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The human–robot interface (HRI) based on biological signals can realize the natural

interaction between human and robot. It has been widely used in exoskeleton

robots recently to help predict the wearer’s movement. Surface electromyography

(sEMG)-based HRI has mature applications on the exoskeleton. However, the sEMG

signals of paraplegic patients’ lower limbs are weak, which means that most HRI based

on lower limb sEMG signals cannot be applied to the exoskeleton. Few studies have

explored the possibility of using upper limb sEMG signals to predict lower limbmovement.

In addition, most HRIs do not consider the contribution and synergy of sEMG signal

channels. This paper proposes a human–exoskeleton interface based on upper limb

sEMG signals to predict lower limb movements of paraplegic patients. The interface

constructs an channel synergy-based network (MCSNet) to extract the contribution and

synergy of different feature channels. An sEMG data acquisition experiment is designed

to verify the effectiveness of MCSNet. The experimental results show that our method

has a good movement prediction performance in both within-subject and cross-subject

situations, reaching an accuracy of 94.51 and 80.75%, respectively. Furthermore, feature

visualization and model ablation analysis show that the features extracted by MCSNet

are physiologically interpretable.

Keywords: human-robot interface, lower limb movement prediction, channel synergy-based network,

exoskeleton, paraplegic patients, surface electromyography

1. INTRODUCTION

The development of artificial intelligence technology and wearable sensors has promoted the rise
of human–robot interaction. As the core of human–robot interaction, an human–robot interface
(HRI) enables direct communication with a robot via physical or biological signals, which has
received widespread attention in the past decade (Simao et al., 2019; Fang et al., 2020). Exoskeleton
is a typical application scenario of HRI, and some HRI based on physical signals, such as inertial
measurement units or pressure signals, have been used in the walking-assistant exoskeleton to
realize the movement prediction of patients with hemiplegia/paraplegia (Beil et al., 2018; Ding
et al., 2020; Zhu et al., 2020a). In recent years, with the decoding of biological signals, HRI based
on biological signals (such as electroencephalogram and electromyography) have been designed,
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opening up the possibility of realizing more natural and efficient
movement predictions between human and exoskeleton (Suplino
et al., 2019; Ortiz et al., 2020; Zhuang et al., 2021). For paraplegic
patients, the loss of lower limb motor and sensory function
makes the exoskeleton difficult to predict the patients’ movement,
and the previous work has not yet proposed a high-efficiency
HRI specifically for paraplegic patients. Therefore, it is urgent
to propose an HRI with high movement prediction accuracy for
paraplegic patients.

Brain–computer interface (BCI) is an HRI based on
electroencephalogram (EEG). It can directly obtain patients’
motion intention from the EEG signal and without actual
limb movement, so the BCI has been used to predict the
movement of paraplegic patients (Tariq et al., 2018; Wang
et al., 2018; Gu et al., 2020). The BCI consists of three
main processing stages (Lotte et al., 2018): data collection and
processing stage, where EEG data is recorded and preprocessed;
feature extraction stage, where meaningful information is
extracted from the EEG data; and classification stage, where
a motion intention is interpreted from the data. The EEG
signal’s signal-to-noise ratio is low. It is susceptible to
interference from the environment and the patient’s own
limb movement and mood, and the signal between different
people is quite different (Rashid et al., 2020). The movement
prediction accuracy of BCI is usually unstable, which is
unacceptable for the exoskeleton movement assistance tasks of
paraplegic patients.

Compared with the EEG signal, the sEMG signal has a higher
signal-to-noise ratio and is less interfered with by external factors.
Therefore, the sEMG-based human–robot interface (MHRI) has
been earlier and more widely used in the walking-assistant
exoskeleton (Kawamoto et al., 2003; Wang et al., 2021). The
previous MHRI mostly used the sEMG signal of the lower limb
muscles to predict movements. However, the sEMG signal of
the lower limbs of paraplegic patients is weak or even no signal.
So recent studies have attempted to use the sEMG signal of
the upper body muscles to predict the lower limb movement
(Villa-Parra et al., 2018). Similarly, MHRI also includes three
stages of data collection and processing, feature extraction, and
classification. Each stage relies on manual specifications. Many
outstanding studies have shown that feature extraction is crucial
for MHRI movement prediction, and it determines the upper
limit of the prediction accuracy (Phinyomark et al., 2012; Samuel
et al., 2018). Feature extraction often requires significant subject-
matter expertise and a priori knowledge about the expected
sEMG signal (Xiong et al., 2021). It is tough and time consuming
to obtain an optimal feature set manually for different subjects.

Deep learning has largely alleviated the need for manual
feature extraction, achieving state-of-the-art performance in
fields such as computer vision and natural language processing
(Hinton et al., 2012). In fact, deep convolutional neural networks
(CNNs) can automatically extract appropriate features from the
data. It has succeeded in many challenging image classification
tasks (Huang et al., 2017; Jeyaraj and Nadar, 2019), surpassing
methods that rely on handcrafted features (Hinton et al., 2012;
Huang et al., 2017). Although most research still relies on
handcrafted features, many recent works have explored the

application of deep learning in MHRI (Allard et al., 2016; Cote-
Allard et al., 2019; Jabbari et al., 2020). This kind of MHRI
mostly combines long short-term memory networks (LSTM)
and CNNs simply, ignoring the difference in contribution and
synergy of sEMG feature channels of different subjects under
the same movement. Moreover, most researchers do not pay
much attention to whether the features extracted by CNNs have
physiological significance.

In this paper, a channel synergy-based MHRI is proposed for
lower limb movement prediction in paraplegic patients. It uses
the sEMG signals of 12 upper limb muscles to predict the lower
limb movements. The proposed movement prediction model
uses LSTM, depthwise and separable convolutions to extract
the spatiotemporal features of multi-channel sEMG signals,
and introduces an attention module to extract the synergy of
different sEMG feature channels. An sEMG data acquisition
experiment is designed to verify the proposed channel synergy-
based network (MCSNet). The experimental results verify that
MCSNet’s prediction accuracy is better than the traditional
machine learning-based MHRI and two mainstream deep
learning-based MHRI in both within-subject and cross-subject
situations. Furthermore, we visualize the features extracted
through MCSNet model and perform model ablation analysis.
The analysis results show that the features proposed by MCSNet
are physiologically interpretable.

In summary, the main contributions of this paper are shown
as follows:

• A channel synergy-based MHRI is proposed for lower limb
movement prediction of paraplegics. It uses the sEMG signals
of upper limb to predict lower limb movements, and extracts
the contribution, spatiotemporal, and synergy features among
different sEMG channels, which improves the accuracy of
lower limb movement prediction.

• This paper visualizes the features proposed by the MCSNet
model and performs the model ablation analysis, and the
results show that the features proposed by MCSNet are
physiologically interpretable.

2. RELATED WORKS

Human–robot interfaces used to predict the movement of
patients with damaged limb are mainly divided into BCI
and MHRI.

2.1. BCI-Based Movement Prediction
Related Work
The research of neuroengineering promotes the development of
BCI, and it is mainly used in the field of medical rehabilitation to
realize the perception of user intent. An entire BCI includes three
main processing stages of data collection and processing, feature
extraction, and classification (Lotte et al., 2018). Traditional
BCI mainly extracts some manual normative time-domain,
frequency-domain, and spatial domain features (Lee et al., 2019),
and then uses machine learning methods to construct the
mapping between features and different movements (Kaper et al.,
2004; Wang et al., 2017). Wang et al. proposed a BCI based
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on support vector machine (SVM). It uses the common space
pattern (CSP) model to extract the spatial features of the subject’s
motor imagery (MI) EEG signals, and uses the SVM model to
realize the classification of lower limb movements (Wang et al.,
2017).

Recent research has explored the application of deep learning
in BCI (Tayeb et al., 2019; Tortora et al., 2020). Tayeb et al.
used a CNN architecture to predict the movement of the raw
MI EEG signals, achieving an accuracy of 84% (Tayeb et al.,
2019). Tortora et al. proposed a gait pattern prediction method
based on an LSTM architecture. This method uses the LSTM
model to automatically extract and classify the timing features
of the EEG signal (Tortora et al., 2020), which can achieve an
accuracy of 92.8%. Considering the low signal-to-noise ratio of
EEG signals, some research have tried to combine EEG with
other signals to improve the movement prediction accuracy. Zhu
et al. used the combination of EEG and electrooculogram (EOG)
signals to realize the grasping and moving tasks of the robotic
arm (Zhu et al., 2020b), with an average accuracy of 92.09%.
BCI is unacceptable for the exoskeleton movement assistance
tasks of paraplegic patients, because EEG signal is susceptible to
interference from the environment and the patient’s own limb
movement and mood (Rashid et al., 2020).

2.2. MHRI-Based Movement Prediction
Related Work
As the biological signal most relevant to exercise, sEMG has
been applied to human–robot interaction for a long time, and
the research on MHRI is particularly rich. According to the
granularity of movement prediction, traditional MHRI can be
divided into two categories, one is MHRI based on motion
curve prediction, and the other is MHRI based on motion
mode(movement) prediction. The former uses machine learning
methods or Hill’s musculoskeletal model to build a mapping
between handcrafted features and joint angles/torques, which can
achieve finer-grained movement prediction. Literature (Suplino
et al., 2020) proposed an elbow joint angle estimation model
based on a non-linear autoregressive with exogenous inputs
neural network. This model can accurately predict the elbow
joint’s torque and angle during flexion and extension movement,
with a mean square error within 7◦. This kind of MHRI can
only be predicted in one movement. The model involves many
parameters and requires high quality of the sEMG signal, which is
not suitable for the movement prediction of paraplegic patients.

The MHRI in the back is similar to BCI, which also includes
three processing stages. Its main principle is using machine
learning methods to map handcrafted features and movements
(Afzal et al., 2017; Li et al., 2017; Cai et al., 2019; Kyeong et al.,
2019; Tao et al., 2019). Cai et al. proposed an SVM-based upper
limb movement prediction method (Cai et al., 2019), which
uses the sEMG signal of the uninhibited upper limb muscle of
the hemiplegic patient to predict the movement of the patient’s
shoulder and elbow joints, with an accuracy of 93.56%. Tao
et al. proposed a multi-channel lower limb movement prediction
method based on back propagation neural network, which can
achieve an prediction accuracy of 93.6% in six lower limb

movements such as the flexion movement of hip joint (Tao et al.,
2019).

Deep learning can automatically extract the best feature
set from sEMG signals. Many researchers have explored
the application of deep learning in MHRI-based movement
prediction methods (Allard et al., 2016; Cote-Allard et al., 2019;
Jabbari et al., 2020). Allard et al. proposed a multi-layer CNN
gesture prediction model based on sEMG for robot guidance
tasks (Allard et al., 2016). The model automatically extracts
the frequency domain features of different gesture movements
through the CNN architecture, and the average accuracy of
gesture prediction for 18 subjects is 93.14%. Considering
the effectiveness of the LSTM architecture for timing feature
extraction, Jabbari et al. proposed an ankle joint movement
prediction model based on the CNN–LSTM architecture. The
CNN and LSTM architectures were used to extract the spatial
and temporal features of the sEMG signals, respectively, under
different ankle joint movements (Jabbari et al., 2020), and the
prediction accuracy of five ankle joint movements is 97.55%.
Most deep learning-based MHRIs combine LSTM and CNNs
simply to extract the timing or time-frequency features of the
sEMG signal, but ignore the contribution and synergy differences
of the sEMG feature channels of different subjects under the
same movement. These are important features for different limb
movements (d’Avella et al., 2003).

2.3. Application of HRI on Exoskeleton
As a tightly human–machine coupled system, the exoskeleton is
a typical application scenario of HRI. The application of HRI on
exoskeleton can be divided into movement prediction (Kyeong
et al., 2019; Read et al., 2020) and state monitoring (Bae et al.,
2019). Movement prediction is to help the exoskeleton recognize
the wearer’s motion intention and realize natural human–
exoskeleton interaction. AnHRI based on the wearer’s upper limb
inertial measurement unit signal and crutches pressure signal
was applied to the Ekso exoskeleton (Read et al., 2020). It helps
the exoskeleton realize the prediction of standing and walking
movements. Kyeong et al. proposed a hybrid HRI based on the
wearer’s lower limb sEMG signals and the sole pressure signals
(Kyeong et al., 2019), achieving the prediction of the gait cycle.
HRI based on state monitoring is to help observe the changes in
the wearer’s physiological state when using the exoskeleton. Bae
et al. designed anMHRI for their wrist-rehabilitation exoskeleton
robot (Bae et al., 2019). It can monitor whether the wearer has
spasticity during the exoskeleton assistance task.

Our work is mainly based on the lower limb movement
prediction of the walking-assistant exoskeleton for paraplegia
patients. It is most closely related to the MHRI based on deep
learning, which uses CNN and LSTM architecture to extract
the sEMG signal features of different lower limb movements.
In contrast to deep learning-based MHRI, this paper propose a
channel synergy-based MHRI, which extracts the contribution
and synergy of the sEMG feature channel. Its performance is
better than traditional machine learning-based MHRI and two
mainstream deep learning-based MHRI.
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3. METHODS

This section presents the methodology details of the proposed
movement prediction model. Section 3.1 describes the overall
architecture of the MCSNet model. In section 3.2, we introduce
seven traditional MHRIs and two mainstream deep learning-
based MHRIs, which are used to compare to the MCSNet model.

3.1. Description of the MCSNet Model
Figure 1 visualizes the proposed MCSNet model. The entire
model architecture consists of three parts. The first part is
data input, input the processed sEMG data; the second part
is feature extraction, which mainly contains four blocks, each
block establishes the connection between the feature channels
of the sEMG signal in different dimensions; the third part is
movement classification/prediction, which classifies the extracted
features. This sectionmainly describes the feature extraction part,
because it is the core of the entire model. For sEMG trials, it was
collected at a 1,500 Hz sampling rate, having C channels and T
time samples.

• sEMG is a kind of non-stationary time series data. For
movement prediction, extracting more timing features is the
basic requirement to improve accuracy. In block 1, for each
input sEMG sample segment (size C× 300, multiple shown in
Figure 1), we performed a channel-by-channel LSTM step to
extract the timing features of different signal channels. Since
the deepening of the LSTM layers will cause over-fitting, we
found this phenomenon is more serious for sEMG data during
the experiment, so we choose to use a single-layer LSTM as the
timing feature extraction block. In this process, we define the
kth sEMG channel signal as

FksEMG, (k = 1, ...,C) (1)

which k indicates the serial number of the channel. In order
to better describe the relationship between the LSTM block
and the sEMG feature channel, a more fine-grained channel-
by-channel representation is used. The operation with LSTM
block is defined as follows:

Fktemp = Nk
lstm(F

k
sEMG), (2)

In Equation (2), each of the sEMG signal channels is used to
generate its timing feature independently, the timing feature
from all the channels will be contacted into Ftemp, which size is
C∗L, L represents the length of input signal’s sample. Since the

input feature channel FksEMG, (k = 1, ...,C/2) and F
k+C/2
sEMG , (k =

1, ...,C/2) in our data acquisition process is opposite the left
and right symmetrical relationships on the muscle blocks in
the acquisition, the muscles of the symmetry position have
similar behavior patterns when the subjects are under various
movements, so we use the LSTM units with shared weights
used in the corresponding channel.

• In block 2, we perform two convolutional steps in sequence.
First, we fit F1 2D convolution filters with a size of (1,
65) and output F1 feature maps containing different timing
information. We then use a depthwise convolution of size

(C, 1) (Chollet, 2017) to extract spatial features for every
channel. This operation provides a direct way to learn
spatial filters for different timing information, which can
effectively extract different timing and spatial features. The
depth parameter D represents the number of spatial filters to
be learned for each time series feature map (D = 1 is shown
in Figure 1 for illustration purposes). In this block, Ftemp is
transformed with the first convolution layer as follows:

Fconv = Nconv(Ftemp), (3)

Fd−conv = Nd−conv(Fconv), (4)

In Equations (3) and (4), the size of Fconv and Fd−conv is
F1 ∗ C ∗ L and (D ∗ F1) ∗ 1 ∗ L, respectively.

• In block 3, we use a separable convolution, a depthwise
convolution of size (1, 15) followed by F2 pointwise
convolutions of size (1, 1). The separable convolutions
first learn the kernel of each spatiotemporal feature map
individually, then optimally merge the outputs afterward,
which can explicitly decouple the relationship within and
across feature maps. This operation separates the learning
of spatiotemporal features from the combination of optimal
features, which is very effective for sEMG signals. Because
sEMG signals have different synergy between channels when
performing different movements (muscle synergy effect,
d’Avella et al., 2003), this is similar to a synergy feature, which
the separable convolutions can extract. Because the padding is
used in the first stage of separable convolution, and the pixel-
wised convolution will not change the size of the feature, the
output Fsep−conv has the same size as Fd−conv.

• For block 4, we introduced a channel attention module.
This operation learns the weights of different synergy
features, which can effectively associate movements with the
most relevant synergy features and improve the movement
prediction accuracy. Moreover, there are differences in the
feature contributions of sEMG channels in different subjects
under the same movement (muscle compensatory behavior,
d’Avella et al., 2006), which will amplify the differences in
the synergy feature of different subjects under the same
movement. The channel attention module can learn different
weights for different subjects to deal with the differences in
synergy features, thereby improving the robustness of the
entire movement prediction model. The operation of this
block can be described as:

Wchannel(Fsep−conv) = σ (MLP(AvgPool(Fsep−conv))

+MLP(MaxPool(Fsep−conv))), (5)

F = Wchannel(Fsep−conv)⊗ Fsep−conv, (6)

We input the generated attention-based spatiotemporal features
into the movement classification/prediction part. As shown in
Figure 1, the extracted features first perform a Flatten layer
step, and then pass directly to a softmax classification with
N units, where N is the number of classes in the data. The
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FIGURE 1 | Overall architecture of the MCSNet model. Lines denote the convolutional kernel connectivity between inputs and outputs (called feature maps). The

network starts with a channel-by-channel long short-term memory networks (LSTM) (second column) to learn the timing feature, then uses a two-layer convolution

(third column) to learn different spatiotemporal features. The separable convolution (fourth column) is a combination of a depthwise convolution followed by a pointwise

convolution, which can explicitly decouple the relationship within and across feature maps and learns the synergy feature of surface electromyography (sEMG).

entire model architecture uses the cross-entropy loss function
to optimize the parameters, and input 10 sEMG samples with
time-sequence everytime.

3.2. Comparison With Other MHRI
Movement Prediction Approaches
3.2.1. Comparison With Traditional MHRI Movement

Prediction Approaches
We compared the performance ofMCSNet with seven traditional
MHRI based on handcrafted features and machine learning
models in lower limb movement prediction. In the selection of
features, referring to the research conclusions of time domain
and frequency domain features in the literature (Phinyomark
et al., 2012) and four commonly used feature sets (Englehart
and Hudgins, 2003) (Phinyomark et al., 2013), we finally select
the feature of Mean Absolute Value (MAV), WaveLength (WL),
Zero Crossings (ZC), 6-order AutoRegressive coefficient (6-
AR), and average Power Spectral Density (PSD). Furthermore,
we choose Linear Discriminant Analysis (LDA), Decision Tree
(DT), Naive Bayes (BES), Linear Kernel-based Support Vector
Machine (LSVM), Radial Basis Function-based Support Vector
Machine (RBFSVM), K Nearest Neighbor (KNN), and Artificial
Neural Network (ANN) as the classification/prediction model.
We use MATLAB’s Classification Learner Toolbox and Neural
Net Pattern Recognition Toolbox to implement these models.
The hyperparameter settings of each model are shown in Table 1.

3.2.2. Comparison With Deep Learning-Based MHRI

Movement Prediction Approaches
In deep learning, we compared the performance of MCSNet
with two-layers CNN (TCNN) and CNN-LSTM models. The
TCNN architecture consists of two convolutional layers and

TABLE 1 | Parameter list of traditional MHRI movement prediction approaches.

Method Hyperparameter and model detail setting

LDA Covariance structure: full rank (for within-subject), diagonal

(for cross-subject)

DT Maximum fission number: 100

BES Kernel: Radial Basis Function,

LSVM Kernel: linear, C = 1, Multiple classification method: OVO

RBFSVM Kernel: RBF, C = 1.9, Multiple classification method: OVO

KNN Number of neighboring points: 1, Metric function:

mahalanobis distance function

ANN Number of hidden unit: 28

a softmax layer which is for classification. The CNN-LSTM
architecture includes two LSTM layers, three convolutional
layers, and a softmax layer. We implemented these models in
PyTorch. For specific details of the model, see https://github.
com/mufengjun260/MCSNet.

In general, the most significant difference between MCSNet
and traditional MHRI movement prediction approaches is the
feature extraction method, and the most significant difference
from other deep learning-basedmovement predictionmethods is
the network architecture. By comparing with other methods, we
can prove the effectiveness of the feature extraction architecture
we designed.

4. EXPERIMENTS AND RESULTS

In this part, an sEMG signal acquisition experiment based on
upper limb muscles is designed to verify the effectiveness of

Frontiers in Neuroscience | www.frontiersin.org 5 November 2021 | Volume 15 | Article 704603

https://github.com/mufengjun260/MCSNet
https://github.com/mufengjun260/MCSNet
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Shi et al. MCSNet: Channel Synergy-Based Human-Exoskeleton Interface

the method proposed in this paper. Section 4.1 describes the
process of the acquisition experiment and the process of data
preprocessing. Section 4.2 gives the implementation details of
model training. In section 4.3, we show the MCSNet movement
prediction model results and compare MCSNet with other
movement prediction models in the case of within-subject and
cross-subject. Section 4.4 explains the results of MCSNet model
ablation analysis and feature visualization.

4.1. sEMG Data Acquisition Experiment
A total of 8 healthy subjects were invited to participate in the
experiment. Each subject completed four lower limb movements
of standing, sitting, walking, and going up stairs while wearing
the AIDER exoskeleton. During this period, the sEMG signals of
the subjects’ upper limbs were collected.

1. Participants: The eight subjects (7 males, one female) had
an average age of 26 years, a height between 165 and 185
cm, and a weight between 59 and 82 kg. All subjects can
independently use the AIDER exoskeleton to complete the
lower limb movements involved in the experiment, and are
in good physical condition with no injuries to the arm. Before
the experiment, each subject had been explained the contents
of the experiment and signed an informed consent form. This
experiment was approved by the Research Ethics Committee
of the University of Electronic Science and Technology
of China.

2. Procedures: Before the experiment, record the relevant
physical parameters of the subject, inform the experimental
procedure to the subject, and let the subject use crutches to
freely practice the four lower limbs movements of standing,
sitting, walking, and going upstairs while wearing the AIDER
exoskeleton for 30 min. Then paste sEMG acquisition
electrodes on the 12 muscles of the subject’s left and right
upper limbs, including the deltoid anterior, biceps, and
superior trapezius muscles (as shown in Figure 2). Before
pasting, wipe the corresponding muscles with alcohol cotton
and remove the surface hair with a hair removal knife.
The subject puts on the AIDER exoskeleton (Wang et al.,
2019), supports the crutches with both hands, stands in
the designated position, and completes the sitting, standing,
and going upstairs movements 10 times after hearing the
instructions, and then completes walking movement 20 times
(a complete gait cycle is one time). Each movement is
completed within 8 s, all subjects are required to perform
the specified movements without using their legs as much as
possible to ensure that the collected upper limb sEMG signals
are close to the paraplegic patients. After the movement
starts, the subject maintains the lower limb movement
preparation posture for 2 s (see Figure 3) and then controls the
AIDER exoskeleton to complete the corresponding lower limb
movement. Throughout the experiment, the camera is turned
on to record, and myoMUSCLE (an sEMG acquisition device,
Scottsdale, American) is used to collect the sEMG signals of
the upper limbs.

3. Data Processing: myoMUSCLE (1,500 Hz) collects the upper
limb sEMG signal data of each lower limb movement of

the subject throughout the whole process. After obtaining
the sEMG data, a 50 Hz notch filter is used to remove the
power frequency interference of the current, and a 10–450 Hz
bandpass filter is used to retain the effective information of the
sEMG signal. Since our application is lower limb movement
prediction, we only intercept the sEMG data during the
movement preparation period (the period when keeping the
preparation posture still). In addition, to achieve continuous
movement prediction of lower limb, this paper uses 200 ms
(including 300-time series data) as a time window to segment
the sEMG signal, and the movement step of the time window
is 100-time series data.

4.2. Implementation Details
After preprocessing the sEMG data, for the traditional MHRI
movement prediction model, use the relevant formula to
calculate the features mentioned in section 3.2.1, and then
input the features into the Classification Learner Toolbox and
Neural Net Pattern Recognition Toolbox to train the prediction
model. For the problem of imbalance in the number of samples
between movements, we apply a movement class-weight to the
loss function. The class-weight we apply is the inverse of the
proportion in the training data, with themajoritymovement class
set to 1.

MCSNet and the deep learning-based MHRI movement
prediction models are implemented using the PyTorch library
(Paszke et al., 2017). In MCSNet, both LSTM’s output and hidden
unit are of dimension 300, and the network’s hyperparameters
(D, F1, L) is set to (2, 12, 300). The model with TCNN uses the
same dimension as the MCSNet’s CNN layers, and the CNN-
LSTM model enlarged the deepness of MCSNet’s LSTM block, it
uses a two-layer LSTM network architecture. Exponential linear
units (ELU) (Clevert et al., 2015) are used to introduce the non-
linearity of each convolutional layer. To train ours and other
deep learning-based models, we use the Adam optimizer to
optimize themodel’s parameters, with default setting described in
(Kingma and Ba, 2014) to minimize the categorical cross-entropy
loss function. We run 1,000 training iterations (epochs) and
perform validation stopping, saving the model weights, which
produce the lowest validation set loss. All models are trained
on NVIDIA RTX2080Ti, with CUDA10.1 and cuDNN V7.6.
Our code implementation can be found in https://github.com/
mufengjun260/MCSNet.

4.3. Experiments Result
We compared the performance of the proposed MCSNet model
with other MHRIs in movement classification/prediction in both
the within-subject and cross-subject situations.

4.3.1. Within-Subject Classification
For within-subject, we divide the data of the same subject
according to a ratio of 7:3 and then use 70% of the data to
train the model for that subject. Four-fold cross-validation
is used to avoid the phenomenon of model overfitting.
Simultaneously, repeated-measures analysis of variance
(ANOVA) is used to test the results statistically (using the
number of subjects and the classification model as factors,
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FIGURE 2 | Introduction of the muscle used in the surface electromyography (sEMG) data acquisition experiment and the AssisIve DEvice for paRaplegic patient

(AIDER) exoskeleton. (A) The upper limb muscle used in sEMG data acquisition experiment. (B) The AIDER exoskeleton is designed for walking assistance of

paraplegic patients, and it can help the paraplegic patient complete some ADL movements such as sitting, standing, walking, and going upstairs movement. 1: The

subject; 2: the embedded computer and IMU; 3: the crutches; 4: DC servo motors; 5: intelligent shoes with plantar pressure sensors inside.

FIGURE 3 | Schematic diagram of surface electromyography (sEMG) data acquisition experiment. The upper part is the preparation posture of the four lower limb

movements. We fixed the sEMG acquisition electrode with an elastic bandage to prevent the acquisition electrode from falling off during the experiment. The lower

part is the schematic diagram of the experimental acquisition process.

and the model classification/prediction result (accuracy) as the
response variable).

We compare the performance of both traditional machine
learning-based MHRI movement prediction models (LDA, DT,
BES, LSVM, RBFSVM, KNN, andANN) and deep learning-based

MHRI movement prediction models (TCNN and CNN-LSTM)
with MCSNet. Within-subject results across all models are
shown in Figure 4. It can be observed that, across the average
lower limb movement prediction accuracy of 7 subjects,
MCSNet outperforms traditional machine learning-based and

Frontiers in Neuroscience | www.frontiersin.org 7 November 2021 | Volume 15 | Article 704603

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Shi et al. MCSNet: Channel Synergy-Based Human-Exoskeleton Interface

FIGURE 4 | Within-subject movement prediction performance, four-fold cross-validation is used to avoid the phenomenon of model overfitting, averaged over all folds

and all subjects. Error bars denote two standard errors of the mean.

TABLE 2 | Within-subject movement prediction performance (test set ACC).

Traditional machine learning-based MHRI Deep learning-based MHRI

Subject LDA DT BES LSVM RBFSVM KNN ANN TCNN CNN-LSTM MCSNet (ours)

1 0.9200 0.7520 0.8496 0.9451 0.9504 0.8387 0.9315 0.8377 0.9570 0.9928

2 0.8731 0.8097 0.7718 0.9026 0.9159 0.8000 0.9008 0.5849 0.9034 0.9295

3 0.7105 0.8724 0.7852 0.8146 0.8503 0.6018 0.7590 0.7722 0.9089 0.9772

4 0.7888 0.6630 0.6818 0.8594 0.8526 0.7294 0.8428 0.7543 0.9075 0.9513

5 0.7430 0.7962 0.4937 0.8675 0.8911 0.7091 0.8828 0.8525 0.9434 0.9212

6 0.8872 0.8188 0.6747 0.8936 0.8927 0.8358 0.8923 0.8373 0.8844 0.8437

7 0.9600 0.8467 0.7263 0.9602 0.9687 0.8261 0.9523 0.7576 0.9960 1.0000

Average ACC 0.8404 0.7941 0.7119 0.8918 0.9031 0.7630 0.8802 0.7709 0.9287 0.9451

Bold means the highest prediction accuracy rate of the subject corresponding to the row.

deep learning-based MHRI models. But there is no significant
statistical difference (P > 0.05). Among the traditional MHRI
movement prediction models, the RBFSVM model has the
highest average accuracy of 7 subjects, reaching 90.31%. It
is consistent with the conclusions obtained in previous work
(Ceseracciu et al., 2010). Table 2 shows the prediction accuracy
of each subject under different MHRI movement prediction
models. It can be found that the same movement prediction
model has a large difference in the accuracy for different subjects
(especially the traditional MHRI movement prediction model).
In contrast, MCSNet has a high accuracy rate of lower limb
movement prediction for all subjects, and the accuracy rate is
evenly distributed. It means that MCSNet can effectively extract
each subject’s lower limb movement feature, thereby achieving
good movement prediction.

4.3.2. Cross-Subject Classification
In the case of cross-subject, we randomly selected the data of
three subjects to train the model and selected the data of two
subjects as the validation set. The whole process is repeated ten
times, producing ten different folds.

Cross-subject prediction results across all models are shown
in Figure 5. It can be seen that the traditional and deep
learning-based MHRI movement prediction models have poor
performance in the cross-subject situation, with an average
accuracy rate of about 70%. However, the MCSNet model
proposed in this paper can still achieve an accuracy of
80.25% in lower limb movement prediction, which has a
significant statistical difference (P < 0.05). This result
shows that the MCSNet model proposed in this paper
can extract the deep common features of different subjects
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FIGURE 5 | Cross-subject movement prediction performance, averaged over all folds. Error bars denote two standard errors of the mean.

FIGURE 6 | The average output of all surface electromyography (sEMG) signal samples about the sitting movement for subject 7, and non-negative matrix

factorization method id used to find the synergy channels.

under the same lower limb movement. The model has
good robustness.

4.4. MCSNet Feature Explainability
The development of methods for enabling feature explain-ability
from deep neural networks has gradually become the focus of
attention over the past few years, and has been proposed as an
essential component of a robust model validation procedure,
to ensure that the classification performance is being driven by
relevant features as opposed to noise in the data (Ancona et al.,

2017; Montavon et al., 2018). This paper uses data information
flow tracking to understand the features proposed by theMCSNet
model. Figure 6 shows the average output of all sEMG signal
samples about the sitting movement for subject 7. Using the
non-negative matrix factorization method, we can intuitively see
that the sEMG channel 1, 9, 10, 11 are the main contribution
channels for subject 7 to complete the sitting movement (i.e., the
muscles corresponding to the channel 1, 9, 10, and 11 assume
the main synergistic effect in the sitting movement) (d’Avella
et al., 2003). Muscle synergy is an important physiological
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FIGURE 7 | We visualized the synergy characteristics flow of surface electromyography (sEMG) in the sitting movement of subject 7 in the within-subject situation.

The figure shows the flow of synergy characteristics in different feature channels of the MCSNet model (orange lines and rectangles). The blue rectangles represent the

feature channels of the depthwise and separablewise network layers. The circle represents the weight channel of the attention layer, and the green circle means the

channel with a large weight. We found that the channel with a large attention layer weight is basically the same as the channel of the synergy characteristics flow

direction. It can be considered that MCSNet can extract the synergy characteristics of the muscle.

characteristic for humans to complete different movements. In
order to explore whether the MCSNet network can reflect muscle
synergy, we extracted the feature output and channel weights of
each layer of MCSNet, and realized the information flow tracking
of sEMG data through non-negative matrix factorization and
weight screening.

We performed non-negative matrix decomposition on the
output of LSTM and the first convolutional layer, as shown
in Figure 7. It can be observed that the main contribution
channels of the features extracted by the LSTM and the first
convolutional layer are still the channel 1, 9, 10, and 11, which
means that the timing features currently extracted by MCSNet
mainly come from the sEMG channel 1, 9, 10, and 11, and the
synergy characteristics of these four channels are also included.

The depthwise convolutional layer’s function is to combine
different timing feature channels, and then extract different
spatiotemporal features. We analyzed the channel weights of the
depthwise convolutional layer and focused on the spatiotemporal
feature channels, which have a large weight for channel 1, 9, 10,
and 11. Because these spatiotemporal feature channels are the
main flow direction of the synergy characteristics. The results
showed that the synergy characteristics are mainly contained
in the spatiotemporal feature channels 11, 13, 15, 16, 22, and
24. In the same way, we analyzed the channel weights of the
separable convolutional layer and compared the channels, which
the synergy characteristics mainly flow, with the important
channels learned by the attention mechanism. The results show
that the channels selected by the two are basically the same
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TABLE 3 | The result of model ablation analysis.

Layer removed Test set ACC

Depthwise layer 0.7258

Sparablewise layer 0.7241

Attention layer 0.7187

None 0.8075

(as shown in Figure 7). It means that the features extracted by
MCSNet can reflect the synergy of muscles.

In addition, we performed a model ablation analysis on
MCSNet under the cross-subject situation, removing depthwise,
sparablewise, and attention network structure layers in turn
and observing the changes in the prediction performance
of the MCSNet model. According to the results in Table 3,
removing any network structure layer will significantly reduce
the prediction performance of the MCSNet model, which shows
that each layer of the MCSNet model plays an essential role in the
final prediction results.

5. CONCLUSIONS

In this paper, a channel synergy-based human–exoskeleton
interface is proposed for lower limb movement prediction in
paraplegic patients. It uses the sEMG signals of 12 upper limb
muscles as input signals, which can avoid the problem of
weak sEMG signals in the lower limbs of paraplegic patients.
The interface constructs an channel synergy-based network
(MCSNet), it uses LSTM, depthwise, and separable convolutions
to extract the spatiotemporal features of multi-channel sEMG
signals, and introduces an attentionmodule to extract the synergy
of different sEMG feature channels. An sEMG acquisition
experiment is designed to verify the effectiveness of the MCSNet
model. The results show that MCSNet has a good movement
prediction performance in both within-subject and cross-subject
situations. Furthermore, feature visualization and the model
ablation analysis of MCSNet is performed, the result show
that the features extracted by MCSNet are physiologically
interpretable. In the future, we consider applying the proposed

human–exoskeleton interface to an actual exoskeleton platform.
In addition, we will focus on multi-modal movement prediction
based on sEMG and EEG.
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