-LAT1,
and LAT1) and 1–10,000 µM (L-leucine, 4F2hc-LAT2, and LAT2), and 10 µL substrate master mix (1 µM
L-leucine spiked with [3H]L-leucine (American Radiolabeled Chemicals, St. Louis, MO, USA)) to a
specific activity of 20 Ci/mmol resulting in a final L-leucine concentration of 100 nM. For substrate
profiling (i.e., competition experiments), the reaction mixture contained 40 µL cell suspension, 50 µL of
competitor solution (i.e., the final competitor concentration was about 10× higher than the L-leucine
Km value of the respective transporter), and 10 µL substrate master mix (1 µM L-leucine spiked with
[3H]L-leucine (American Radiolabeled Chemicals)) to a specific activity of 20 Ci/mmol resulting in
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a final L-leucine concentration of 100 nM. Competitors were prepared in 10% (v/v) DMSO yielding
a final concentration of 0.5% in the assay. Control samples contained the same concentration of
DMSO. Final OD600 values in uptake experiments were 10 for 4F2hc-LAT1, 4F2hc-LAT2, and LAT1,
and 3 for LAT2. All transport reactions were done in 2 mL reaction tubes (Eppendorf) at 25 ◦C
under agitation (1000 rpm, Thermomixer compact, Eppendorf, Hamburg, Germany). Transport was
terminated after 10 min for 4F2hc-LAT1, 4F2hc-LAT2, or LAT, and 2 min for LAT2 by addition of 600 µL
of pre-chilled transport buffer. Cells were rapidly separated from the buffer by transferring the stopped
reactions on a 96-well 0.66 mm glass fiber filter plate (Corning FiltrEX, Corning, NY, USA) and vacuum
filtration. Each well was washed with 2 mL of ice-cold transport buffer to remove free radioligand.
The plate was then dried overnight at 37 ◦C and the backside was sealed with back seal (PerkinElmer,
Waltham, MA, USA). The trapped radioligand was released by addition of 200 µL scintillation cocktail
(MicroScint 40, PerkinElmer) to each well and the plate topside was sealed with TopsealTM-A Plus
(PerkinElmer), followed by incubation for 30 min at 25 ◦C and 1000 rpm (Thermomixer compact,
Eppendorf, Hamburg, Germany). Counts were measured in each well for 2 min with a scintillation
counter (TopCount NXT, PerkinElmer).

4.5. Statistics

Experimental data points were performed at least in triplicate. For data analysis, the signal of the
untransformed P. pastoris cells was subtracted from the transporter signal. Michaelis–Menten saturation
curves were fitted into data points of independent experiments. Data points were then individually
normalized using the corresponding Vmax values (i.e., the fitted upper plateau value corresponds
to 100%). Data points from corresponding concentrations were averaged and SD obtained. Finally,
Michaelis–Menten saturation curves were fitted to the averaged data yielding Km values. To determine
the half maximal inhibitory concentration (IC50) values of heterologous (i.e., L-histidine) L-leucine
transport competition, a sigmoidal model curve was fitted to the net transport signals of independent
experiments. Every experimental data point was individually normalized using the corresponding
upper plateau values (i.e., the fitted upper plateau value corresponds to 100%). Data points from
corresponding concentrations were averaged and a sigmoidal model curve was fitted to the data in
order to obtain the IC50 value. Prism6 (GraphPad Software) was used for data analysis.
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s1. Figure S1: Western blot analysis of SDS-solubilized Pichia pastoris cells overexpressing human 4F2hc-LAT1,
LAT1, 4F2hc-LAT2, or LAT2; Figure S2: IC50 determination of L-leucine for human 4F2hc-LAT1 (A; orange), LAT1
(B; green), 4F2hc-LAT2 (C; blue), and LAT2 (D; violet).
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