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Simple Summary: Current knowledge regarding the occurrence, differentiation, and pathogenicity
of staphylococci isolated from animals is mainly based on clinical isolates, but little is known about
staphylococci colonizing healthy animals. Even less is known about staphylococci that colonize
sheep. While considering the microbiota inhabiting the primitive native breeds of sheep from the
ecological/agritourism farm, there is no such information at all. The current study aimed to identify
staphylococcal species isolated from healthy sheep of two native breeds (Świniarka and Wrzosówka)
kept on the same ecological/agritourism farm. Furthermore, the prevalence of selected toxin genes
and antimicrobial resistance was also determined. A total of 127 coagulase-negative staphylococci
were identified from 61 sheep (33 of Świniarka) and (28 of Wrzosówka). From 1 to 4 staphylococcal
isolates were obtained from one sheep. Staphylococcus aureus was not identified in any of the samples.
In total, seven different species were identified. Over 60% of staphylococci were resistant to at least
one antimicrobial of therapeutic importance and over 77% possessed from 1 to 7 genes encoding
different toxins. The findings of this study prove that toxigenic and antimicrobial-resistant coagulase-
negative staphylococci can colonize the nasal cavity of healthy sheep of primitive, native breeds.

Abstract: The study aimed to analyze staphylococcal microbiota of the nasal cavity of the primitive
sheep breeds Polish Świniarka and Wrzosówka kept on the same ecological farm. The research
included the identification of staphylococcal species, evaluation of the prevalence of genes encoding
enterotoxins, staphylococcal enterotoxin-like proteins, exfoliative toxins, toxic shock syndrome toxin
1, and detection of antimicrobial resistance. From 61 swab samples gathered from Świniarka (33) and
Wrzosówka (28) healthy sheep, 127 coagulase-negative staphylococci (CoNS) were isolated. Based on
PCR-RFLP analysis of the gap gene using AluI and HpyCH4V enzymes, the isolates were identified as:
Staphylococcus xylosus (33.9%), S. equorum (29.1%), S. arlettae (15%), S. warneri (9.4%), S. lentus (7.9%),
S. succinus (3.9%) and S. sciuri (0.8%). Three of these species, S. lentus, S. succinus, and S. sciuri, were
detected only from the Świniarka breed. It was found that 77.2% of isolates harbored from 1 to 7 out
of 21 analyzed genes for superantigenic toxins. The greatest diversity of toxin genes was recorded for
S. equorum (16 different genes). The most prevalent gene was ser (40.2%). The incidence and number
of resistances to antimicrobials were found to be bacterial species but not sheep breed dependent. The
highest percentage of resistance was found for S. sciuri. The most frequent resistance was observed
to clindamycin (45.7%). The findings of this study prove that toxigenic and antimicrobial resistant
CoNS can colonize the nasal cavity of healthy sheep.

Keywords: staphylococci; gap gene; primitive sheep breed; antimicrobial resistance; enterotoxin;
exfoliative toxin; toxic shock syndrome toxin 1; AluI enzyme; HpyCH4V enzyme
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1. Introduction

The primitive, native breeds of animals are of great importance due to the role they play
in the development of regions where they are kept [1–4]. As an example, the indigenous
breeds of small ruminants fulfill a natural landscape, ethnographic and socio-cultural
function, which is considered to be a testimony to the traditions and culture of local
communities [5–7]. Interest in native herbivorous animal breeds has been growing in recent
years because such a type of breeding can contribute to the management of vegetation
and the care of landscapes [2,8]. In contrast, industrial methods of animal husbandry,
including sheep herding, have led to global production being based on a small number
of high-performing breeds. Meanwhile, the biodiversity of farm animals is an essential
component of the sustainable development of agricultural production and rural areas [9,10].

Poland has a long tradition in the fields related to the protection of genetic resources of
farm animals, most of which have been included in the List of Global Genetic Resources [11].
Currently, 18 old native breeds of sheep are covered by the Program for the Protection of
Genetic Resources of Farm Animals [12], including Wrzosówka and Świniarka [13].

Wrzosówka and Świniarka breeds are characterized by extremely high disease re-
sistance, longevity, easy adaptation, resistance to difficult environmental and climatic
conditions as well as low feeding and breeding requirements [14,15]. These features make
them useful for the maintenance of local landscapes, the preservation of the natural envi-
ronment, and care of nature-protected areas [14,16,17]. Sheep of these breeds are short in
height and characterized by a marked sexual dimorphism and mixed two-fraction wool,
which is grey in Wrzosówka and white in Świniarka. Both breeds are considered as of
relatively low slaughter value, although their meat is characterized by high-quality and
unique taste [12,18].

Wrzosówka is one of the oldest breeds of domestic sheep in Poland. Sheep of this breed
have very well-developed maternal abilities and their reproductive cycle is characterized
by aseasonality (possibility of three lambings per year), high fertility of 175–180%, and early
breeding maturation. Their excellent quality wool is mainly used to produce velor [18–20].
Due to the deepening decline in the population of the Wrzosówka sheep and the threat of
their extinction, the National Research Institute of Animal Production in Poland decided
to restore this breed in the 1970s on the base of a total of 160 ewes and 27 rams [12,18].
Currently, in Poland, there are 105 flocks with a total of 9584 animals [11].

The Świniarka breed is characterized by breeding seasonality, average fertility of
120% in a single litter, and low fertility of about 75% in difficult environmental conditions.
Sheep of this breed have loose, sparse, and mixed wool [21]. Due to the low population of
Świniarka sheep at the end of 1999 (180 ewes and rams), this breed was classified in Poland
as threatened by extinction. In consequence, the original genotype of the Świniarka breed
has been enlarged and restored on the base of 17 ewes and 3 rams. At present, in Poland,
there are 36 flocks with a total of 2805 animals [11].

Local breeds, less frequently used in intensive systems but still preserved in local
territories, represent an important resource for animal biodiversity [22]. As suggested by
Papachristoforou et al. [23], the available strategies to increase the value of local breeds with
special attention to sheep and goats can be grouped into three interconnected categories:
(i) linking local breeds to traditional products and/or to tourism/agritourism activity, (ii)
promoting the use of local breeds in specific farming systems (e.g., organic production,
low-input, and hobby farms or through the preservation of grazing-silvo-pastoral systems)
and (iii) implementing general strategies (e.g., marketing, legislation, organization of
stakeholders and raising public awareness).

According to the 16S rRNA analysis, the Staphylococcus genus is divided into 62 species
and 30 subspecies [24]. Most of the staphylococci constitute a significant part of the micro-
biota and most of them are harmless and reside normally on the skin and mucous mem-
branes of nostrils and respiratory system of humans and animals [25–27]. The pathogenic
capacity of staphylococci is attributed to a combination of their invasive properties, the
production of virulence factors, including extracellular toxins, and drug resistance. Staphy-
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lococcal toxins include classical enterotoxins (SEs; SEA to SEE, SEG to SEI, SER), enterotoxin-
like (SEl) proteins, exfoliative toxins (ETA to ETD), toxic shock syndrome toxin 1 (TSST-1),
hemolysins and Panton-Valentine leukocidin (PVL) [27,28]. Moreover, different species of
staphylococci have been suggested as a reservoir of antimicrobial resistance which can be
transferred to other strains, including Staphylococcus aureus, making it resistant to multiple
agents [26].

The current knowledge regarding the occurrence, differentiation, and pathogenicity
of staphylococci isolated from animals is mainly based on clinical isolates, but still little is
known about staphylococci colonizing healthy animals, including their nasal cavity [29,30].
Even less is known about staphylococci that colonize sheep. While for microbiota inhabiting
the primitive native breeds of sheep, there is no such information at all. A similar lack
of information concerns prevalence of antimicrobial resistant strains among coagulase-
negative staphylococci (CoNS) colonizing sheep. Even if such studies are conducted, most
of them concern staphylococci isolated from mastitis [31]. However, CoNS colonize skin,
noses, urogenital and intestinal tracts of animals as their natural microbiota and could
be reservoir of various antibiotic resistance genes, including mecA gene, which encode
resistance to β-lactam antibiotics. The mecA gene has been detected in number of CoNS
from various animal species, including sheep [32,33]. Furthermore, the CoNS strains,
according to Taponen and Pyörälä [34] could be even more resistant to antimicrobials in
relation to S. aureus and may present a characteristic of multidrug resistance.

Increasingly, ecological and agritourism farms keep sheep covered by conservative
breeding due to previously mentioned features like good health, easy adaptation, resistance
to harsh environmental conditions, longevity, fertility, maternal traits [10,35], and low feed
requirements [35]. In addition, great attention is attached to the highest quality products
obtained from animals, such as wool, meat, milk, and hides [14,36,37].

It is worth emphasizing that animals kept on such farms have often direct and close
contact with people, including young children and elders. Therefore, the topic discussed
in this work, which considers the potential pathogenicity of staphylococci isolated from
healthy sheep from agritourism farm seems to be very important because of the possibility
of transfer of microorganisms between humans and animals. Because of the high trans-
mission potential of staphylococci, it was also assumed that the microbiota of the nasal
tract of sheep which were kept on the same farm and under the same conditions will not
be different between breeds. Furthermore, taking into account that the animals were kept
on the ecological farm and were clinically healthy, well-fed, and never treated with any
antimicrobials, it was also assumed that the isolated bacteria will be characterized by a low
degree of antibiotic resistance and a low pathogenicity potential, understood as the ability
to produce superantigenic exotoxins.

The current study aimed to identify staphylococcal species isolated from healthy sheep
of two native breeds kept on the same ecological and agritourism farm. Furthermore, the
prevalence of selected superantigen (SAg) genes (encoding staphylococcal enterotoxins,
staphylococcal enterotoxin-like proteins, exfoliative toxins, and toxic shock syndrome toxin
1) and antimicrobial resistance was also determined among collected staphylococcal isolates.
This knowledge seems to be essential to provide background information on the incidence,
species diversity, and potential pathogenicity of commensal staphylococcal biota.

2. Materials and Methods
2.1. Sheep and Their Maintenance Conditions

The sheep included in the study belonged to one herd of 61 female individuals aged
from 6 months to 12 years, including 33 Świniarka (Figure 1) and 28 Wrzosówka (Figure 2)
breed. Sheep were housed under the same conditions on a certified organic farm (controlled
by the Agro Bio Test Ltd., Warsaw, Poland) ensuring animal welfare standards and running
an agritourism activity. This farm is located at the West Pomeranian Voivodeship in the
Lower Oder Valley Landscape Park. This area consists of the largest fluorogenic fens in
Western and Central Europe with unique flora and fauna compared to the valleys of other
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European regions. Due to its natural, historical, and cultural values, the area is protected
as a part of the European Ecological Network “Natura 2000”. To prevent the depletion of
the valuable nature of the Landscape Park (e.g., xerothermic grasslands), grazing of large
and small ruminants, including Wrzosówka and Świniarka sheep, has been conducted for
several years.
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From April to November sheep were grazed on pasture (Figure 2) all day, whereas
during autumn and winter the animals were kept in buildings with partly wooden and
partly brick structures, where they resided in a group of pens measuring 8 m × 9 m. The
animals had dry lairs covered with straw (Figure 1) and access to water and hay at will.
Additionally, they received oatmeal during autumn-winter period. Sheep also have access
to licks all year round.

2.2. Sampling

Swabs cultures were obtained from the nasal cavities (from both nostrils) of 61 healthy
sheep (33 of Świniarka and 28 of Wrzosówka) in March 2021. The sterile swabs were
introduced separately into each nostril to a depth of 3 cm and rolled on the mucosal
membranes for 5 s after carefully cleaning the front of the nostrils and nasal mucous
membrane with a disinfectant (the swabs used in our work were collected by a veterinarian
taking care of an organic herd as part of routine veterinary care of the sheep). Next, the
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swab samples were transported to the laboratory in Stuart’s medium (Oxoid, Basingstoke,
UK) at 4 ◦C and inoculated on selective agar within 24 h as described below.

2.3. Isolation and Phenotypic Identification of Staphylococci

Swabs were streaked onto the Mannitol Salt Agar medium (MSA, BioMaxima, Lublin,
Poland) and incubated at 37 ◦C for 48 h. Each morphologically different colony of bac-
teria was taken for further analysis. Phenotypic characteristics of isolates were assessed
based on bacterial morphology in Gram-stained microscopic preparations, oxidase, and
catalase production, the ability to decompose mannitol on Mannitol Salt Agar (BioMaxima,
Poland), and hemolytic activity on Columbia Agar Base (BioMaxima, Poland) with 5%
addition of defibrinated sheep blood (Graso, Starogard Gdański, Poland). The presence
of the clumping factor (CF) and coagulase production was determined by the slide and
tube method, respectively, using rabbit plasma (BioMaxima, Poland), according to the
manufacturer’s instructions. The species identification of isolates was performed by the
methods described below.

2.4. DNA Extraction

Bacteria were plated onto Columbia Agar Base with 5% sheep blood (Graso, Poland)
and cultivated for 24 h at 37 ◦C. After incubation, one colony of each isolate was transferred
into Trypticasein Soy Broth (BioMaxima, Poland) and incubated for 24 h at 37 ◦C. Then, the
optical density (at 600 nm) of bacterial cultures was adjusted to 1.0. The total DNA was
extracted from bacteria using the GeneMATRIX Bacterial & Yeast Genomic DNA Purification
Kit (EURx, Gdańsk, Poland), according to the manufacturer’s instructions.

2.5. Detection of Gap Gene, mecA Gene and Superantigen (SAg) Genes

The gap gene and the mecA gene were detected using primers previously described
by Yugueros et al. [38] and Murakami et al. [39], respectively. The presence of SAg genes
encoding SEs, SEl, ETA, ETD, and TSST-1 toxins was determined by multiplex PCR with
5 different sets of primers as described by Zhang et al. [40], Jarraud et al. [41], Holtfreter
et al. [42] and Fijałkowski et al. [43,44].

The PCR and each of five multiplex PCR reaction mixtures (12.5 µL) consisted of:
6.25 µL of GoTaq® G2 Green Master Mix (Promega, Madison, USA), 0.5 µM (gap gene) or
0.25 µM (mecA gene) or 0.15 to 0.4 µM (SAg genes) of each primer (oligo.pl, Poland) and
1 µL of template DNA (20–50 ng).

The PCR conditions were as follows: an initial denaturation of DNA at 94 ◦C for 2 min;
35 cycles (gap gene, SAg genes) or 30 cycles (mecA gene): denaturation at 94 ◦C for 20 s,
annealing of primers at 50 ◦C for 45 s (gap gene) or 53 ◦C for 30 s (mecA gene) or 55 ◦C for
45 s, extension at 72 ◦C for 40 s; final extension at 72 ◦C for 5 min. PCR was performed in a
peqSTAR thermocycler (Peqlab Biotechnologie GmbH, Erlangen, Germany).

The DNA of the following control strains of Staphylococcus aureus was used: ATCC
43300 (gap, mecA) and ATCC 25923 (gap, no mecA) for determining Staphylococcus genus and
methicillin resistance, A920210 (eta) [45], Col (seb, selk, selq) [45], FRI1151m (sed, selj, ser) [42],
FRI137 (sec, seh, sell, selu) [45], FRI913 (sea, sec, see, selk, sell, selq, tst-1) [45], N315 (sec, seg, sei,
sell, selm, seln, selo, selp, tst-1) [46], TY114 (etd) [45] and 8325-4 (no SAgs genes) [42] for SAg
genes detection.

2.6. Staphylococcus Species Identification-PCR-RFLP of Gap Gene

The gap gene amplification products were digested with AluI (Fermentas, Waltham,
MA, USA) and HpyCH4V (New England Biolabs, Hitchin, UK) restriction enzymes, ac-
cording to the manufacturer’s instruction. The RFLP restriction patterns of the gap gene
of staphylococci, after digestion with AluI and HpyCH4V enzymes, were published previ-
ously [43,47,48] and used for interpretation the results obtained for the investigated isolates.

Control strains for the species identification of Staphylococcus included: Staphylococcus
xylosus PCM 2114 (PCM, Polish Collection of Microorganisms), S. equorum PCM 2487,
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S. arlettae PCM 2528, S. warneri PCM 2107, S. lentus PCM 2441, S. succinus ATCC 700337
and S. sciuri PCM 2424.

2.7. Electrophoresis

The PCR and PCR-RFLP products were separated in 1.5% and 2% agarose gels (peq-
GOLD, Peqlab Biotechnologie GmbH, Erlangen, Germany), respectively, in 1X Tris-borate-
EDTA (TBE) buffer (Bio-Rad, Hercules, USA), at 90 V for 45 min to 1 h, stained with 1%
aqueous solution of ethidium bromide (Merck, Darmstadt, Germany) and analyzed using
GeneTools software (Syngene, Cambridge, UK).

2.8. Antimicrobial Resistance

Resistance to antimicrobials was determined using the disk diffusion method ac-
cording to the guidelines of the European Committee on Antimicrobial Susceptibility
Testing [49]. The following antimicrobial discs were used (Oxoid, UK): cefoxitin (30 µg),
norfloxacin (10 µg), ciprofloxacin (5 µg), amikacin (30 µg), gentamicin (10 µg), tigecycline
(15 µg), tetracycline (30 µg), linezolid (10 µg), sulfamethoxazole/trimethoprim (25 µg),
rifampicine (5 µg) and chloramphenicol (30 µg). Macrolide–lincosamide–streptogramin B
(MLSB) and macrolide–streptogramin B (MSB) resistance phenotypes were investigated by
the double-disk diffusion test with erythromycin (15 µg) and clindamycin (2 µg) according
to EUCAST recommendations [50].

3. Results
3.1. Isolation and Species Identification of Staphylococci

A total of 127 Gram-positive and catalase-positive cocci were isolated from 61 sheep be-
longing to Świniarka (33 individuals) and Wrzosówka (28 individuals) breeds (Tables 1 and 2).
In all isolates, the gap gene was detected, which proved the identification of the genus
Staphylococcus. All staphylococci were coagulase-negative and none of them possessed a
clumping factor. The ability to decompose mannitol was observed in 124 (97.6%) isolates and
β-hemolysis was detected in 5 (3.9%) of 127 staphylococci.

Based on PCR-RFLP of the gap gene using the AluI enzyme, five different restriction
patterns specific to S. xylosus, S. arlettae, S. warneri, S. lentus and S. sciuri, and one non-
specific pattern characteristic to S. equorum and S. succinus species were obtained (Table 1).
However, the restriction analysis of the gap gene performed with the HpyCH4V enzyme
in the second stage of the study enabled to distinguish S. equorum and S. succinus species
(Table 1).

Table 1. Identification of staphylococci isolated from Świniarka and Wrzosówka breed.

PCR-RFLP Identification Source of Isolation-Sheep Breed (No. of Isolates)

AluI HpyCH4V Świniarka (33) Wrzosówka (28) Świniarka +
Wrzosówka (61)

Staphylococcus Species No. of Isolates (%)

S. xylosus S. xylosus 15 (34.9) 28 (65.1) 43 (33.9)
S. equorum/S. suc-

cinus S. equorum 23 (62.2) 14 (37.8) 37 (29.1)

S. arlettae S. arlettae 17 (89.5) 2 (10.5) 19 (15)
S. warneri S. warneri 2 (16.7) 10 (83.3) 12 (9.4)
S. lentus S. lentus 10 (100) 0 (0) 10 (7.9)

S. equorum/S. suc-
cinus S. succinus 5 (100) 0 (0) 5 (3.9)

S. sciuri S. sciuri 1 (100) 0 (0) 1 (0.8)
73 (57.5) 54 (42.5) 127 (100)
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Table 2. Species diversity vs. a source of isolation of staphylococci.

Sheep Breed No. of Sheep (%) Staphylococcus Species No. of Isolates (%)

Świniarka 33 (54.1)

S. equorum 23 (31.5)

73 (57.5)

S. arlettae 17 (23.3)
S. xylosus 15 (20.5)
S. lentus 10 (13.7)

S. succinus 5 (6.8)
S. warneri 2 (2.7)
S. sciuri 1 (1.4)

Wrzosówka 28 (45.9)

S. xylosus 28 (51.9)

54 (42.5)
S. equorum 14 (25.9)
S. warneri 10 (18.5)
S. arlettae 2 (3.7)

61 (100) 127 (100)

From 1 to 4 staphylococcal isolates were obtained from one sheep. In total, seven
different species were identified among 127 isolates (Table 1). The most frequent was S. xy-
losus (43 isolates, 33.9%), followed by S. equorum (37 isolates, 29.1%), S. arlettae (19 isolates,
15%), S. warneri (12 isolates, 9.4%), S. lentus (10 isolates, 7.9%), S. succinus (5 isolates, 3.9%)
and S. sciuri (1 isolate, 0.8%) (Table 1). The distribution of Staphylococcus species varied
among breeds.

A greater number and species diversity of staphylococci were found among isolates
obtained from Świniarka (73 isolates, 7 species) than Wrzosówka (54 isolates, 4 species)
(Tables 1 and 2). The species most frequently isolated from Świniarka was S. equorum
(23/73, 31.5%), whereas S. xylosus prevailed among the isolates obtained from Wrzosówka
(28/54, 51.9%) (Table 2). Isolates of S. lentus, S. succinus and S. sciuri were found only in
swabs derived from Świniarka (Tables 1 and 2).

3.2. Prevalence and Distribution of Superantigen (SAg) Genes

Among the 127 isolates, 98 (77.2%) were SAg genes-positive (Tables 3 and 4). The
percentage of SAg genes-positive staphylococci isolated from Świniarka and Wrzosówka
was comparable and equaled 75.3% (55/73 isolates) and 79.6% (43/54 isolates), respectively
(Table 4). The individual isolates harbored from 1 to 7 of the 21 analyzed genes encoding
SAgs. Most of the strains harbored one (30 isolates, 23.6%) or two (25, 19.7%) SAg genes.
In other strains four (13, 10.2%), five (12, 9.4%), three (11, 8.7%), six (4, 3.1%) and seven
(3, 2.4%) SAg genes were detected. In contrast, in 29 isolates (22.8%) SAgs genes were
not detected.

The occurrence and number of particular SAg genes differed between staphylococcal
species (Tables 3–5). The highest number of different SAgs genes was recorded among
S. equorum isolates (16 out of 21genes) (Table 3). The most prevalent SAg genes were: ser
(51 isolates, 40.2%) among staphylococcal enterotoxin (SE) genes and selq (38 isolates, 29.9%
isolates) among staphylococcal enterotoxin-like (SEl) proteins (Tables 4 and 5). The genes
encoding exfoliative toxins A (eta) and D (etd) were detected in one (0.8% isolates) and
five isolates (3.9%), respectively (Tables 4 and 5). In turn, tst-1 gene encoding toxic shock
syndrome toxin 1 was found in 17 isolates (13.4%) (Tables 4 and 5). The selj and selp genes
were not present in any of the isolates (Tables 4 and 5).
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Table 3. Distribution of superantigen (SAg) genes profile among Staphylococcus species.

Species No. of SAg Genes-Positive Isolates (%) SAg Genes (No. of Isolates) No. of SAg Genes

S. xylosus 34/43 (79.1)
ser (15), seg (14), selq (13), selm (9), selo (9),
sed (7), tst-1 (7), sei (6), sec (4), sea (3), seh

(2), seln (2), see (1), sell (1), etd (1)
15

S. equorum 26/37 (70.3)
ser (12), seg (11), selm (11), selq (10), sei (7),
selo (6), seln (4), sea (3), tst-1 (3), seb (1), sec
(1), see (1), sell (1), selk (1), eta (1), etd (1)

16

S. arlettae 14/19 (73.7)
ser (9), selm (8), selq (5), sec (3), tst-1 (3),
sea (2), seg (2), etd (2), sei (1), sed (1), sell

(1), selo (1)
12

S. warneri 9/12 (75) ser (6), selq (4), seg (2), selm (2), selo (2),
tst-1 (2), sei (1), sell (1) 8

S. lentus 9/10 (90)
ser (7), selm (6), seg (5), selq (4), sei (3), sec
(2), selo (2), tst-1 (2), sell (1), seln (1), selu

(1), etd (1)
12

S. succinus 5/5 (100) seg (2), ser (2), selk (1), selm (1), selo (1),
selq (1) 6

S. sciuri 1/1 (100) selq (1) 1
98/127 (77.2)

Table 4. Relationship between source of isolation and prevalence of superantigen (SAg) genes among
Staphylococcus species.

Source
of Isola-
tion No.

of
Sheep

(%)

Species
(No. of

Isolates)

No. of
SAg

Gene-
Positive
Isolates

Ser Selq SelmSeg Selo Sei Tst-
1 Sec Sea Sed Seln Sell Etd See Seh Selk Seb Selu Eta Selj Selp

Świniarka
33 (54.1)

S. equorum
(23) 16 7 4 8 6 5 5 3 1 2 3 1 1

S. arlettae
(17) 12 8 5 7 2 2 2 2 1 1 1

S. xylosus
(15) 11 7 4 1 4 2 3 2 2 1

S. lentus
(10) 9 7 4 6 5 2 3 2 2 1 1 1 1

S. succinus
(5) 5 2 1 1 2 1 1

S. warneri
(2) 1 1 1 1

S. sciuri (1) 1 1
73 55 32 20 23 20 10 8 10 7 4 3 5 3 3 1 1

Wrzosówka
28 (45.9)

S. xylosus
(28) 23 8 9 8 10 7 6 4 2 3 5 1 1 1 1 2

S. equorum
(14) 10 5 6 3 5 1 2 1 1 1 1 1 1

S. warneri
(10) 8 5 3 2 1 2 1 2 1

S. arlettae
(2) 2 1 1 1 1 1 1 1

54 43 19 18 14 16 11 10 7 3 4 5 2 2 2 2 2 1 1 1
61 (100) 127 (100) 98 (77.2) 51 38 37 36 21 18 17 10 8 8 7 5 5 2 2 2 1 1 1 0 0
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Table 5. Prevalence of superantigen (SAg) genes among Staphylococcus species.

Species
(No. of Isolates)

SAg Genes

Ser Selq Selm Seg Selo Sei Tst-
1 Sec Sea Sed Seln Sell Etd See Seh Selk Seb Selu Eta Selj Selp

No. of SAg Gene-Positive Isolates

S. xylosus (43) 15 13 9 14 9 6 7 4 3 7 2 1 1 1 2 0 0 0 0 0 0
S. equorum (37) 12 10 11 11 6 7 3 1 3 0 4 1 1 1 0 1 1 0 1 0 0
S. arlettae (19) 9 5 8 2 1 1 3 3 2 1 0 1 2 0 0 0 0 0 0 0 0
S. warneri (12) 6 4 2 2 2 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0
S. lentus (10) 7 4 6 5 2 3 2 2 0 0 1 1 1 0 0 0 0 1 0 0 0
S. succinus (5) 2 1 1 2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

S. sciuri (1) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
51 38 37 36 21 18 17 10 8 8 7 5 5 2 2 2 1 1 1 0 0

The most prevalent ser gene was found in 32 out of 55 (58.2%) isolates obtained
from Świniarka and in 19 out of 43 (44.2%) staphylococci collected from Wrzosówka.
However, the highest number of different SAg genes was recorded for isolates derived
from Wrzosówka (18 different SAg genes) as compared to the isolates from Świniarka
(15 different SAg genes) (Table 4).

3.3. Antimicrobial Resistance

Among all isolates, 77 (60.6%) exhibited antimicrobial resistance (Tables 6 and 7). Drug
resistance was species but not the source of isolation dependent. Species that showed
the highest percentages of resistance belonged to S. sciuri (1/1 isolates, 100%), S. lentus
(9/10 isolates, 90%), S. warneri (10/12 isolates, 83.3%), S. xylosus (33/43 isolates, 76.7%)
and S. arlettae (14/19 isolates, 73.7%). Lower percentages of resistance were recorded for
S. succinus (2/5 isolates, 40%) and S. equorum (8/37 isolates, 21.6%).

As regards resistance of all isolates to the 13 antimicrobials used in this study, the
most frequent resistance was observed to clindamycin (58 isolates, 45.7%), erythromycin
(37 isolates, 29.1%), and rifampicin (26 isolates, 20.5%). In turn, none of the isolates
demonstrated resistance to cefoxitin, norfloxacin, ciprofloxacin, amikacin, tigecycline,
trimethoprim/sulfamethoxazole and chloramphenicol (Table 6). Based on the results of
the “D-zone” test, in 23 isolates (18.1%), belonging to three species (S. xylosus, S, arlettae
and S. warneri), the mechanism of constitutive MLSB resistance was detected. Moreover,
the inducible MLSB phenotype was demonstrated in six isolates (4.7%) belonging to three
species (S. xylosus, S. arlettae and S. lentus) (Table 7). Additionally, in nine isolates (7.1%)
belonging to two species (S. xylosus and S. equorum) resistance to erythromycin, indicating
resistance to macrolide-streptogramin B antibiotics (MSB) was detected. Furthermore, in
35 isolates (27.6%) belonging to six species (S. xylosus, S. equorum, S. arlettae, S. warneri,
S. lentus and S. sciuri) rare resistance to clindamycin was noted (L phenotype). Concerning
the multiple resistances, 47 isolates (37%) belonging to S. xylosus (33 isolates) and S. ar-
lettae (14 isolates) exhibited even six antimicrobial resistance phenotypes. In total, in 77
antimicrobial-resistant isolates, nine different phenotypes were identified (Table 7).

Evaluation of methicillin sensitivity observed in disk diffusion test was confirmed
genetically. None of the isolates harbored the mecA gene.
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Table 6. Relationship between a source of isolation and antimicrobial resistance of staphylococci.

Source of
Isolation
(No. of
Sheep)

Species
(No. of
Isolates)

No. of
Resistant
Isolates

(%)

Antimicrobial

No. of Resistant Isolates

FOX E DA NOR CIP AK CN TGC TE LZD SXT RD C

Św
in

ia
rk

a
br

ee
d

(33)

S. equo-
rum
(23)

4/23 (17.4) 0 4 0 0 0 0 0 0 0 0 0 0 0

S. arlettae
(17)

13/17
(76.5) 0 5 10 0 0 0 1 0 1 0 0 2 0

S. xylosus
(15)

11/15
(73.3) 0 5 9 0 0 0 0 0 0 0 0 4 0

S. lentus
(10) 9/10 (90) 0 1 8 0 0 0 0 0 0 2 0 0 0

S. succi-
nus
(5)

2/5 (40) 0 0 0 0 0 0 0 0 0 0 0 2 0

S. warneri
(2) 2/2 (100) 0 2 2 0 0 0 0 0 0 0 0 2 0

S. sciuri
(1) 1/1 (100) 0 0 1 0 0 0 0 0 0 0 0 0 0

Total no.
73

42/73
(57.5) 0 17 30 0 0 0 1 0 1 2 0 10 0

W
rz

os
ów

ka
br

ee
d

(2
8) S. xylosus

(28)
22/28
(78.6) 0 12 19 0 0 0 0 0 0 0 0 9 0

S. equo-
rum
(14)

4/14 (28.6) 0 4 0 0 0 0 0 0 0 0 0 0 0

S. warneri
(10) 8/10 (80) 0 4 8 0 0 0 0 0 0 0 0 6 0

S. arlettae
(2) 1/2 (50) 0 0 1 0 0 0 0 0 0 0 0 0 0

Total no.
54

35/54
(64.8) 0 20 28 0 0 0 0 0 0 0 0 15 0

127 77/127
(60.6) 0 37 58 0 0 0 1 0 1 2 0 26 0

FOX—cefoxitin, E—erythromycin, DA—clindamycin, NOR—norfloxacin, CIP—ciprofloxacin, AK—amikacin,
CN—gentamicin, TGC—tigecycline, TE—tetracycline, LZD—linezolid, SXT—trimetoprim/sulfamethoxazole,
RD—rifampicin, C—chloramphenicol.

Table 7. Antibiotic resistance of staphylococci.

Species No. of Isolates Resistant Isolates (%) Resistance Phenotypes (No.
of Isolates)

Resistance Mechanisms (No.
of Isolates)

S. xylosus 43 33/43 (76.7) DA-RD (3), E (3), DA (11),
E-DA (6), RD (2), E-DA-RD (8)

cMLSB (14), iMLSB (3), MSB
(1), L phenotype (14)

S. equorum 37 8/37 (21.6) E (8) MSB (8)

S. arlettae 19 14/19 (73.7) CN-DA (1), E (2), TE (1), E-DA
(1), DA (7), E-DA-RD (2)

cMLSB (3), iMLSB (2), L
phenotype (8)

S. warneri 12 10/12 (83.3) E-DA-RD (6), DA-RD (2), DA
(2) cMLSB (6), L phenotype (4)

S. lentus 10 9/10 (90) DA (6), DA-LZD (2), E (1) iMLSB (1), L phenotype (8)
S. succinus 5 2/5 (40) RD (2) -

S. sciuri 1 1/1 (100) DA (1) L phenotype (1)
Total no. 127 77 (60.6)

CN—gentamicin, DA—clindamycin, E—erythromycin, LZD—linezolid, RD—rifampicin, TE—tetracycline.

4. Discussion

Staphylococci are common commensal microorganisms that colonize the skin and
mucous membranes [25,51]. However, it should be emphasized that these bacteria, both
S. aureus and CoNS, can also constitute the pathogens with particular importance in the
etiology of various infections e.g., skin, wounds, ears, eyes, urinary tract, endocardium,
joints, bloodstream, surgical site as well as mastitis and invasive device-related infections
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in both animals and humans [25,51–54]. In recent years, especially CoNS have been of
great interest as pathogens [54]. However, the occurrence of CoNS in animals is still
based mainly on mastitis cases [52,53,55,56]. On the other hand, it can also be noted that
currently, the CoNS are taking the scope of research to gain ground against S. aureus in
veterinary medicine [54]. It should be emphasized that the research on nasal colonization of
staphylococci in animals, especially CoNS, and the clinical importance of this phenomenon
are often underestimated [30]. Bearing in mind the importance of this issue, the current
study focuses on the presence of staphylococci in healthy sheep and their toxicogenic
potential and resistance to antimicrobial agents.

The abundance and diversity of the microbiome are shaped by various factors. Recent
studies indicate that the environment as well as the genetic and individual features play
a role in the development of microbiota of ruminants. However, it is considered that
relatively few studies have been conducted investigating the factors which could impact
on the microbiota. Thus, studies focusing on host specific microbiotas are required [57,58].
Our results confirm a genetic determination rather than environmental influences on
microbiome composition. This can be concluded because of the identification of only seven
species of staphylococci among 127 staphylococci isolated from 61 sheep housed under
the same conditions. On the other hand, the presence of 1 to 4 different staphylococci of
various species from one animal may indicate individually determined conditions.

It should be noted that studies on the microbiota inhabiting the nasal cavity of healthy
sheep are scarce. Queen et al. [59] gathered nasal and tonsillar samples from 14 free-ranging
clinically healthy Rocky Mountain bighorn sheep and 10 domestic sheep. The authors
identified 194 different bacterial isolates. Staphylococcus species (31 isolates) were the most
numerous Gram-positive bacteria and had a higher incidence in samples from domestic
(22 isolates) than from bighorn (9 isolates) animals. Among staphylococci isolated from
nasal swabs, S. aureus and S. simulans were isolated only from domestic sheep, S. cohnii
and S. epidermidis from bighorn sheep while S. sciuri, S. warneri and S. xylosus were isolated
from both sheep.

In turn, Jauro et al. [60] investigated 100 nasal swab samples collected from healthy
and sick sheep. In their study, the rate of nasal carriage of S. aureus and MRSA in sheep
was found to be 61% and 26%, respectively. The authors reported that 48 (73%) of the
sick and 13 (38%) of the healthy sheep were positive for S. aureus and 24 (36%) of the sick
sheep and 2 (6%) of the healthy sheep were found to harbor MRSA. Isolation of S. aureus
from the nares of sheep has been also reported by other authors. In this context, Vautor at.
al. [61] noticed the S. aureus nasal carriage in 29% of ewes of several dairy sheep breeds in
farms producing cheeses manufactured from raw ewe’s milk. In turn, Gharsa et al. (2012)
detected MRSA in 5 (3%) and MSSA in 68 (41.7%) nasal swabs obtained from 163 healthy
sheep. Furthermore, Rahimi et al. [62] detected nasal carriage of S. aureus in 11 (14.1%) of
78 healthy sheep (one of these isolates harbored the mecA gene).

Contrary to these reports, in the present study, no S. aureus or other coagulase-positive
staphylococci (CPS) were identified. On the other hand, our results concerning the pres-
ence of S. xylosus, S. warneri and S. sciuri species in sheep nostrils along with S. xylosus
predomination stay in line with those reported by Queen et al. [59]. Similarly, Rich [25],
among staphylococci isolated from sheep, also reported the highest percentage of S. xylosus,
however, according to these authors’ research, two other species namely S. vitulinus and
S. lentus were also isolated in large numbers. In our work, S. lentus was also identified in
10 out of 33 Świniarka sheep.

Abdel-Moein and Zaher [30] investigated the nasal carriage of CoNS among 152 dif-
ferent domestic and farm animals including 29 sheep (17 healthy and 12 with respiratory
disease), and their public health implication. The authors identified CoNS in over 10% of
sheep. Moreover, they also found, that none of the isolated staphylococci harbored drug
resistance (mecA and blaZ) and/or virulence (lukS/F-PV and tsst-1) genes. Likewise, in
our research, none of the isolated CoNS possessed the mecA gene, but in contrast to the
above-mentioned report, in our study over 13% of isolates harbored the tsst-1 gene. The



Animals 2022, 12, 2139 12 of 17

current study has also shown, that out of 127 CoNS over 77% were SAg genes-positive
and possessed from 1 to 7 of the 21 analyzed genes encoding SEs, SEls, ETA, ETD, and
TSST-1. The highest number of different SAgs genes was recorded among S. equorum
species and the most prevalent SAg gene was ser (over 40% of isolates harbored this gene).
The possession of these virulence factors could be associated with increased pathogenicity
of staphylococci [54], both S. aureus and CoNS [55,63,64]. Based on bibliographic sources,
such a high percentage of potentially toxigenic staphylococcal isolates as reported in the
current study is characteristic rather for S. aureus than for CoNS. This is consistent with
the findings of Gharsa et al. [65] who confirmed that the nares of healthy sheep could be
a reservoir of PVL-positive MRSA and of TSST-positive S. aureus isolates, with potential
implications for public health. However, the findings of our study agreed with the reports
of other researchers who demonstrated that CoNS isolated from different sources can
harbor multiple SAgs genes [43,44,47,55,64].

Primitive breeds kept on organic farms get sick less frequently as compared to conven-
tional farms or even more large-scale breeding [32]. Their treatment is based primarily on
the use of natural substances of plant origin e.g., the essential oils (based on thyme, cin-
namon, lemongrass, oregano, and rosemary) [66,67] and herbs (garlic, onion, dill, parsley,
mint) which constitute an alternative to antibiotics and other conventional antimicrobial
drugs [68]. All the animals included in our study were healthy and had never been treated
with any antimicrobials or antiseptics. For this reason, it was assumed that the staphylo-
cocci isolated from such animals would be not only non-toxigenic but also sensitive to at
least most antimicrobial agents.

Contrary to our assumption, the study showed, that over 60% of CoNS were resistant
to at least one antibiotic of therapeutic importance (gentamicin, erythromycin, clindamycin,
tetracycline, rifampicin, or linezolid). Nevertheless, our findings are consistent with results
obtained by Turchi et al. [69] and Holko et al. [70] who found that respectively over 53%
and 63% of CoNS were resistant to at least one antimicrobial agent. Nevertheless, it should
be emphasized that in both studies, CoNS were isolated from the milk of healthy sheep,
not from their nostrils, and the animals were kept on conventional sheep farms.

In turn, Burriel [71] showed resistance among 75% of 83 CoNS isolated from milk
of sheep with subclinical mastitis and from the teat skin of healthy ewes to a variety of
24 commonly used in human and veterinary medicine antimicrobial agents. Resistance
was most common to trimethoprim, sulphonamide, co-trimoxazole, tetracycline, and
chloramphenicol. The author also detects resistance to methicillin in four S. epidermidis and
three S. xylosus isolates obtained from the milk of dairy ewes.

Interestingly, among the collected CoNS, we found that 35 isolates were resistant
to clindamycin while being sensitive to erythromycin (L phenotype). The L phenotype
resistance is reported more frequently in Streptococcus [72–75] than in Staphylococcus. How-
ever, recently, the detection of this unusual resistance phenotype has increased among
staphylococcal strains of animal origin [76,77]. This result is particularly important be-
cause clindamycin is the most clinically important lincosamide, often used in veterinary
medicine to treat infections caused by staphylococci (especially MRSA) [78–80]. Moreover,
in the present study inducible (iMLSB) and constitutive (cMLSB) macrolide-lincosamide-
streptogramin B resistance was detected in 29 (22.8%) isolates. Simultaneously, the inducible
MLSB and constative MLSB resistant strains were the only multidrug-resistant (resistant to
at least one agent in three or more antimicrobial categories) bacteria isolated in the present
study. Additionally, nine isolates exhibited the MSB phenotype. Currently, from the clinical
point of view, macrolide-lincosamide-streptogramin B resistance is an increasing therapeu-
tic complication [81,82]. The inducible MLSB phenotype is detected both, in pathogenic and
nonpathogenic Staphylococcus species isolated from humans and animals. It has been shown
that CoNS inhabiting animals can display a wide range of antimicrobial resistance, and
thus may potentially serve as a reservoir of resistance genes [51]. Therefore, the bacteria
isolated in the current study could play a role as a reservoir for resistance genes [83].
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The question remains, how did strains with the MLSB resistance mechanism become a
part of the physiological microbiota of sheep from an organic farm, never treated with any
antimicrobials? Research done by Heß and Gallert [83] may provide a potential explanation.
In their study, staphylococci isolated from sewage and river water (among them such
CoNS species as S. xylosus, S. sciuri, and S. lentus) were tested for antibiotic resistance.
The authors demonstrated that 13.7% Staphylococcus isolates were constitutively resistant
to clindamycin and 16.5% revealed an inducible clindamycin resistance. Moreover, the
percentage of isolates resistant to erythromycin and clindamycin was higher in the case of
the bacteria isolated from the river than from the tertiary-treated sewage. The authors also
reported that the concentration of erythromycin and anhydroerythromycin (degradation
product of the erythromycin) in surface water was high enough to induce resistance to
clindamycin in Staphylococcus strains (even after only 10 min of exposure). The antibiotic
resistance mechanism is well studied in clinics, however, in aquatic environments, the
resistance situation is rarely investigated. Nonetheless, it is well known that antibiotics
and antibiotic-resistant bacteria are present in the natural environment, the especially
aquatic environment which is polluted with antibiotics from human use [84,85]. Sheep
included in our study are grazing in wetlands, near the Odra river. In Poland, the problem
of antibiotics in wastewater is hardly monitored, however, there are reports on antibiotic
concentrations in surface waters or bottom sediments, including the Odra river, proving the
presence of macrolides and lincosamides [86,87]. Hence, the hypothesis may be posed, that
physiological microbiota of sheep become resistant to clindamycin and erythromycin due
to antibiotics present in surface waters. However, that hypothesis would require further
studies. Another possible explanation is that antibiotic-resistant CoNS could be potentially
acquired from a variety of other animals present in the sheep environment, such as chickens,
goats, cattle, wild birds, and rodents [32,33]. Staphylococci may be transferred between
different animals by direct contact, with excretions (sneezing, coughing, or licking), and
via indirect transmission through contaminated environment or aerosols [33]. Regarding
the other clinically important antimicrobials, all staphylococci isolated in the current
study were sensitive to ciprofloxacin, amikacin, norfloxacin, tigecycline, chloramphenicol,
and trimethoprim-sulfamethoxazole. Moreover, we did not find any methicillin-resistant
isolates which is consistent with other authors’ studies, reporting a low percentage of
methicillin-resistant isolates [56,88]. However, most of the reports included CoNS isolated
from ovine milk of healthy sheep or animals with subclinical mastitis, and not from the
nostrils of sheep. The observed susceptibility to methicillin among all isolates could be
considered a positive result, considering the frequent occurrence of CoNS in dairy products
which could serve as a carrier of methicillin-resistant strains from animals to consumers.

5. Conclusions

Our study has shown that toxigenic potential and resistance to antimicrobials is
associated with bacteria colonizing the nasal cavity of healthy sheep from an organic farm.
This finding indicates that staphylococci colonizing the nasal cavity of healthy sheep are the
reservoir of genes encoding enterotoxins synthesis and antimicrobial resistance. Therefore,
close contact with those animals or consuming dairy products made from their milk may
potentially pose a threat to public health.

What is important, S. aureus was not found among isolated staphylococci, which
reveals the minor importance of the carriage of this species for this population of animals.

Interestingly, it was found that although most of the isolated CoNS species were
found in both analyzed breeds of sheep, some of the isolated staphylococci showed species
specificity related strictly to the breed.
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as a Potential Vehicle for Staphylococcus spp. Harboring Antibiotic Resistance Genes. J. Food Prot. 2014, 77, 993–998. [CrossRef]
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