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Hepatitis is a major public health problem that increases the risk of liver cirrhosis and
liver cancer. Numerous studies have revealed that long non-coding RNAs (lncRNAs)
exert essential function in the inflammatory response of multiple organs. Herein, we
aimed to explore the effect of lncRNA TUG1 in LPS-induced hepatocyte inflammation
response and further illuminate the underlying mechanisms. Mice were intraperitoneally
injected with LPS, and the liver inflammation was evaluated. Microarray showed that
lncRNA TUG1 was upregulated in LPS-induced hepatocyte inflammation. qRT-PCR and
immunofluorescence assay indicated a significant increase of TUG1 in mice with LPS
injection. Functional analysis showed that si-TUG1 inhibited LPS-induced inflammation
response in mice liver, inhibited apoptosis level, and protected liver function. Then,
we knock down TUG1 in normal human hepatocyte AML12. Consistent with in vivo
results, si-TUG1 removed the injury of LPS on AML12 cells. Furthermore, TUG1 acted
as a sponge of miR-140, and miR-140 directly targeted TNFα (TNF). MiR-140 or si-
TNF remitted the beneficial effects of TUG1 on LPS-induced hepatocyte inflammation
response both in vitro and in vivo. Our data revealed that deletion of TUG1 protected
against LPS-induced hepatocyte inflammation via regulating miR-140/TNF, which might
provide new insight for hepatitis treatment.

Keywords: hepatitis, lncRNA TUG1, miR-140, TNF, LPS

INTRODUCTION

Hepatitis is a general term for liver inflammation, which is usually caused by various pathogenic
factors, including viruses, bacteria, alcohol, drugs, and so on (Gao et al., 2020). Inflammatory injury
is considered the main factor leading to liver cancer occurrence and development (Kubes and Jenne,
2018; Fan et al., 2020). Inhibition of inflammatory liver injury may be an essential strategy to control
the occurrence of liver cancer (Bartneck et al., 2017). The infiltration of inflammatory cells and
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the production of inflammatory factors destroy the original
immune balance and induce a series of pathological liver
damage. At present, alanine aminotransferase and aspartate
aminotransferase are used as the detection index of liver injury,
which exerts essential effects in the diagnosis and treatment of
liver injury. Still, the specificity is poor (Bihrer et al., 2011).
Therefore, it is of great significance to explore the clinical
indicators for diagnosing and treating hepatitis.

Long non-coding RNA (lncRNA) is a group of RNA molecules
that are longer than 200 nt, with little or no protein-coding
function (Carter et al., 2020). LncRNA plays an important
role in regulating and maintaining the structural integrity
of chromosome and genome, chromosome inactivation, gene
transcription, translation, and epigenetic regulation (Wang et al.,
2020). In recent years, studies have shown that lncRNAs can
also be detected in various liquid samples and can exist in
some enzymes, acids, bases, and other conditions, and still
has good stability after repeated freezing and thawing (Mazar
et al., 2010). The discovery of lncRNAs and the improvement
of detection methods make it an ideal molecular marker and
effective therapeutic target (Xi et al., 2018; Lou et al., 2019). In
addition, lncRNA can be used as a new tumor diagnostic marker
because of its good sensitivity and specificity (Li Z. et al., 2017b).
At present, lncRNA has become a new research hotspot. Different
lncRNA expressions were found by LPS stimulation in human
renal tubular epithelial cells, monocytes, cardiomyocytes, or
plasma of patients with sepsis (Mey et al., 2019). The differentially
expressed lncRNA screened by LPS in human umbilical vein
endothelial cells changed by 10 times and 72 times. These changes
in lncRNAs expression may be involved in the inflammatory
response. LncRNA-IL7R interacts with IL-7 receptor α subunit
to reduce the pro-inflammatory response induced by LPS (Cui
et al., 2014). HOTAIR and NF-κB signal pathways regulate
the expression of TNFα in septic cardiomyocytes (Wu et al.,
2016). LncRNA has become a key regulator of inflammation.
To further understand the interaction between inflammatory
signal transduction pathway and lncRNA, researchers found
that cardiac and apoptosis-related Carlr is a kind of lncRNA
expressed in different tissues and cells of mice and humans.
After the enhancement of NF-κB signal in macrophages, the
expression of Carlr increased and translocated to the cytoplasm
(Castellanos-Rubio et al., 2017).

LncRNA participates in liver metabolism and capacity balance
(Lan et al., 2019; Pradas-Juni et al., 2020). LncRNA-LSTR is
enriched in the liver that regulates glucose and lipid metabolism
in the liver. The consumption of LSTR in mouse liver upregulates
the expression of ApoC2, which promotes the clearance of
triglycerides (Filser et al., 2001). LncRNA taurine upregulated
gene 1 (TUG1) is first identified in murine retina and is necessary
for retina development (Young et al., 2005). Recent studies
show that TUG1 is closely related to inflammation response
in cardiomyocyte ischemia reperfusion injury and acute lung
injury (Shi et al., 2019; Qiu et al., 2020). However, the role of
TUG1 in hepatocyte inflammation is poorly clarified. Herein, we
explored the effect of lncRNA TUG1 in LPS-induced hepatocyte
inflammation and injury and further illuminate the possible
underlying mechanisms.

MATERIALS AND METHODS

Animal Experiments
C57BL/6 mice (male, about 25 g of weight) were purchased from
Beijing Viton Lihua Experimental Animal Technology Company.
After intraperitoneal injection of 22 mg/ml pentobarbital sodium
(diluted with normal saline), the caudal root, hindlimb, and
eyelash reflexes disappeared after 10 min, and slow breathing
was considered as deep anesthesia. After anesthesia, the mouse
head was tilted downward, and the tongue was pulled out
with tweezers. One hundred fifty microliters of lentivirus
(1 × 108 PFU/ml) containing TUG1-shRNA/TNF-shRNA/NC-
shRNA was injected in the tail vein of mice. miR-140 antagomiR
(antagomiR-140)/antagomiR-NC (80 mg/kg) in 0.2 ml saline was
injected once a day for 3 consecutive days. Twenty-one days
after the lentivirus injection, 8 mg/kg LPS was intraperitoneally
injected into mice for 6 h. Then, mice were intraperitoneally
injected with 3% pentobarbital sodium and were euthanized by
excessive anesthesia with a dose of 90 ml/kg, and the organs
and tissues were removed for follow-up study. The research
protocol of this study was approved by the Animal Care and Use
Committee of the Linyi people’s hospital.

Cell Culture and Treatment
The AML12 cell line (mouse normal hepatocytes) was purchased
from the Science Cell Laboratory. Cell lines were cultured in
DMEM (Thermo-Life, United States) with 10% FBS (Thermo
Fisher Scientific, United States) and 100 µl/ml penicillin and
streptomycin (Beyotime, China) and placed at 37◦C with 5%
CO2. The AML12 cells were plated until the cell density reached
80% confluency of dishes to transfect. AMO-140 (miR-140
inhibitor) or small interfering RNA (si-RNA) of TUG1 or TNFα

(TNF) was constructed by Genechem (Shanghai, China). The
plasmids were transfected with Lipofectamine 2000 (Invitrogen,
Carlsbad, CA). LPS was added into culture media of cells
at a concentration of 100 ng/ml for 6 h. Primary liver cells
were isolated from LPS/saline-treated mice using collagenase
perfusion technique as previously described (Korelova et al.,
2019). Macrophages were purified from mixed primary cultures
of adult mice liver cells (Kitani et al., 2011).

MTT Assay
AML12 cells were plated in 96-well plates and we used MTT
assay to detect the cell viability. MTT (0.5 mg/ml; Beyotime
Biotechnology, China) was added to every well after treatment
and incubated for 3 h at 37◦C. One hundred microliters of
DMSO was added and incubated for 15 min. We measured the
absorbance by a spectrophotometer (Tecan, Austria) at 493 nm.

ROS Assay
Reactive oxygen species (ROS) detection was performed
according to the procedures (Beyotime, China). Briefly, AML12
cells were plated in 12-well plates and ROS solution was added
into cells for 20 min. After fixation in 4% paraformaldehyde
and PBS washing solution, the cells were incubated in DAPI for
10 min. Fluorescence was observed by fluorescence microscope.
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qRT-PCR
RNA extraction was performed using trizol reagent. NanoDrop
8000 (Thermo Fisher Scientific, Waltham, MA, United States)
was used to detect the concentration and purity of RNA. The
single-stranded cDNAs were synthesized from 1 µg of RNA. The
expression of mRNAs and miRNAs was quantified by RT-PCR
with SYBR Green I (Thermo Fisher Scientific, Inc.).

Western Blot
After RIPA cleavage, we extracted total protein and measured
it with BCA method. After quantitative denaturation, proteins
were separated using 10 or 15% polyacrylamide gels and
transferred onto 0.22 µm PVDF membranes (Merck Millipore,
United States). The first incubation and second incubation were
carried out according to the operation steps. The expression
of the protein was expressed by the gray value. Primary
antibodies list: GADPH (ab181602, Abcam), cleaved-caspase3
(ab2302, Abcam), Bax (ab32503, Abcam), Bcl2 (12789-1-AP,
Proteintech), TNFα (17590-1-AP, Proteintech), and IL-6 (66146-
1-Ig, Proteintech). The secondary antibodies IRDye700/800
Mouse or Rabbit were produced by LICOR (Lincoln, Nebraska,
United States) for 1 h, and the bands were scanned using Odyssey.

Luciferase Assay
We constructed wild-type (WT) or mutant (Mut) psiCHECK-2
luciferase reporter plasmid in GenePharma company (Shanghai,
China). HEK293 cells were co-transfected with 20 mmol/L miR-
140 mimic or miR-NC together with WT-TUG1/Mut-TUG1
or WT-TNF/Mut-TNF. Luciferase activity was measured with
Dual Luciferase Reporter Assay Kit (Transgene, China) on
GloMax20/20 at 48 h after the transfection.

RIP
We used RIP assay to determine the binding between TUG1/TNF
and miR-140 using Magna RIPTM RNA-Binding Protein
Immunoprecipitation Kit (Millipore) as previously reported
(Liu C. et al., 2018). Briefly, AML12 cells were transfected with
biotinylated miR-140/miR-NC or TNF/NC, and the mRNA level
of TUG1 or miR-140 was detected using qRT-PCR.

H&E Staining
The liver tissues were gathered and fixed in 4% paraformaldehyde
for 24 h. Then, the fixed tissues were embedded in paraffin.
Next, a paraffin slicer machine was used to cut slices (5 mm
cross-sectional). H&E staining was used to evaluate pulmonary
morphology. Liver sections were dewaxed with xylene and treated
with ethanol at different concentrations for 5 min. Stain with
hematoxylin for 5 min, treat with 5% acetic acid for 1 min, and
rinse with water. Dye with eosin for 1 min and rinse with running
water. Dehydrate in 70, 80, 90, and 100% ethanol for 10 s and
xylene for 1 min. Drizzle with neutral gum and seal.

TUNEL
We used the in situ Cell Death Detection Kit (TUNEL
fluorescence FITC kit, Roche, Germany) to detect apoptotic cells.
We used DAPI to stain nuclei. We used an IX73 fluorescence

microscope (Olympus, Valley, PA) to analyze fluorescence
staining. We used ImageJ to count the total cells and TUNEL-
positive cell numbers.

Malonaldehyde (MDA), Glutathione
(GSH)/Oxidized Glutathione (GSSH)
Ratio, Superoxide Dismutase (SOD), and
Catalase Detection
MDA was detected using MDA detection kit (S0131S, Beyotime),
GSH/GSSG ratio detection used GSH/GSSG Assay Kit (KA3779,
Abnova), SOD detection used SOD assay Kit (BC0170, Solarbio),
and catalase detection used Catalase Assay Kit (K773-100,
Biovision). According to the protocol (Shen et al., 2020), cells
were lysed, and reagents were added and the absorbance was
measured with a microplate reader.

Fluorescence in situ Hybridization (FISH)
The sample was grown or adhered to or sliced on the cover slide
and permeated with 70% ethanol. Hybridization can be done
in a traditional laboratory incubator at 37◦C within 4 h. After
hybridization, the washing buffer was incubated briefly to remove
the excess probe. The total time is 1–1.5 h. The sample can be
imaged using a standard fluorescence microscope.

Statistical Analysis
Data were shown as mean ± SD. Student’s t-test or one-
way ANOVA was used to compare the groups. P < 0.05 was
considered significant.

RESULTS

LncRNA TUG1 Is Upregulated in Liver
Tissues After LPS Treatment
We first established a mouse model of hepatocyte inflammation
by intraperitoneally injecting LPS, and the inflammation of
liver was evaluated. LPS treatment significantly increased the
infiltration of inflammatory cell (Figure 1A). Then, qRT-PCR
also indicated that the expression of inflammatory factors (TNFα

and IL-6) and monocyte chemoattractant protein-1 (MCP-1)
was upregulated upon LPS stimulation (Figure 1B). Then, we
performed bioinformatic analysis, and the data showed the
differentially expressed lncRNAs in saline and LPS treatment of
liver tissues, which showed an increase of TUG1 in LPS-treated
liver tissues (Figure 1C). Then, qRT-PCR also indicated that
TUG1 was upregulated in LPS-treated liver tissues compared
with saline-treated liver tissues (Figure 1D). Considering the
accumulation of macrophages (including resident and infiltrated
macrophages) in liver tissue after LPS treatment, we tested the
level of TUG1 in isolated hepatocytes and macrophages. qRT-
PCR showed an increase of TUG1 expression in both hepatocyte
and macrophage but has a higher level in hepatocyte (Figure 1E).
Then, FISH assay showed that TUG1 expression, predominantly
located in the cytoplasm, was dramatically raised in AML12 cells
of LPS stimulation (Figure 1F).
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FIGURE 1 | The expression of lncRNA TUG1 in LPS-induced hepatocyte inflammation. LPS (8 mg/kg) was intraperitoneally injected into mice to establish a mouse
model of hepatocyte inflammation. (A) H&E staining for mice liver sections. Scale bar, 15 µm. (B) The expression of inflammatory factors TNFα, IL-6, and MCP-1
was detected by qRT-PCR. (C) LncRNA expression profiles in mice with saline or LPS. (D) The expression of TUG1 in saline- and LPS-injected livers was detected
by qRT-PCR. (E) Hepatocytes and macrophages were separated upon saline and LPS treatment, and qRT-PCR used to test TUG1 level in hepatocyte and
macrophage. (F) FISH assay was used to determine the location and level of TUG1 upon LPS treatment in AML12 cells. Scale bar, 25 µm. Data are mean ± SD;
∗P < 0.05. Data among multiple groups were analyzed by one-way ANOVA, followed by a Tukey post hoc test. The experiment was repeated in triplicate.

Knockdown of TUG1 Alleviates
LPS-Induced Inflammation and Injury in
Mice
For further research, we constructed lentiviral plasmid for
knockdown of the expression of TUG1 (LV-sh-TUG1, LV-
sh-NC was indicated as a control group) and injected it
through the tail vein of mice (Figure 2A). The survival curve
showed that LPS significantly inhibited the survival rate of
mice, while deletion of TUG1 increased the survival rate
compared with the LPS group (Figure 2B). H&E staining
showed that LPS caused structural damage of hepatocyte
and infiltration of inflammatory cells, while knockdown of
TUG1 significantly alleviated the LPS-induced hepatocyte injury
(Figure 2C). qRT-PCR showed that sh-TUG1 alleviated LPS-
induced increase of TNFα, IL-6, and MCP-1 (Figure 2D). Then,
we evaluated the oxidative stress level. MDA assay exhibited
that LPS induced MDA expression, while sh-TUG1 reduced
MDA level (Figure 2E). Also, silencing of TUG1 remitted
LPS-induced downregulation of GSH/GSSG ratio, SOD, and
catalase expression (Figure 2F). In addition, silencing of TUG1
inhibited cleaved-caspase-3 expression and suppressed Bax/Bcl2
ratio (Figure 2G).

Deletion of TUG1 Attenuated
LPS-Induced Inflammation and Injury in
Cells
In vitro, we cultured AML12 cells treated with LPS (100
ng/ml) to mimic in vivo LPS-induced hepatocyte inflammation.
siRNA of TUG1 was transfected into AML12 cells to inhibit
TUG1 expression (Figure 3A). MTT results showed that LPS
treatment decreased cell viability, while si-TUG1 recover cell
viability and remitted the injury effects of LPS (Figure 3B). In
addition, TUNEL analysis exhibited an increase of apoptotic cell
numbers in LPS-treated AML12 cells, while si-TUG1 decreased
apoptotic cell numbers (Figure 3C). In addition, LPS promoted
the expression of cleaved-caspase-3 and Bax/Bcl2, which was
reversed by si-TUG1 transfection (Figure 3D). Moreover, LPS
induced the expression of inflammation factors, while si-TUG1
reduced inflammation factor level (Figures 3E,F). ROS assay
showed that LPS treatment promoted ROS production, while
si-TUG1 inhibited ROS level in AML12 cells (Figure 3G).

TUG1 Interacted With miR-140
To explore the molecular mechanism of TUG1 in LPS-induced
hepatocyte inflammation, we used miRanda database and found
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FIGURE 2 | Knockdown of TUG1 alleviates LPS-induced inflammation in mice. LV-sh-TUG1 or LV-sh-NC was injected in the tail vein of mice. (A) The knockdown
efficiency of sh-TUG1 was determined by qRT-PCR. (B) Survival plots for mice in different groups. (C) H&E staining for liver sections in different groups. Scale bar, 15
µm. (D) The expression of inflammatory factors TNFα, IL-6, and MCP-1 was detected by qRT-PCR. (E) Malonaldehyde (MDA) of livers was examined.
(F) Glutathione (GSH)/oxidized glutathione (GSSH) ratio, superoxide dismutase (SOD), and catalase were determined. (G) Western blot was used to detect
apoptosis-related proteins cleaved-caspase-3, Bax, and Bcl2 in mice liver tissues. Data are mean ± SD; ∗P < 0.05. Data among multiple groups were analyzed by
one-way ANOVA, followed by a Tukey post hoc test. The experiment was repeated in triplicate.

a potential binding between TUG1 and miR-140-5p (miR-
140) (Figure 4A). Then, luciferase assay showed miR-140
inhibited activity of WT TUG1 not mut TUG1 in HEK293 cells
(Figure 4B). Overexpression of TUG1 inhibited miR-140 level,
while silencing of TUG1 promoted miR-140 level in AML12 cells
(Figure 4C). Injection of LV-sh-TUG1 promoted miR-140 level
with or without LPS treatment (Figure 4D). Further, endogenous
TUG1 was enriched in biotinylated miR-140 transfected AML12
cells, which reveals a direct binding of TUG1 with miR-140
(Figure 4E). Then, FISH analysis showed that TUG1 was co-
located with miR-140 in AML12 cytosol (Figure 4F).

MiR-140 Inhibited TNF Expression
Through Targetscan, we found base pairing of miR-140
and TNFα (TNF) (Figure 5A). The following luciferase
analysis suggested miR-140 directly inhibited TNF expression

(Figure 5B). Furthermore, miR-140 suppressed TNF mRNA and
protein expression, but AMO-140 increased TNF level in AML12
cells (Figures 5C,D). RIP assay showed enrichment of miR-140
in biotinylated TNF cells (Figure 5E).

Deletion of TUG1 Alleviates LPS-Induced
Inflammation and Injury via miR-140/TNF
Axis in AML12 Cells and Liver Tissues
We then inhibited the expression of TUG1 with AMO-140
or TNF in AML12 cells (Figure 6A). Knockdown of TUG1
inhibited LPS-induced apoptosis, inflammation response, and
ROS production (Figures 6B–G). However, AMO-140 or TNF
removed the beneficial role of si-TUG1 on AML12 cells
(Figures 6B–G). Similarly, LPS-treated mice were injected
with either LV-sh-TUG1 alone or with antagomiR-140/LV-
TNF (Figure 7). We also found that inhibition of miR-140 or
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FIGURE 3 | Knockdown of TUG1 attenuated LPS-induced inflammation in AML12 cells. siRNA of TUG1 was transfected into AML12 cells with LPS treatment (100
ng/ml). (A) The silencing efficiency of si-TUG1 was detected by qRT-PCR. (B) MTT assay for cell viability of AML12 cells. (C) Apoptosis cell numbers were tested by
TUNEL staining. Scale bar, 20 µm. (D) Western blot for apoptosis-related proteins (cleaved-caspase-3, Bax, and Bcl2) in AML12 cells. (E) Western blot for TNFα

and IL-6 expression. (F) qRT-PCR analysis for TNFα, IL-6, and MCP-1 expression. (G) ROS assay was performed to test the ROS level. Scale bar, 25 µm. Data are
mean ± SD; ∗P < 0.05. Data among multiple groups were analyzed by one-way ANOVA, followed by a Tukey post hoc test. The experiment was repeated in
triplicate.

overexpression of TNF reversed the anti-inflammatory effect of
TUG1 deletion (Figures 7A–F).

DISCUSSION

Hepatitis is a worldwide public health problem (Martin et al.,
2015). The inflammatory response caused by hepatitis severely
damages liver structure and function, and 15–25% of patients
with hepatitis will eventually die of liver cirrhosis or liver
cancer (Tan et al., 2020). In recent years, studies have found
that lncRNA regulated gene expression at the transcriptional
and post-transcriptional levels, respectively. The dysfunction of
these lncRNAs may lead to disease (Zhu et al., 2019). Present
data showed that lncRNA TUG1 was upregulated in LPS-
induced hepatocyte inflammation. Deletion of TUG1 inhibited
LPS-induced inflammation response in vivo and in vitro.
Furthermore, TUG1 acted as a sponge of miR-140, and miR-140
directly targeted TNF. Functionally, miR-140 or si-TNF remitted
the beneficial effects of TUG1 on LPS-induced hepatocyte
inflammation response.

At present, studies have shown that a variety of lncRNAs
expression levels have changed significantly in liver diseases

and play a core regulatory role in the occurrence, development,
and prognosis of liver disease (De Vincentis et al., 2020).
Therefore, lncRNA is expected to become a potential diagnostic
marker, prognostic index, and clinical treatment target for
hepatitis, liver cirrhosis, and liver cancer (Zhang K. et al.,
2019a). Some studies have shown that lncRNA Lethe can
bind to Rela and then block the binding of NF-κB to the
target gene’s promoter, thus blocking the inflammatory immune
response mediated by NF-κB (Rapicavoli et al., 2013). Besides,
the overexpression of lncRNA CRNDE in astrocytes increased
the expression of critical factors in the Toll-like receptor
signal pathway, especially the signal pathway mediated by Toll-
like receptor 3. Also, CRNDE also increased the expression
level of downstream transcription factors, such as NF-κB and
various cytokines (Li H. et al., 2017a). CRNDE regulates kidney
injury by triggering inflammatory response through the TLR3-
NF-κB signal pathway (Sun et al., 2019). It has also been
reported that lncRNA HOTAIR is upregulated in the septic
model, accompanied by the production of TNFα and the
phosphorylation of p65. Knocking down HOTAIR can protect
the cardiac inflammatory response and myocardial dysfunction
induced by LPS (Wu et al., 2016). As a component of the
outer wall of the gram-negative bacteria cell wall, LPS is
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FIGURE 4 | TUG1 acted as a sponge of miR-140. (A) MiRanda database showing the binding sites of miR-140 with TUG1, and the mutant sequence of TUG1.
(B) Wild-type and mutant TUG1 were transfected into HEK293 cells with or without miR-140, and luciferase assay was to evaluate the binding between miR-140
and TUG1. (C) AML12 cells were transfected with TUG1 plasmid or si-TUG1 or its NC, and the mRNA level of miR-140 was detected using qRT-PCR.
(D) Biotinylated miR-140 or NC was transfected into AML12 cells, and qRT-PCR was performed to detect the enrichment of TUG1. (E,F) FISH assay was used to
determine the location TUG1 and miR-140 in AML12 cells. Scale bar, 25 µm. Data are mean ± SD; ∗P < 0.05. Data among multiple groups were analyzed by
one-way ANOVA, followed by a Tukey post hoc test. The experiment was repeated in triplicate.

commonly used to stimulate inflammation of different cells
and tissues by extracellular treatment, including pneumonia
(Zhang H. et al., 2020), hepatitis (Schwaderer et al., 2020),
and myocarditis (Wu et al., 2016). In this study, we screened
the significantly high expression of lncRNA TUG1 in the liver

of mice induced by LPS. The silencing of TUG1 inhibited
the LPS-induced inflammation response. Cytokines, including
TNFα, IL-6, and MCP-1, were determined to assess LPS-induced
inflammation. IL-6 has been considered as a pro- as well as an
anti-inflammatory cytokine, and the present study indicated an
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FIGURE 5 | TNF was a directed target of miR-140. (A) The binding bases of miR-140 and TNF from Targetscan. (B) Wild-type and mutant TNF was transfected into
HEK293 cells with or without miR-140, and luciferase assay was used to evaluate the binding. AML12 cells were transfected with miR-140 or AMO-140; (C) the
mRNA (D) and protein level of TNF were detected. (E) RIP assay for the binding of miR-140 and TNF in AML12 cells. Data are mean ± SD; ∗P < 0.05. Data among
multiple groups were analyzed by one-way ANOVA, followed by a Tukey post hoc test. The experiment was repeated in triplicate.

increase of IL-6 upon LPS treatment. There are reports showing
that IL-6 is significantly upregulated in LPS-treated liver tissues
(Antoniades et al., 2014).

There is a close relationship between inflammation and
oxidative stress, and they promote each other (Lee et al., 2020).
It has been reported that oxidative stress is an essential liver
injury mechanism caused by paracetamol (Shi et al., 2020). As
one of the end products of lipid peroxidation, MDA is one of

the classical indicators to reflect the degree of oxidative damage
in the body (Antoniou et al., 2017). At the same time, there are
various antioxidant enzymes in the liver, which can resist free
radical damage, such as SOD, catalase, and GSH-Px to form an
antioxidant enzyme system (Derakhshesh et al., 2019). GSH is
not only a scavenger of low-molecular free radicals but also a
substrate of GSH-Px, which can prevent cytokines from oxidative
damage (Xuan et al., 2020). Lipid peroxidation converts ROS into
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FIGURE 6 | Inhibition of TUG1 alleviates LPS-induced inflammation and injury via miR-140/TNF axis in AML12 cells. Si-TUG1 was transfected into AML12 cells with
AMO-140 or TNF. (A) The transfection efficiency was detected using qRT-PCR. (B) MTT assay for cell viability of AML12 cells. (C) Apoptosis cell numbers were
tested by TUNEL staining. Scale bar, 20 µm. (D) Western blot for cleaved-caspase-3, Bax, and Bcl2 in AML12 cells. (E) qRT-PCR analysis for IL 1β, IL-6, and TNFα

expression. (F) Western blot for TNFα and IL-6 expression. (G) ROS assay for the ROS level in cells. Scale bar, 25 µm. Data are mean ± SD; ∗P < 0.05. Data are
mean ± SD; ∗P < 0.05 vs. LPS + si-NC, #P < 0.05 vs. LPS + si-TUG1. Data among multiple groups were analyzed by one-way ANOVA, followed by a Tukey
post hoc test. The experiment was repeated in triplicate.

FIGURE 7 | Inhibition of miR-140 or overexpression of TNF reversed the anti-inflammatory role of sh-TUG1 in vivo. Either LV-sh-TUG1 alone or with
antagomiR-140/LV-TNF was injected in the tail vein of mice, and then LPS was injected through the tail vein. (A) The expression of TUG1, miR-140, and TNF in liver
tissues was evaluated. (B) The expression of inflammatory factors TNFα, IL-6, and MCP-1 was detected by qRT-PCR. (C) MDA of livers was examined.
(D) GSH/GSSH ratio, SOD, and catalase were determined. (E) Western blot was used to detect apoptosis-related proteins cleaved-caspase-3, Bax, and Bcl2 in
mice liver tissues. (F) Western blot for the protein level of TNFα and IL-6. Data are mean ± SD; ∗P < 0.05. Data among multiple groups were analyzed by one-way
ANOVA, followed by a Tukey post hoc test. The experiment was repeated in triplicate.
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active chemicals, which amplifies ROS’ effect by chain or chain
branching reaction. Simultaneously, due to the accumulation of
ROS, the consumption of antioxidants in liver tissue increases,
and the expression of SOD, CAT, GSH-Px, and GSH decreases
(Zhang R. et al., 2019b). We evaluated the role of TUG1 in
LPS-induced hepatocyte inflammation by detecting oxidative
stress. Our results showed that LPS treatment increased MDA
level; decreased GSH/GSSG ratio, SOD, and catalase expression;
and promoted ROS production. However, the knockdown of
TUG1 reversed the damage of LPS. Besides oxidative stress,
apoptosis is also accompanied by LPS-induced inflammation
(Chen et al., 2017; Lv et al., 2020; Zhou and Xia, 2020). We further
detected apoptotic marker proteins cleaved-caspase 3, Bax, and
Bcl 2 in LPS-treated cells, which indicated that silencing TUG1
inhibited LPS-induced cell apoptosis.

In terms of mechanism, we found that TUG1 acted as a
sponge of miR-140, and miR-140 directly targeted TNF in AML12
cells. MiR-140 was shown to modulate the angiogenesis in
hepatocellular carcinoma (Hou et al., 2020). TNF is an important
inflammatory factor and involved in inflammation response of
multiple organs (Liu R. et al., 2019; Kaaij et al., 2020). Our
data suggested that deletion of TUG1 relieved LPS-induced
hepatocyte inflammation and injury by regulating miR-140/TNF
axis both in vivo and in vitro.

CONCLUSION

In summary, our data revealed that knockdown of TUG1
protected against LPS-induced hepatocyte inflammation and
injury, which was mediated by miR-140/TNF axis. This study

might provide a new understanding for the hepatitis and liver
injury mechanism.
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