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Abstract: Previous studies demonstrated that hyperglycemic glucose concentrations are observed in
children that are overweight or have obesity. The aim of this study was to evaluate the effect of a
12 month lifestyle intervention on free-living glycemic profiles in children that were overweight or
had obesity, and the association of the alterations with changes in cardiovascular risk parameters.
BMI z-score, free-living glycemic profiles, continuous overlapping net glycemic action (CONGA), and
cardiovascular parameters were evaluated before and after a multidisciplinary lifestyle intervention,
in 33 non-diabetic children that were overweight or had obesity. In children with a decrease in
BMI z-score, the duration which glucose concentrations were above the high-normal threshold
(6.7 mmol/L) and the glycemic variability decreased significantly. In these children, a decrease in
median sensor glucose was associated with decreases in LDL-cholesterol, and systolic and diastolic
blood pressure z-score. A decrease in BMI z-score was associated with a decrease in CONGA1, 2,
and 4. In conclusion, the glycemic profiles in free-living conditions in children that were overweight
improved in children with a decrease in BMI z-score after lifestyle intervention. In those children,
changes in median sensor glucose concentrations were associated with changes in LDL-cholesterol
and blood pressure z-scores. These results suggest that glucose homeostasis can improve after one
year of lifestyle intervention and that these improvements are associated with improvements in
cardiovascular health parameters.
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1. Introduction

It is well acknowledged that children that are overweight or have (morbid) obesity are at risk for
developing type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD) [1,2]. There are strong
suggestions that mild glycemic dysregulation, which precedes the actual onset of T2DM, contributes
substantially to the development of endothelial dysfunction [3,4]. Several studies have shown aberrant
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cardiometabolic risk profiles, including dyslipidemia and hypertension, at a young age in children with
overweight and with (morbid) obesity [5–7]. These early cardiometabolic aberrations in childhood
were shown to be strong predictors of the development of atherosclerotic cardiovascular disease in
adulthood [8].

In a recent study, we demonstrated that, besides the presence of an increased CVD risk, glucose
homeostasis is already disturbed in these children [9]. Hypoglycemic and hyperglycemic excursions
(respectively in 73% and 27% of the children) were frequently observed in children with overweight and
with (morbid) obesity, using a continuous glucose monitor (CGM) sensor in free-living conditions [9].
In that study, 91% of the glucose measurements were within the normoglycemic range (3.9–7.8 mmol/L).
Chan et al. also demonstrated hyperglycemic excursions in free-living conditions in adolescents with
obesity and pre-diabetes [10]. Another previous study showed that hypoglycemia and hyperglycemia
were less frequent in children with a normal weight, with hypoglycemic excursions in 24% of the
children and 97% of the glucose measurements being within the normoglycemic range [9]. Altogether,
these findings suggest that the vascular system of children with overweight and with (morbid) obesity
is already exposed to glycemic dysregulation at an early age. This exposure is likely to be harmful,
and indeed, the duration and magnitude of hyperglycemic glucose excursions were demonstrated to
be associated with cardiovascular risk parameters such as triacylglycerol concentrations and waist
circumference in children with overweight and with (morbid) obesity [9]. Moreover, in healthy
adults and adults with T2DM, a high frequency and amplitude of glucose fluctuations during the day
(high glycemic variability) initiated oxidative stress pathways and pro-inflammatory cytokine secretion,
both having harmful effects on vascular function [11–14]. Moreover, besides affecting the peripheral
vasculature, a high glycemic variability was shown to have a negative effect on brain development in
children with type 1 diabetes [15].

In adults with T2DM, glucose disturbances were shown to be reversible, since lifestyle interventions
improving dietary behavior or physical activity resulted in a significant improvement of glycemic
variability in free-living conditions [16–19]. Current studies investigating continuous glucose
monitoring in free-living conditions in children focused mainly on the use of these measurements in
individuals with diabetes [20–22]. Studies investigating glycemic profiles in free-living conditions
in non-diabetic children are scarce, limited to cross-sectional evaluations, and the effects of lifestyle
improvement on glycemic profiles in free-living conditions are unknown [9,10]. Furthermore, whether
the improvement of glucose homeostasis due to lifestyle changes translates to cardiovascular health
benefits in children with overweight and with (morbid) obesity remains to be explored. Therefore, the
aim of this study was to evaluate the effect of 12 months of lifestyle intervention on glycemic profiles
in children with overweight and with (morbid) obesity in free-living conditions, and to evaluate the
association of alterations in these glycemic profiles with changes in cardiovascular risk parameters.

2. Materials and Methods

2.1. Setting

This study was designed and conducted within the setting of the Centre for Overweight Adolescent
and Children’s Healthcare (COACH) at the Maastricht University Medical Centre (MUMC+). Within
COACH, the health status of children with overweight and with (morbid) obesity and their families
was evaluated; they were monitored and received lifestyle coaching as described previously [5].
Briefly, participation in the COACH program started with a comprehensive assessment aimed at
excluding underlying syndromic or endocrine conditions leading to being overweight, evaluating
complications and risk factors, and obtaining insight into dietary and physical activity behavior and
family functioning. The assessment included, amongst others, a CGM sensor measurement and an
oral glucose tolerance test (OGTT). After the assessment, all children and their families were offered
frequent, on-going, tailored, and individual guidance at the outpatient clinic, focusing on durable
lifestyle changes. Focus points for the intervention were identified in the initial assessment. These focus
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points could mainly be divided into the following categories: nutrition (e.g., adequate fruit and
vegetable intake), food habits (e.g., portion size), physical activity (e.g., limiting sedentary time and
increasing exercise), sleep (e.g., sleep hygiene and duration), and psychological and social aspects
(e.g., self-esteem and bullying). Although all of these focus points were evaluated in all children and
their families, the emphasis could differ based on individual needs. Focus points were continuously
reassessed throughout the intervention period and adapted if necessary. The goal of the intervention
was not to quickly lose weight, but to make small, stepwise changes towards healthy lifestyle behavior
and convert these into daily habits that could be maintained in the future.

Furthermore, participation in sports activities in groups and activities aimed at increasing
nutritional knowledge were offered. A follow-up assessment including all of the examinations
performed during the initial assessment was offered annually to all children.

2.2. Study Participants

All 43 children with complete CGM sensor data at baseline and who had additional CGM
sensor measurements after 12 months of intervention were considered for inclusion in this study.
Children with incomplete CGM sensor data after 12 months of intervention were excluded from this
study (n = 10). Finally, 33 children were eligible for inclusion. Informed consent was obtained from all
subjects and/or their parents. The study was conducted according to the guidelines administered by the
Declaration of Helsinki and approved by the medical ethical committee of the MUMC+. It is registered
at ClinicalTrial.gov as NCT02091544.

2.3. Participant Characteristics

Anthropometric measurements were acquired while children were barefoot and wearing only
underwear. Body weight was determined using a digital scale (Seca), and body length was measured
using a digital stadiometer (De Grood Metaaltechniek). Body mass index (BMI) was calculated and BMI
z-scores were obtained using a growth analyzer (Growth Analyser VE), based upon reference charts of
the Dutch nationwide growth study [23]. Based on the International Obesity Task Force criteria, age
and sex-dependent cut-off values were used to classify children as being overweight (comparable to a
BMI of 25 kg/m2 in adults), having obesity (comparable to a BMI of 30 kg/m2 in adults), or having
morbid obesity (comparable to a BMI of 35 kg/m2 in adults) [24]. Waist circumference was measured
with a non-elastic tape, at the end of a natural breath, at the midpoint between the top of the iliac crest
and the lower margin of the last palpable rib. Waist circumference z-scores were calculated according
to age references for Dutch children [25]. Ethnicity was defined based on the definition of the Dutch
Central Agency for Statistics [26].

2.4. Glucose Metabolism

Fasting plasma glucose concentrations (spectrophotometry, Cobas 8000 modular analyzer, Roche),
serum insulin concentrations (Luminescence immuno enzymatic assay, Immulite-1000, Siemens
Healthcare Diagnostics), and HbA1c concentrations (high-performance liquid chromatography, HPLC
Variant II, Bio-Rad Laboratories) were determined. After obtaining the fasting blood sample, an OGTT
was performed. An amount of 1.75 grams of glucose per kilogram of bodyweight was dissolved into
200 mL water, with a maximum of 75 grams of glucose in total, and given orally. Plasma blood glucose
concentrations were measured every thirty minutes over two hours. Impaired fasting glucose (IFG;
fasting glucose 5.6–6.9 mmol/L), IGT (≥7.8 glucose <11.1 mmol/L after 2 hours), T2DM (fasting glucose
≥7.0 mmol/L or glucose ≥11.1 mmol/L after 2 hours), and elevated HbA1c concentrations (≥5.7%) were
defined according to the American Diabetes Association (ADA) criteria [27]. In this study, insulin
resistance was estimated using the HOMA-IR [28]. The following formula was applied: fasting plasma
glucose (mmol/L) x fasting serum insulin (µU/L) / 22.5 [28]. A cut-off point of 2.5 was used, based on
adult standards, to determine the presence of insulin resistance [28].

ClinicalTrial.gov
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Glucose concentrations in free-living conditions were measured using a CGM sensor (MiniMed,
Metronic), as described previously [9]. In short, sensor glucose concentrations were measured in the
interstitial fluid for 48 hours in free-living conditions, and median, minimum, and maximum glucose
concentrations were calculated. The durations that glucose concentrations were in the hypoglycemic
ranges (level 1: 3.9–3.0 mmol/L; level 2: <3.0 mmol/L), the target range (3.9–10.0 mmol/L; secondary
3.9–7.8 mmol/L), and hyperglycemic ranges (level 1: >10.0 mmol/L; level 2: 13.9 mmol/L) were
calculated according to the International Consensus on Use of Continuous Glucose Monitoring [29].
Additionally, since the children that were included in this study did not have diabetes and were therefore
unlikely to have glucose concentrations in the aforementioned hyperglycemic level 1 and 2 ranges, but
could be expected to have high normal or mildly elevated glucose concentrations, the durations of
glucose concentrations being ≥6.7 mmol/L and ≥7.8 mmol/L [29,30] were also calculated. The sensor
glucose AUC was calculated using the trapezoidal method. Overall glycemic variability during the
whole 48-hour period was assessed using the coefficient of variation (CV), which was calculated as:
(standard deviation/mean) × 100%. The sensor glucose measurements were also stratified for daytime
and nighttime glucose measurements (day: 7 a.m.–10 p.m.; night: 10 p.m.–7 a.m.). Furthermore, the
intra-day glycemic variability, which reflects acute glucose fluctuations throughout the day, was assessed
with the continuous overlapping net glycemic action (CONGA). With this method, the difference
between each glucose concentration and the glucose concentration at a time point certain hours
previously is calculated [31]. The CONGA is the standard deviation of the differences. In this study,
CONGA1, CONGA2, and CONGA4 were used based on 1-, 2-, and 4-h time differences, respectively.

2.5. Cardiovascular Risk Parameters

Fasting lipid and lipoprotein profiles, including serum total cholesterol (TC), serum
LDL-cholesterol (LDL-C), serum HDL-cholesterol (HDL-C), and serum triglyceride concentrations,
were measured (by spectrophotometry with the Cobas 8000 modular analyzer, Roche). Daytime blood
pressure (BP) was measured during a period of 1.5 hours—approximately 20 times, with an interval of
three minutes between each measurement—using the Mobil-O-Graph (I.E.M. GmbH). Based on these
20 measurements, the mean BP was calculated. The size of the cuff depended on the circumference of
the upper arm. Systolic and diastolic BP z-scores were calculated according to reference values based
on height and gender [32].

2.6. Statistical Analysis

All statistical analyses were performed using SPSS 20.0 for Windows (SPSS Inc., Chicago, IL, USA).
BMI z-score, sensor glucose measurements, and cardiometabolic risk parameters at baseline and after 12
months of lifestyle intervention were compared using the paired Student’s t-test, the Wilcoxon signed-rank
test, or the χ2 test, as appropriate. Correlations between variables were determined by Spearman’s
correlation analysis. Data are presented as means with standard deviations or as medians with the minima
and maxima. For all analyses, a p-value below 0.05 was considered to be statistically significant.

3. Results

3.1. Participant Characteristics at Baseline and after 12 Months of Intervention

Thirty-three, predominantly Caucasian (85%) children (13 boys, 20 girls) with a mean age of
12.5 ± 3.2 years were included. At baseline, 9% were overweight (n = 3), 42% (n = 14) were obese, and
49% (n = 16) were morbidly obese. Despite the wide range in BMI z-scores, all children had fasting
plasma glucose concentrations within the normal range (<5.6 mmol/L). The mean HOMA-IR was
3.31 ± 1.61. Based on these HOMA-IR values, insulin resistance was present in 58% (n = 19) of the
children. One child was classified as having impaired glucose tolerance. HbA1c concentrations were
elevated in 27% (n = 9) of the children. After 12 months of lifestyle intervention, the BMI z-score
did not improve significantly in the complete group (p = 0.206), whereas there was a significant
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improvement in weight status classification (p < 0.001), i.e., a shift from morbidly obese to obese, or
obese to overweight (Table 1). TC (p = 0.018), LDL-C (p = 0.025), and HbA1c concentrations (p < 0.001)
decreased significantly in the whole group after 12 months of lifestyle intervention (Table 1), while
insulin concentrations (p = 0.014) and HOMA-IR (p = 0.014) increased significantly. The characteristics
of the children at baseline and after 12 months of lifestyle intervention are presented in Table 1.

Table 1. Characteristics of the study participants at baseline and after 12 months of lifestyle intervention.

Characteristics Baseline After 12 Months of Intervention

Age, years 12.5 ± 3.2 13.8 ± 3.0
BMI z-score 3.53 ± 0.66 3.46 ± 0.67

Overweight/obesity/morbid obesity, % 9/42/49 15/39/46 *
Waist circumference z-score 6.85 ± 2.43 7.33 ± 2.12 *

Median sensor glucose, mmol/L 5.0 (3.2–7.3) 5.1 (3.6–6.9)
Maximum sensor glucose, mmol/L 7.2 (5.6–11.2) 7.0 (5.4–9.9)
Minimum sensor glucose, mmol/L 3.4 (2.2–4.4) 3.4 (2.2–4.9)

Sensor glucose area under the curve 14867 ± 1447 14746 ± 1586
CONGA1 0.57 (0.39–1.31) 0.50 (0.30–1.08) *
CONGA2 0.72 (0.46–1.61) 0.69 (0.30–1.58)
CONGA4 0.88 (0.45–2.02) 0.87 (0.39–1.94)

CV, % 15.7 ± 5.5 15.1 ± 4.0
Fasting glucose, mmol/L 4.0 ± 0.5 4.0 ± 0.5

Fasting insulin, mU/L 18.5 ± 9.2 25.6 ± 13.7 *
HOMA-IR 3.31 ± 1.61 4.29 ± 2.30 *
HbA1c, % 5.4 ± 0.3 5.2 ± 0.4 *

Plasma glucose 2 hours after glucose
load, mmol/L 5.5 ± 1.2 5.6 ± 1.1

Total cholesterol, mmol/L 4.8 (3.5–6.6) 4.5 (3.5–6.9) *
LDL-cholesterol, mmol/L 3.1 (2.0–4.5) 2.7 (1.7–4.6) *
HDL-cholesterol, mmol/L 1.1 (0.8–1.9) 1.1 (0.8–1.9)

Triglycerides, mmol/L 1.21 (0.39–4.48) 1.13 (0.51–3.77)
Systolic blood pressure z-score 0.19 ± 1.26 0.02 ± 1.16
Diastolic blood pressure z-score −0.37 ± 0.88 −0.66 ± 1.17

Data are presented as mean± SD or as median (minimum–maximum). * = significant between parameters at baseline
compared to parameters after 12 months of intervention. CONGA = continuous overlapping net glycemic action;
CONGA presented for 1-, 2-, or 4-hour time differences; CV = coefficient of variation; HOMA-IR = Homeostatic
Model Assessment of Insulin Resistance.

Based on changes in BMI z-score after 12 months of lifestyle intervention, children were stratified
in two groups: (1) children with a decrease in BMI z-score and (2) children with an increase in BMI
z-score. Sixty-one percent (n = 20) of the children successfully improved their BMI z-score, with a
significant decrease of −0.24 ± 0.15 units (p < 0.001). BMI z-score increased significantly by 0.21 ± 0.17
units (p = 0.001) in the remaining 39% (n = 13) of the children. Children with a decrease in BMI
z-score over time were significantly younger at baseline as compared with children that showed
an increase in BMI z-score. There were no significant differences at baseline between these groups
regarding anthropometric measurements and cardiovascular risk parameters (Table 2). Significant
improvements in TC and LDL-C were only demonstrated in children with a decrease in BMI z-score.
HbA1c concentrations improved significantly in both groups (Table 2). A significant increase in fasting
insulin concentrations was found in the children with an increase in BMI z-score (Table 2).
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Table 2. Characteristics of the study participants at baseline and after 12 months of lifestyle intervention
stratified for change in BMI z-score.

Decrease in BMI z-Score after 12
Months of Intervention (n = 20)

Increase in BMI z-Score after 12 Months
of Intervention (n = 13)

Baseline 12 Months of
Intervention Baseline 12 Months of

Intervention

Age 11.3 ± 2.6 12.7 ± 2.5 14.4 ± 3.1 15.6 ± 3.0
BMI z-score 3.54 ± 0.62 3.30 ± 0.61 * 3.50 ± 0.74 3.71 ± 0.71 *

Waist circumference z-score 6.3 ± 1.9 6.9 ± 1.6 7.6 ± 3.4 8.2 ±3.1
Fasting glucose, mmol/L 4.1 ± 0.6 4.3 ± 0.4 3.9 ± 0.5 4.1 ± 0.6

Fasting insulin, mU/L 18.1 ± 7.0 20.7 ± 9.8 20.2 ± 12.4 27.5 ± 13.3 *
HOMA-IR 3.21 ± 1.40 4.00 ± 2.00 3.20 ± 1.84 4.50 ± 2.48
HbA1c, % 5.4 ± 0.3 5.2 ± 0.4 * 5.5 ± 0.2 5.2 ± 0.4 *

Plasma glucose 2 hours after
glucose load, mmol/L 5.6 (3.9–7.5) 5.6 (4.2–6.7) 4.8 (2.9–6.3) 5.2 (4.2–8.5)

Total cholesterol, mmol/L 5.0 ± 0.9 4.4 ± 0.6 * 4.9 ± 0.7 5.0 ± 0.9
LDL-cholesterol, mmol/L 3.2 ± 0.8 2.7 ± 0.6 * 2.9 ± 0.7 3.0 ± 0.7
HDL-cholesterol, mmol/L 1.1 ± 0.2 1.2 ± 0.2 1.3 ± 0.4 1.2 ± 0.3

Triglycerides, mmol/L 1.23 (0.49–3.11) 1.02 (0.51–3.69) 1.20 (0.39–4.48) 1.28 (0.65–3.77)
Systolic blood pressure z-score 0.23 ± 1.09 −0.11 ± 1.07 0.11 ± 1.63 0.21 ± 1.37
Diastolic blood pressure z-score −0.55 ± 0.65 −0.89 ± 1.23 −0.17 ± 1.15 −0.16 ± 0.95

Data are presented as mean ± SD or as median (minimum–maximum). * = significant difference between parameters
at baseline compared to parameters after 12 months of intervention. HOMA-IR = homeostatic model assessment of
insulin resistance.

3.2. 48-Hour Glycemic Profile Analysis at Baseline and after 12 Months of Intervention

The median sensor glucose concentration at baseline was 5.0 (3.2–7.3) mmol/L and did not
change significantly after 12 months of lifestyle intervention (p = 0.431) (Table 1). CONGA1 decreased
significantly after 12 months of lifestyle intervention from 0.57 (0.39–1.31) to 0.50 (0.30–1.08) (p = 0.048)
(Table 1), but CONGA2 and CONGA4 did not change significantly (p = 0.091 and p = 0.228, respectively).

At baseline, sixty-four percent (n = 21) of the children reached high-normal sensor glucose
concentrations, defined as values ≥6.7 mmol/L, during the 48-hour measuring period. Of these
children, six out of 21 no longer reached these high-normal sensor glucose concentrations after
12 months of lifestyle intervention. In addition, a significant decrease in the duration of glucose
concentrations being ≥6.7 mmol/L (p = 0.001) was demonstrated after 12 months of intervention in the
complete group (Figure 1 and Table S1).

At baseline, 36% (n = 12) of the children showed sensor glucose concentrations ≥7.8 mmol/L
during the 48-hour measuring period. The duration of glucose concentrations exceeding this threshold
did not change significantly after 12 months of lifestyle intervention (p = 0.408) (Figure 1 and Table S1).
However, in nine out of 12 of the children that exceeded this threshold at baseline, all sensor glucose
concentrations remained below 7.8 mmol/L after 12 months of intervention. In both children exceeding
glucose concentrations of 10.0 mmol/L (n = 2) at baseline, all sensor glucose concentrations were
<6.7 mmol/L after 12 months of intervention. Furthermore, changes in the opposite direction were also
observed, i.e., eight out of 12 children with glucose concentrations <6.7 mmol/L at baseline exceeded
this threshold after 12 months of lifestyle intervention. Four of these children did not show a decrease
in BMI z-score after the intervention.

Finally, at the low end of the plasma glucose spectrum, 73% (n = 24) of the children reached sensor
glucose concentrations below 3.9 mmol/L at baseline. The total duration for hypoglycemic sensor
glucose concentrations did not change significantly after 12 months of intervention (p = 0.323) (Figure 1
and Table 1).
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Figure 1. Total minutes per 48 hours that sensor glucose concentrations were within specific glucose
thresholds for the whole study population, at baseline and after 12 months of lifestyle intervention.

In the children who demonstrated a decrease in BMI z-score, the duration of sensor glucose
concentrations being ≥6.7 mmol/L decreased significantly (p = 0.009), and in the children who
demonstrated an increase in BMI z score, there was a trend towards a shorter duration of sensor glucose
concentrations ≥6.7 mmol/L (p = 0.060) (Table 3). CONGA1 and CONGA2 decreased significantly in
children with a decrease in BMI z-score (p = 0.021; p = 0.048, respectively), whereas there were no
significant changes found in children with an increase in BMI z-score (p = 0.552; p = 0.650, respectively)
(Table 3). Sensor glucose measurements stratified for daytime (i.e., 7 a.m.–10 p.m.) and nighttime
(i.e., 10 p.m.–7 a.m.) are presented in Table S2. The median, minimum, and maximum sensor glucose
concentrations; CV; and the duration for which the glucose concentrations were within the different
ranges during the daytime and nighttime did not differ significantly at baseline compared to after
12 months of lifestyle intervention. The durations of sensor glucose concentrations being within the
different ranges during the daytime and nighttime also did not change significantly after lifestyle
intervention after stratification for children with and without a decrease in BMI z-score.
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Table 3. The 48-hour sensor glucose measurements stratified for changes in BMI z-score.

Decrease in BMI z-Score after 12
Months of Intervention (n = 20)

Increase in BMI z-Score after 12 Months
of Intervention (n = 13)

Baseline After 12 Months
of Intervention Baseline After 12 Months

of Intervention

Median sensor glucose, mmol/L 4.9 (3.2–7.3) 4.9 (3.6–5.9) 5.0 (3.7–6.1) 5.1 (3.6–6.9)
Maximum sensor glucose, mmol/L 7.0 (6.0–9.5) 6.9 (5.4–8.7) 7.5 (5.6–11.2) 7.3 (5.9–9.9)
Minimum sensor glucose, mmol/L 3.4 (2.2–4.4) 3.3 (2.6–4.8) 3.3 (2.2–3.9) 3.6 (2.2–4.9)

Time in level 2 hypoglycemic
range (<3.0 mmol/L), minutes 0 (0–265) 0 (0–250) 0 (0–395) 0 (0–135)

Time in level 1 hypoglycemic
range (3.0–3.9 mmol/L), minutes 58 (0–690) 0 (0–650) 85 (0–870) 45 (0–1270)

Time in target range
(3.9–10.0 mmol/L), minutes 2823 (2050–2880) 2710 (2195–2880) 2795 (1615–2880) 2835 (1545–2880)

Time in secondary target range
(3.9–7.8 mmol/L), minutes 2735 (1945–2880) 2703 (2195–2880) 2655 (1615–2880) 2560 (1545–2880)

Time in high-normal range
(≥6.7 mmol/L), minutes 38 (0–895) 7 (0–123) * 205 (0–840) 22 (0–210)

Time in high-normal range
(≥7.8 mmol/L), minutes 0 (0–190) 0 (0–170) 0 (0–185) 0 (0–345)

Time in level 1 hyperglycemic
range (>10.0 mmol/L), minutes 0 (0–0) 0 (0–0) 0 (0–40) 0 (0–0)

Time in level 2 hyperglycemic
range (>13.9 mmol/L), minutes 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

Sensor glucose area under the
curve 14729 ± 1214 14419 ± 1301 15080 ± 1780 15249 ± 1891

CV, % 15.1 ± 5.4 14.5 ± 2.7 16.7 ± 5.6 16.1 ± 5.3
CONGA1 0.56 (0.39–1.00) 0.49 (0.30–1.00) * 0.65 (0.39–1.31) 0.60 (0.30–1.08)
CONGA2 0.70 (0.46–1.26) 0.63 (0.39–1.16) * 0.77 (0.46–1.61) 0.71 (0.30–1.58)
CONGA4 0.83 (0.45–1.51) 0.87 (0.48–1.31) 0.95 (0.66–2.02) 0.80 (0.39–1.94)

Data are presented as mean ± SD or as median (minimum–maximum). * = significant difference between baseline
and after 12 months of lifestyle intervention at the 0.05 level. CV = coefficient of variation; CONGA = continuous
overlapping net glycemic action; CONGA presented for 1-, 2-, or 4-hour time differences.

3.3. Associations between Changes in Glucose Metabolism and CVD Risk after 12 Months of
Lifestyle Intervention

After 12 months of lifestyle intervention, the delta of the median sensor glucose concentration
showed a positive association with the delta SBP z-score (r = 0.405, p = 0.024) and delta DBP z-score
(r = 0.414, p = 0.021) in the whole group. The delta of the median sensor glucose concentration was
not associated with the delta of the anthropometric measurements or the other cardiovascular risk
parameters. Delta CONGA1, delta CONGA2, delta CONGA4, and delta CV were not associated
with alterations in any of the anthropometric measurements or cardiovascular risk parameters in the
whole group.

In the children with a decrease in BMI z-score, there was a positive association between the delta
BMI z-score and delta CONGA1 (r = 0.601, p = 0.005), delta CONGA2 (r = 0.643, p = 0.002), delta
CONGA4 (r = 0.686, p = 0.001), and delta CV (r = 0.620, p = 0.004). Moreover, in these children, the delta
median sensor glucose was positively associated with the delta LDL-C (r = 0.472, p = 0.036), delta SBP
z-score (r = 0.598, p = 0.005), and delta DBP z-score (r = 0.605, p = 0.005). The delta CV was positively
associated with the delta TC (r = 0.453, p = 0.045) and delta serum triglyceride concentration (r = 0.457,
p = 0.043). In children with an increase in BMI z-score, no associations were found between the delta
BMI z-score and alterations in sensor glucose measurements. In these children, the delta maximum
sensor glucose concentration showed inverse associations with delta TC (r = −0.581, p = 0.047) and
delta LDL-C (r = −0.580, p = 0.048). Correlation coefficients stratified for changes in BMI z-score are
presented in Table 4 and Table S3. Further corrected regression analyses were not performed, due to
limited statistical power after stratification for increases or decreases in BMI z-score.
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Table 4. Correlation coefficients between baseline characteristics and sensor glucose measurements—
subgroup analysis for the children with a decrease in BMI z-score.

∆ Median
Sensor Glucose

∆ Maximum
Sensor Glucose

∆ Minimum
Sensor Glucose

∆

CONGA1
∆

CONGA2
∆

CONGA4 ∆ CV ∆ AUC

∆ BMI z-score −0.127 0.502 * −0.356 0.601 * 0.643 * 0.686 * 0.620 * 0.214
∆ Fasting glucose −0.067 −0.241 −0.342 −0.095 −0.076 0.03 0.350 −0.416
∆ Fasting insulin 0.150 −0.183 −0.05 −0.084 0.082 0.11 0.000 0.075

∆ HOMA-IR −0.072 −0.034 −0.023 −0.179 0.216 0.191 0.197 −0.038
∆ HbA1c 0.340 0.153 −0.175 0.340 0.319 0.239 0.032 0.229

∆ Glucose 2 h after
glucose load 0.027 0.144 −0.412 0.155 0.236 0.292 0.490 −0.259

∆ Total cholesterol 0.305 0.342 −0.196 0.170 0.207 0.282 0.453 * 0.162
∆ LDL-cholesterol 0.472 * 0.150 0.029 0.166 0.045 0.021 0.111 0.214
∆ HDL-cholesterol 0.041 0.065 −0.167 −0.214 −0.061 0.108 0.172 0.056

∆ Triglycerides −0.203 0.404 −0.445 * 0.228 0.433 0.520 * 0.457 * −0.117
∆ Systolic blood
pressure z-score 0.598 * 0.268 0.095 −0.033 0.019 0.020 −0.104 0.498 *

∆ Diastolic blood
pressure z-score 0.605 * 0.148 0.140 0.052 0.010 −0.093 −0.335 0.366

Correlations between variables were determined by Pearson’s correlation coefficient or Spearman’s correlation
analysis, as appropriate, and were not corrected for other variables. * = significant correlation. ∆= delta; HOMA-IR =
homeostatic model assessment of insulin resistance; CV = coefficient of variation; CONGA = continuous overlapping
net glycemic action; CONGA presented for 1-, 2-, or 4-hour time differences; AUC = area under the curve.

4. Discussion

This is the first study investigating the effect of a long-term lifestyle intervention on glycemic
profiles in free-living conditions in children with overweight and with (morbid) obesity. Our results
demonstrate that the durations for which glucose concentrations were in the high-normal range
and the glycemic variability calculated as CONGA1 decreased significantly after 12 months of
lifestyle intervention. Furthermore, the delta of the median glucose concentrations in free-living
conditions was positively associated with the deltas of the SBP and DBP z-scores. These associations
were only present in children with a decrease in BMI z-score. Our results suggest that an on-going,
tailored, outpatient lifestyle intervention can result in the improvement of glycemic profiles in free-living
conditions and that these improvements may coincide with a decreased CVD risk in children with
overweight and with (morbid) obesity.

In a previous cross-sectional study in children with overweight and with (morbid) obesity, we
demonstrated that glycemic profiles in free-living conditions were aberrant [9]. This was not just the
consequence of excess body weight, since none of the sensor glucose measurements were associated
with BMI z-score [9]. We now show not only that a lifestyle intervention improves glycemic profiles, but
also that a reduction in BMI z-score coincides with improvements of glycemic profiles. The duration of
glucose concentrations being in the high-normal range and the CONGA1 only improved in children
with a decrease in BMI z-score. Notably, associations between the delta of the median sensor glucose
concentrations and deltas of the SBP and DBP z-scores were only found in the subgroup of children
with a decreased BMI z-score. It is tempting to suggest that a decrease in BMI z-score is the result of
lifestyle improvements. Dietary composition and quality as well as physical activity were important
aspects of the lifestyle intervention and are factors well-known to interact with glucose homeostasis [33].
As mentioned previously, in adults with T2DM, it has been demonstrated that interventions targeting
diet or physical activity both resulted in a significant improvement of glycemic variability [16–19].
In contrast to these standardized interventions, our intervention was aimed at gradual lifestyle
improvements taking into account the personal needs and opportunities of each family, resulting in a
wide heterogeneity of dietary intake and physical activity. Since these factors were not assessed in
detail in this study, we cannot differentiate whether the observed positive effects on glycemic profiles
are the result of improvement in weight, improvement of lifestyle, or a combination of both. In future
studies, it needs to be elucidated which specific modifiable factors contribute to the improvements
in glycemic profiles in children with overweight and with (morbid) obesity in free-living conditions,
in order to facilitate a better definition of targets for future intervention strategies. Notwithstanding
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this, these results underscore that an on-going, tailored, outpatient lifestyle intervention resulted in
beneficial effects on glucose homeostasis and CVD risk in children with a decrease in BMI z-score.

In the current study, glycemic variability was assessed using the CONGA and the coefficient
of variation. In general, high glucose variability is thought to be harmful for peripheral vascular
function [11–14] and brain development in children [15]. Currently, the reference ranges for glycemic
variability as estimated with the CONGA1, 2, and 4 in healthy children with a normal weight are
unknown. However, the CV in our study was comparable to the values that were described in a
previous study in 57 healthy children [34]. Interestingly, the significant improvement in CONGA,
as shown in our study, illustrates that improvement of the glycemic variability is possible in children
with overweight and with (morbid) obesity via lifestyle adaptations. In addition to CONGA, glycemic
control over a longer period of time was evaluated by assessing HbA1c concentrations. In both children
demonstrating a decrease and increase in BMI z-score, HbA1c concentrations improved significantly
after 12 months of lifestyle intervention. By contrast, we found a significant increase in fasting insulin
levels in the children with an increase in BMI z-score after the intervention. These findings are in
line with a previous study in children, in which there was a strong association between an increasing
degree of insulin resistance and increasing adiposity [35]. Similarly to our findings, that study also did
not find increasing HbA1c concentrations with increasing degrees of adiposity in Caucasian European
children. They did find an association between HbA1c and adiposity in children of South Asian
and African American origin [35]. These findings imply that ethnic differences play a role in the
association between adiposity and glucose homeostasis, but also that other factors besides adiposity
contribute to HbA1c concentrations. Previous studies in adults with T2DM demonstrated that the
control of postprandial hyperglycemia is a very important contributor to HbA1c concentrations [36,37].
Taking into account the decreased duration for which glucose concentrations were high-normal, the
improvement of CONGA1 and 2, and the improvement of HbA1c concentrations, we hypothesize
that this improvement in glucose homeostasis might be due to a reduction in postprandial glucose
excursions after 12 months of lifestyle intervention. Although a subgroup of the children did not
have a decrease in BMI z-score, lifestyle changes made during the intervention might have positively
affected HbA1c concentrations despite an increase in BMI z-score.

The exact underlying mechanisms and sequence of events resulting in glucose dysregulation are
not fully understood, but there is strong evidence suggesting a link between glucose dysregulation
and dyslipidemia [38]. In this study, the delta maximum sensor glucose concentration was inversely
associated with delta TC and delta LDL-C in the children with an increase in BMI z-score. Furthermore,
it was shown that the delta of the median glucose concentration was associated with the deltas of the
SBP and DBP z-scores, only in children with a decrease in BMI z-score. Interestingly, these correlations
between the delta of the median glucose concentrations and deltas of SBP and DBP z-scores were not
found for the deltas of the CV and CONGA1, CONGA2, or CONGA4. In children with an increase
in BMI z-score, HbA1c concentrations improved significantly, while cardiovascular risk parameters
showed no significant improvements. These results suggest that changes in glucose homeostasis may,
but do not necessarily, coincide with changes in cardiovascular risk parameters.

Due to the long-term follow-up of our intervention, we did not include a control group with
random assignment of treatment, because it was not ethically justifiable to keep children in a control
program for a prolonged period of time and withhold treatment from them. This can be considered as
a limitation of this study. Furthermore, the cohort size of our study might seem small, and therefore the
affirmation of our findings in larger cohort studies is certainly recommendable. However, considering
the current literature and the novelty of investigating sensor glucose measurements in children without
a diagnosis of T2DM, it can be argued that we have a relevant study population size and that the results
of this study might create awareness that further research is needed. It would have been valuable
if healthy children with a normal weight were included in this study as a reference population for
the normality of glycemic profiles, since the current evidence in this population is limited [34,39].
Additionally, it would be interesting to investigate which modifiable factors contribute to glycemic
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profiles in free-living conditions in children with overweight and with (morbid) obesity, for example,
by objectively assessing physical activity using an accelerometer.

5. Conclusions

In children with a decrease in BMI z-score, glycemic profiles in free-living conditions improve after
12 months of lifestyle intervention, as demonstrated by a decrease in the duration of time that glucose
concentrations are in the high-normal range and by the decrease in CONGA1. Changes in median
glucose concentrations are associated with changes in SBP and DBP z-scores in children with overweight
and with (morbid) obesity, but only in those who showed a decrease in BMI z-score. These results
suggest that a lifestyle intervention can result in the improvement of glucose homeostasis and that
these improvements are also associated with improvements in cardiovascular health parameters. Next,
long-term follow-up studies are necessary to evaluate whether the improvement of glycemic profiles
in free-living conditions during childhood results in long-term health benefits.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/12/5/1228/s1,
Table S1: 48-hour sensor glucose measurements at baseline and after 12 months of lifestyle intervention; Table S2:
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with an increase in BMI z-score.
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