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develOpMent Of secOndary lyMphOid 
Organs (slO)

SLO include encapsulated organs such as the spleen and 
lymph nodes and un-encapsulated mucosal lymphoid 
organs such as Peyer’s patches, tonsils, and nasal-asso-
ciated lymphoid tissues. SLO develop before birth and are 
important locations for the initiation of adaptive immune 
responses since they maximize encounters between 
antigen, antigen-presenting cells, and lymphocytes 
present in blood and surrounding mucosal tissues.
  SLO formation requires the interaction between CD3–

CD4+CD45+ lymphotoxin-a1b2 (LTa1b2)-expressing 
lymphoid-tissue inducer cells and lymphotoxin-b 
receptor-expressing stromal organizer cells. LTa1b2 
activates lymphoid tissue stromal organizer cells to 
produce homeostatic chemokines such as CXC chemokine 
ligand 13 (CXCL13) and CC-chemokine ligand 21 

(CCL21) and CCL19, which regulate lymphocyte homing 
and compartmentalization (1).

definitiOn Of tertiary lyMphOid structures 
(tls)

TLS, also named tertiary lymphoid organs or ectopic 
lymphoid tissues, are architecturally similar to con-
ventional SLO. TLS include organized B-cell follicles 
with germinal centers (GCs), distinct T cell areas that 
contain some dendritic cells (DCs), high endothelial 
venules (HEV) that traffic immune cells from circulation 
into TLS, and lymphatics that transport tissue DCs into 
the TLS (2-4). TLS not only share spatial organization, 
cellular compartments, vasculature, and chemokines 
with SLO, but also functional characteristics including 
leukocytes priming, clonal expansion, somatic hyper-
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Tertiary lymphoid structures (TLS) are ectopic lymphoid tissues involved in chronic inflammation, autoimmune 
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mutation, affinity maturation, immunoglobulin class 
switching, B cell-receptor revision, and maintenance 
of peripheral tolerance (5-7). Even so, there are im-
portant differences. For example, SLO are genetically 
preprogrammed and pre-patterned as they arise at key 
locations in the body during embryogenesis under the 
control of a precise developmental program. SLO have 
distinctive features (8): that is, they trigger priming of 
naive T cells following interaction with DCs and resume 
quiescence when the “foreign” antigen is eliminated (9).
  By contrast, development of TLS can be driven by 
environmental influences, including chronic inflammation, 
autoimmune diseases (10,11), transplant rejection (12), 
and cancer (13). TLS develop as un-encapsulated lym-
phoid aggregates almost everywhere in the body and do 
not appear at predictable sites: this is especially true when 
there is a continuing need for leukocyte extravasation 
or where antigens persist (10,14). Thus, many of the 
mechanisms that control the development, cellular 
compositions and functional maintenance of SLO and 
TLS are common to both.

cellular cOMpOsitiOn Of tertiary lyMphOid 
structures 

A variety of cell types, including lymphoid tissue inducer 
(LTi) cells, local stromal cells, B cells, DCs, and some T 
cell subsets, such as T helper cells, Th17 cells, Treg cells 
and CD8 T cells, are critical for TLS formation (Fig. 1).
  LTi cells induce TLS formation by expressing a wide 
range of proteins, particularly LTa1b2 (15). LTi cells 
accumulate in the presence of CXCL13 and interleukin-7 
(IL-7) and their receptors such as CXCR5 and IL-7R 
(16,17). The cells interact with antigen-specific CD4 T 
cells and associate with memory T cells in the GCs via 
OX40 and CD30 (18). However, some TLS develop 
independently from LTi cells or associated molecules; 
for example, omental milky spots in the peritoneal cavity 
(19) and tumor necrosis factor-a (TNFa)-dependent 
lymphoid tissue in the intestine (20). In addition, other 
cell types, like B cells (21), T cells (22), or M1-polarized 
proinflammatory macrophages (23), can substitute for 
LTi cells during TLS development, particularly when 
activated and expressing LTa1b2 on the surface. For 
example, activated CD3+CD4+ T cells interact with DCs 
in a Hashimoto thyroiditis mouse model, resulting in TLS 
formation; this process, depends on mature CD3+CD4+ T 
cells but not on conventional LTi cells (24).
  Stromal cells include fibroblastic reticular cells (FRCs) 

that reside in the T cell zone, follicular dendritic cells 
(FDCs) that populate B cell follicles, marginal reticular 
cells adjacent to subcapsular sinus lymphatic endothelial 
cells, pericytes, epithelial cells, and versatile stromal cells 
(VSCs) (6). Stromal cells are well known for forming 
extracellular matrix in all lymphoid organs by providing 
survival signals and adhesive substrata to immune 
cells (25). For example, arterial TLS in the adventitial 
connective tissue adjoining arteries is formed through 
vascular smooth muscle cell lymphotoxin b (LTb) 
receptor signaling (26). Interactions between LTi cells and 
stromal cells are critical for proper TLS formation (27). 
In particular, increased expression of adhesion molecules 
such as intercellular adhesion molecule 1 (ICAM1) and 
chemokines such as CXCL13, CCL19 and CCL21, are 
critical for recruitment of hematopoietic cells (1). Thus, 
TLS in CNS autoimmune diseases often developed 
in the meninges but not in neural parenchyma; this is 
because stromal cells mainly reside in the meninges 
(28). Also, FRCs play a critical role in maintaining 
aberrant components in the wrong tissue at the wrong 
time, thereby contributing to TLS persistence in chronic 
inflammatory diseases (29,30).
  B cells, which accumulate on the follicular DC network, 
are the major TLS component. Most TLS exhibit B cell 
class switching and the presence of activation-induced 
cytidine deaminase and germinal center reactions (31,32). 
Autoreactive B cells in TLS may escape apoptosis and 
negative selection due to sustained production of the B 
cell survival factor, BAFF. Some B cells may reach the 
bone marrow, where they reside as long-lived plasma 
cells (33). A fully structured TLS depends on LTb 
expression by B cells (34). After exposure to continuous 
stimuli in a chronic inflammatory environment, B cells 
upregulate lymphotoxin expression through IL-4Ra 
signaling and promote FRC proliferation and activation 
via lymphotoxin-LTbR signaling (35). Moreover, B 
cells contribute to local immune responses to persisting 
autoantigens by producing proinflammatory cytokines, 
chemokines and growth factors, all of which are crucial 
for TLS formation. Also, B cells co-operate with CD8+ 
tumor-infiltrating lymphocytes to promote anticancer 
immunity and act as new prognostic biomarkers for 
cancer survival (36,37).
  A variety of T cells are involved in TLS formation or 
maintenance, including CD8+ T cells and some CD4+ 
T cell subsets, natural killer T cells (NKT), Th17 cells, 
follicular helper T (Tfh) cells, and T regulatory cells 
(Tregs). CCL21 recruits T cells. CD8+ T cells control 
germinal center reactions in both SLO and TLS. Deple-
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tion of synovial CD8+ T cells causes disintegration 
of GC-containing follicles, disappearance of FDCs, 
significantly reduced production of LTa1b2 and a lack of 
immunoglobulin (Ig) secretion (38). CD4+ T helper (Th) 
cells in a special TLS, which is formed during chronic 
allergic inflammation in the lung and named inducible 
bronchus-associated lymphoid tissue (iBALT), show 
a memory phenotype (39). NKT cells restricted by the 
antigen-presenting molecule CD1d seem to be required 
for inducible formation of fat-associated lymphoid 
clusters, which support and coordinate the activation 
of innate B cells and T cells during serosal immune 
responses in the peritoneal cavity (40).
  Th17 cells are a subset of CD4+ T cells subsets that 
are the main source of cytokines interleukin-17, IL-
21, and IL-22. Th17 cells and these cytokines play 

important roles in host defense against various infections 
and can be responsible for the pathogenesis of many 
autoimmune diseases (41). Interestingly, Th17 cells 
share many characteristics with LTi cells, including 
LTa1b expression (42). Th17 cells exert their deleterious 
effects by promoting formation of ectopic GCs in TLS 
in inflamed tissues (43), thereby facilitating chronic 
rejection (44).Th17 cell plasticity permits acquisition 
of Tfh-like effector characteristics that support TLS 
expansion and germinal center reactions (45). In vitro- 
generated Th17cells transferred into mice can drive TLS 
formation in the subarachnoid space around vessels (22). 
TLS formation by Th17 cells in the CNS requires IL-17 
(22), while IL-17 is needed to initiate but not to maintain 
iBALTs (46). Th17 cells initiate TLS formation by 
remodeling meningeal-resident stromal cells and affecting 

Figure 1. Potential of cells and cytokines/chemokines to regulate the induction and maintenance of Tertiary Lymphoid Structures (TLS).  ① Cells of 
various types, especially CD3–CD4+CD25+ LTi cells and stromal cells, initiate TLS formation. B cells, T cells, and M1-polarized proinflammatory 
macrophages can substitute for LTi cells. LTi cells accumulate in the presence of CXCL13 and interleukin-7 (IL-7) and their receptors such as 
CXCR5 and IL-7R. LTi cells interact with antigen-specific CD4+ memory T cells via OX40 and CD30. ② Leukocytes from the circulation are 
recruited to inflammatory sites in response to certain chemokines and regulated by cytokines. Stromal cells secret several chemokines, including 
CXC-chemokine ligand 13 (CXCL13), CC-chemokine ligand 21 (CCL21) and CCL19, which are responsible for the recruitment of B and T cells, 
respectively. IL-23 can efficiently induce IL-22, which regulates the production of CXCL13, thereby orchestrating B-cell clustering, lymphoid 
aggregation, and autoantibody production in the TLS. ③ Various cell types and cytokines are involved in maintaining TLS formation: a) B cells, 
which accumulate in the follicular DC network, are the major TLSs component. Most TLS exhibit B cell class switching, affinity maturation 
and somatic hypermutation. B cells upregulate lymphotoxin expression through IL-4Rα signaling; b) A variety of T cells are involved in TLS 
maintenance, including Th17 cells and Th 9 cells. Th17 cell plasticity permits acquisition of Tfh-like effector characteristics that support germinal 
center reactions. Th17 cells also initiate TLS formation by remodeling stromal cells. Tfh cells are localized in the B cell follicles expressing high 
levels of the co-stimulatory molecules such as inducible T cell co-stimulator (ICOS) and IL-21, thereby promoting activation and differentiation of 
B cells for Ig class switching and Ig production. Th9 cells produce IL-9, levels of which correlate with the degree of inflammatory infiltrate and TLS 
organization; c) DCs in TLS often show an activated/mature phenotype, with high CD86 and IL-12 expression. DCs increase antigen presentation, 
form tight clusters with infiltrating CD4+ T cells and promote T cell proliferation; d) IL-27 can negatively regulate TLS development by blocking 
Th17-associated pathology.
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communication between them in mice with experimental 
autoimmune encephalomyelitis (EAE), and propagate 
neuroinflammation through LTab expression (43).
  Tfh cells are localized in B cell follicles expressing high 
levels of the co-stimulatory molecules inducible T cell 
co-stimulator and IL-21, thereby promoting activation 
and differentiation of B cells for Ig class switching and Ig 
production (47). Tfh cells are linked to germinal center 
responses and the formation and maintenance of TLS (48). 
T follicular helper-like cells are indispensable for B cell 
expression of a classical germinal center phenotype (49). 
In many autoimmune diseases, Tregs are either reduced 
in number or functionally impaired. CCR7-deficient mice 
possess few Tregs in lung-draining bronchial lymph nodes 
suggesting that iBALT formation might be caused by non-
functional Treg cells (50). Consistent with this, depletion 
of Tregs from mice upregulates expression of IL-17A and 
CXCL9 in the lungs and induces tissue neutrophilia (51).
  On the other hand, lymphocytes are found in large lymph 
node (LN)-like, complex tumor-associated TLS in cancer 
patients (52); these TLS facilitate interactions between 
T cells and DCs. Both costimulatory ligand expression 
by DCs and T cell proliferation in tumor-associated 
TLS increase upon Treg cell depletion, leading to tumor 
destruction (3). TLS develop in most solid cancers and 
correlate with a favorable clinical outcome for cancer 
patients, regardless of the stage of disease (36). Thus, 
tumor-associated-TLS promote anti-tumor responses. 
  DCs in TLS often show an activated/mature phenotype, 
with high CD86 and IL-12 expression. Repeated injection 
of DCs into mice induces formation of lung iBALT (53). 
DC depletion leads to iBALT disintegration and fewer 
GC reactions, indicating that DCs are critical for TLS 
maintenance. DCs might increase antigen presentation, 
form tight clusters with infiltrating CD4+ T cells, and 
promote T cell proliferation (24). In addition, DCs 
increase the production of cytokines and chemokines, 
including CXCL13, CCL21/CCL19 (54), B cell-
activating factor (BAFF), IL-6, and IL-15 (55), as well as 
that of type I interferons (56). DCs also play an important 
role in endothelial cell differentiation (57). In human 
lung cancer, TLS-associated mature DCs generates a 
specific immune context characterized by a strong Th1 
and cytotoxic orientation that confer a positive prognostic 
value (58). 

cytOKines and cheMOKines in tls

Homeostatic inflammatory cytokines and chemokines 

contribute to the initiation and organization of TLS. Such 
molecules include LTa, LTa1b2, CXCL13, CCL21, 
CCL19, IL-17, IL-22, IL-23, IL-7, and IL-27, all of which 
play differential roles depending on the site of infection 
and the nature of the pathogen. LTa is a cytokine 
produced by lymphocytes and is anchored to the surface 
of Th1 and Th17 cells. Depleting LT-expressing Th1 
and Th17 cells using a monoclonal antibody targeting 
surface LTa inhibits T cell-mediated inflammation and 
autoimmune disease (59). Similar to SLO formation, 
LTa can induce stromal cells in the TLS to develop 
into FDCs and HEVs (60). CXCL13 functions in B cell 
recruitment and trafficking, and is also critical for the 
formation and maintenance of B lymphocyte follicles in 
some autoimmune-associated TLS (61). CXCL13 also 
promotes LTa1b2 secretion by B cells and T cells, which 
establishes a positive feedback loop that perpetuates 
lymphocyte recruitment (62), DC proliferation, and T cell 
priming (63). CCL21 helps to maintain inflammation by 
promoting integrin-dependent adhesion and extravasation 
of naive T cells (57). Without CCL21, these cells are 
unable to return to the circulation and accumulate in 
inflamed tissues, which may lead to TLS formation (64).
  Almost all TLS in chronically rejected human renal 
allografts correlate with IL-17 expression (65). iBALT 
formation depends on IL-17 produced by CD4+ T 
cells, since the latter promote secretion of high levels 
of CXCL13 and CCL19, which are critical for TLS 
formation (46). In a mouse model of EAE, Th17 cells 
induce TLS formation, which is in turn dependent on 
IL-17 and Pdp (22). Th17 cells are also associated 
with TLS formation in other human diseases (44). IL-
22 acts downstream of the LT pathway and regulates 
TLS organization and maintenance in the colon during 
infection (66). IL-22 can also regulate production of 
CXCL13, which can orchestrate B-cell clustering, lym-
phoid aggregation, and autoantibody production in TLS 
(67). Blockade of either IL-22 pathway significantly 
impairs and reverses TLS formation, suggesting that IL-
22 has an indispensable role in maintaining TLS (67). 
IL-22 is efficiently induced by IL-23, which is strongly 
associated with rheumatoid arthritis (RA) (68). 
  Recent evidence suggest a role for IL-7 in the develop-
ment of SLO and TLS (69). IL-7 stimulates LTi cells and 
maintains T lymphocytes survival (70). Gene expression 
profiling of synovial tissue from patients with RA iden-
tified IL-7 signal transduction in tissues within TLS, 
which was accompanied by increased expression of IL-7 
receptor (IL-7R)/IL-2R chains and IL-7 in cases of TLS-
associated synovitis (71). Also, IL-9 expression produced 
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by Th9 cells in RA patients correlates with the degree of 
synovial inflammatory infiltrate and TLS organization 
(72). 
  However, IL-27 can negatively regulate TLS develop-
ment in RA by controlling effector T cells (73). Models 
of inflammatory arthritis show that IL-27 blocks Th17-
associated joint pathology (74).

tls in huMan diseases

The presence of fully functional ectopic GCs in TLS 
has been described in a broad variety of autoimmune 
diseases, including RA (75), Sjögren’s syndrome (76), 
lupus nephritis (77), autoimmune diabetes (78), a mouse 
model of multiple sclerosis (43), a mouse model of 
spontaneous autoimmune uveitis (79), Hashimoto’s 
thyroiditis, and Graves’ disease (80). Although a wide 
spectrum of lymphoid arrangements coexist in the 
same patient, TLS includes relatively poorly organized 
perivascular aggregates, diffuse lymphoid infiltrates, 
and highly organized ectopic lymphoid follicles that 
display HEV development; T/B cell segregation; GC 
formation; and specialized reticular networks containing 
FDC and follicular reticular cells (4,10). In most auto-
immune disorders, TLS show detrimental properties. 
For example, TLS are responsible for inducing or ex-
acerbating autoimmune responses which, in human 
primary Sjögren’s syndrome samples, correlate with 
increased levels of proinflammatory mediators and 
autoantibody production (81). Also, TLS in a mouse 
model of hepatocellular carcinoma serve as niches for 
malignant hepatocyte progenitor cells, which may lead 
to tumor recurrence (82); this is despite the finding that 
TLS protect against most tumors, including both primary 
tumors and metastatic tumors (13).
  There is a correlation between cytokine or chemokine 
levels and increased complexity of TLS in autoimmune 
lesions, supporting a causative role for these mediators in 
TLS formation (75). However, some studies demonstrate 
that TLS are not totally consistent with arthritis activity 
or severity, even though they correlate with local auto-
antibody production (83). TLS facilitate localization of 
ectopic GCs and generation of new specific autoreactive 
B cells, thereby facilitating local antimicrobial responses, 
epitope spreading (84), and autoimmune exacerbation. 
Increased diversity of autoreactive B cells in the TLS may 
also be due to escape from peripheral tolerance, resulting 
in disturbance of autoreactive B cell selection (64). 

tls as prOMising targets fOr the treatMent 
Of huMan diseases

TLS help to eliminate or neutralize pathogens by genera-
ting plasma cells that produce specific antibodies. TLS 
may amplify autoimmune responses, tissue damage, 
thereby exacerbating a disease, which may then show 
a poor response to standard biological therapies (11). 
Blocking chemokines and their receptors is a promising 
therapeutic strategy. Treatment of an autoantibody-media-
ted cardiac allograft mouse model, with an inhibitory 
LTbR-Ig fusion protein abolished TLS formation and 
markedly inhibited effector antibody responses (85). 
A mouse anti-CXCL13 antibody demonstrated some 
efficacy in a mouse model of RA and in a Th17-mediated 
murine model of multiple sclerosis (86).
  The T follicular helper-germinal center/ B-cell axis 
is pro-atherogenic, and genetic disruption of CD8+ 
Tregs leads to increased TLS development in the aorta 
and exacerbates disease. Thus, disrupting this axis or 
enhancing CD8+ Treg cell function represents a promising 
therapeutic approach (87). Also, Treg cell ablation within 
tumor-associated-TLS in a mouse model of lung cancer 
induces robust effector T cell responses and tumor 
destruction (3), suggesting that Treg cell deletion might 
be a promising method of in disrupting TLS development 
and preventing tumor progression. 
  Treatments aimed at depleting B cells do not alter the 
characteristic features of Sjögren’s syndrome, which 
include increased clonal expansion in the salivary glands 
of patients; this is because established chronic TLS are 
already present (88). Thus, combination therapy targeting 
multiple steps or multiple components of TLS in human 
diseases deserves consideration. 

cOncluding reMarKs

Recent years have witnessed much research into the 
mechanisms underlying TLS formation and their 
relationship with disease. To some extent, TLS could clear 
pathogens and therefore be beneficial to the individual. 
Yet many questions remain. For example, retinoic acid 
is demonstrated to be responsible for gut-associated 
lymphoid tissues formation (89). It is unknown whether 
retinoic acid also activates Li cells in autoimmune disease. 
And are LTi cells the earliest sensors of autoantigens and 
tissue damage that can deliver signals to other cells and 
amplify the deleterious effects? Also, the exact effect of 
TLS in humans is still unknown. For example, to what 
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extent do TLS contribute to the ongoing inflammatory 
process and tissue damage in humans? Humanized mouse 
models are quite useful in human disease research. Since 
they can be experimentally manipulated to study human 
hematology and immunology in vivo, as well as cancer 
therapy. This model system could be a promising way to 
investigate the role of TLS in human diseases (90). 
  In addition, the differences between TLS and SLO are 
only partly known. It is not sure whether the immune 
response is different in TLS and SLO? And are there 
any specific cell populations in TLS that have functions 
different from that in SLO? Do the specific cells or 
cytokines contribute much to TLS formation and 
maintenance? And Epstein-Barr virus is thought to be 
a critical factor that determines TLS formation (91), as 
is murine cytomegalovirus in the salivary glands (92); 
therefore, do viruses affect TLS formation/function? In 
addition, is TLS development driven by different disease 
subtypes, or are TLS the inevitable result of persistent 
inflammation? And what may contribute to TLS 
resolution? Even though TLS are not fully understood, 
the functional artificial lymphoid tissue shows therapeutic 
promising. Since artificial lymphoid tissue induce specific 
immunity at ectopic sites and offer a novel breakthrough 
to restore the immune status and to treat uncontrollable 
obstinate diseases such as cancer, autoimmune diseases 
and severe infection (93). So it is exciting to investigate 
the mechanism of TLS in human diseases by combining 
the artificial lymphoid tissue system with humanized 
mouse models.
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