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ABSTRACT Background: Parkinson’s disease (PD) presents with motor symptoms such as bradykinesia,
rigidity, and tremor that can affect gait. To monitor changes associated with disease progression or medication
use, quantitative gait assessment is often performed during clinical visits. Conversely, vision-based solutions
have been proposed for monitoring gait quality in non-clinical settings. Methods: We use three 2D human
pose-estimation libraries (AlphaPose, Detectron, OpenPose) and one 3D library (ROMP) to calculate gait
features from color video, and correlate them with those extracted by a Zeno instrumented walkway in older
adults with PD. We calculate video-based gait features using a manual and automated heel-strike detection
algorithm, and compare the correlations when the participants walk towards and away from the camera
separately. Results: Based on analysis of 67 bidirectional walking bouts from 25 adults with PD, moderate
to strong positive correlations were identified between the number of steps, cadence, as well as the mean
and coefficient of variation of step width calculated from Zeno and video using 2D pose-estimation libraries.
We noted that our automated heel-strike annotation method struggled to identify short steps. Conclusion: Gait
features calculated from 2D joint trajectories are more strongly correlated with the Zeno than analogous gait
features calculated from ROMP. Based on our analysis, videos processed with 2D pose-estimation libraries
can be used for longitudinal gait monitoring in individuals with PD. Future work will seek to improve the
prediction of gait features using a comprehensive machine learning model to predict gait features directly
from color video without relying on intermediate extraction of joint trajectories.

INDEX TERMS Computer vision, human pose-estimation, Parkinson’s disease, quantitative gait analysis,
Zeno instrumented walkway.

I. INTRODUCTION Specifically, changes in step length, gait speed, axial rigid-
Individuals with Parkinson’s disease (PD) experience dete- ity, and rhythmicity have been observed as the disease pro-
rioration of gait during the progression of their disease. gresses [1], [2]. In addition to disease progression, gait
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patterns in this population can fluctuate due to dopaminergic
medications used to treat the symptoms of PD [1], [3].

Currently, quantitative gait assessment is commonly per-
formed in the clinic using sophisticated motion-capture sys-
tems or instrumented walkways. However, these systems
require large and specialized equipment that cannot be easily
used outside of the clinic, thus requiring individuals with PD
to visit specialized clinics to have their gait assessed. This has
motivated the development and evaluation of various tools for
measuring quantitative gait parameters outside of the clinic to
facilitate more frequent and convenient monitoring of gait.

Body-worn inertial measurement units (IMUs) have been
proposed as a means to capture gait information in this pop-
ulation [4]-[6]. Previous work has validated that body-worn
IMUs can detect gait events such as heel-strike and toe-off
in individuals with PD with high precision and recall [7].
Furthermore, spatial gait parameters of stride length, stride
velocity, and vertical displacement of the shank have also
been validated against an optical motion-capture system
in a healthy adult population, achieving strong correlation
(r >.9) [8]. However, while accurate and light-weight, there
are challenges associated with the use of IMUs for longitu-
dinal analysis of gait in older adults outside of the clinic.
Multiple IMUs are often needed to capture gait informa-
tion accurately, and compliance in people with PD is low
(62 — 68%), even for systems consisting of a single wrist-
worn device [9].

Vision-based systems provide an alternative to IMUs
for unobtrusive gait assessment outside of the clinic. Gait
features calculated using a Microsoft Kinect sensor, which
consists of a depth and color video camera, have been val-
idated against both gold-standard motion capture systems
and GAITRite instrumented walkways (CIR Systems Inc.,
Franklin, NJ, USA) [10], [11]. While systems that use multi-
ple Microsoft Kinect sensors may be well-suited for environ-
ments where researchers or technicians can set-up the devices
appropriately, these systems are not feasible for in-home
use by older adults. As a more accessible alternative, color
video recorded from ubiquitous consumer-grade webcams or
smartphone have been proposed for gait assessment in non-
clinical settings. Recent advances in pose-estimation libraries
allow for extraction of joint trajectories from consumer-
grade color video [12]-[15]. Previous work has used videos
from a single consumer-grade camera to successfully extract
joint trajectories and predict parkinsonism severity [16], [17],
and specifically on the gait item of the Unified Parkinson’s
Disease Rating Scale (UPDRS-gait) using machine learning
models [18]-[21]. Furthermore, spatial-temporal and balance
gait features extracted from smartphone videos have been
correlated with those obtained from an IMU system in healthy
older adults [22]. However, gait features extracted from stan-
dard color video have not yet been validated against clinical
gait assessment systems in older adults with PD.

This work seeks to validate whether gait features cal-
culated from standard color video using joint trajectories
extracted using three open-source pose-estimation libraries
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(AlphaPose, Detectron, OpenPose) can be used to assess gait
in individuals with PD. To achieve this goal, the video-based
gait features will be correlated with the corresponding gait
features extracted from a Zeno instrumented walkway (Zeno-
Metrics, Peekskill, NY, USA) and PKMAS - ProtoKinetics
Movement Analysis Software (ProtoKinetics LLC, Haver-
town, PA, USA). The Zeno instrumented walkway and
PKMAS system are commonly used for clinical gait assess-
ment and have been previously validated for use in individu-
als with PD [23], [24].

As the calculation of gait features from video is dependent
on the detection of heel-strikes, an automated algorithm is
compared with manual annotations of heel-strikes. Finally,
the correlation of gait features obtained from the two sys-
tems is examined separately for walking bouts for which the
participant is walking towards and away from the camera.
This work serves as a first step towards understanding the
capabilities and limitations of quantitative gait assessment of
individuals with PD using a single-consumer grade camera.

Il. METHODS

A. DATA COLLECTION

Participants with a diagnosis of idiopathic PD were recruited
for this study. Participants were assessed in an off treatment
state and while on their regular therapy, which in some cases
also included deep brain stimulation (DBS). When possible,
participants were assessed under multiple treatment condi-
tions during the same clinical visit, and all walks were ana-
lyzed in this study. Walks were assessed on the new version of
the UPDRS (MDS-UPDRS) from the video recordings by a
specialist clinician (neurologist) affiliated with the study [25].
The research ethics board of the institute approved the study
protocol. Participants were instructed to walk 6 m along
a Zeno™ Walkway Gait Analysis System (Zeno, 120 Hz
sampling frequency), turn around at the end of the walkway,
and then walk 6 m back to the starting position (Fig. 1).
A tripod mounted camera (Logitech C920, 78° field of view,
recording at 480 x 640 resolution, 30 Hz) was used to record
color video of each walking bout. The PKMAS suite was
used to synchronize and simultaneously record both video
and data from the Zeno. The camera was positioned near
one end of the instrumented walkway (Fig. 1) and was not
moved between trials recorded on the same day, but small
changes in camera position and orientation occurred between
data collection days. The participants were evaluated in the
clothes they wore to the clinic and the standard ceiling lights
were used to illuminate the room (Fig 1).

B. CALCULATION OF GAIT FEATURES

Parameters of gait were extracted independently from the data
collected by the Zeno (using the PKMAS suite) and from the
color videos. Due to the position of and field of view of the
camera, the participants’ ankles were not visible in the video
frame when they were close to the camera. The videos were
thus first manually segmented to exclude the sections where
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FIGURE 1. The top panel presents an overhead view of data collection environment. Participants were instructed to walk along a 6 m
instrumented walkway while simultaneously being recorded by a standard color camera. The bottom panels show the major joints detected
by the OpenPose pose-estimation library as a participant walks toward (left) and away from (right) the camera.

the ankles were not visible, as well when the participant
was turning or stationary at the beginning and end of each
recording. No exclusion of bouts by step or walk quality (e.g.,
due to shuffling gait) was performed. The first and last steps
were retained in each walking bout as the planned analysis
sought to correlate features from video and Zeno, rather
than calculate exact values during constant walking speed.
Each walking bout was divided into two walking segments:
one where the participant was walking towards the camera
and one where the participant was walking away. The same
criteria were applied to filter the steps detected by the Zeno-
PKMAS system, ensuring that the same steps were selected
for analysis by both modalities.

1) 2D GAIT FEATURES FROM VIDEO
Three open-source human pose-estimation libraries (Alpha-
Pose, Detectron, OpenPose) were used to extract the positions
of body joints from the color videos [12]-[15]. These libraries
use pretrained deep learning models to predict the x and y
pixel coordinates of major body joints in each frame of the
video. Confidence scores representing the model’s certainty
of its prediction for each joint are also output by the models.
In our experiments using an RTX 2080Ti GPU, the average
inference frames per second (FPS) was 12.8 for AlphaPose,
4.4 for Detectron, and 54.9 for OpenPose.

The predicted joint positions were combined across frames
to create trajectories of joint positions over time. Joint
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positions with low confidence scores were removed and
interpolated using adjacent timesteps. As the confidence
scores output by the three pose-estimation libraries are not
calibrated, the threshold denoting “low”” confidence varied
(0.50 for AlphaPose, 0.15 for Detectron, and 0.65 for Open-
Pose), but was selected such that on average less than 10% of
the timesteps were interpolated for each joint in each pose-
estimation library. Finally, a zero-phase, second-order low-
pass Butterworth filter with an 8 Hz cut-off was used to
smooth the joint trajectories to remove noise and jitter.

As a first step toward calculating gait features from video,
heel-strike events were identified using two methods: auto-
matically using a clustering algorithm and through manual
annotation. To automatically identify heel strikes, the spatial-
temporal density-based spatial clustering of applications with
noise (ST-DBSCAN) algorithm was used [26]. This algo-
rithm deterministically groups data points into clusters that
are close in both space and time. In the context of gait
analysis, this algorithm can be used to identify stances when
the position of each ankle keypoint remains stationary (on the
ground) for a specified period of time [27]. After identifying
the stances in each ankle trajectory, heel-strikes were denoted
as the first timesteps of each detected stance. Fig. 2 presents
the joint trajectories of the ankles in the horizonal (x) direc-
tion for a sample walk from the dataset. The stances detected
by the ST-DBSCAN algorithm are denoted by red boxes, and
heel-strikes were extracted as the first timestep of each stance.
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FIGURE 2. Horizontal ankle positions for a sample walk of a participant walking away from the camera. The stances detected by the
ST-DBSCAN algorithm are denoted by red boxes, and heel-strikes were selected as the first timestep of each detected stance. Note that
as the participant walks farther from the camera (after ~5 seconds), the resolution of the joint trajectory signal is insufficient for the
ST-DBSCAN algorithm to identify the last step (instead it is combined into the previous stance).

Fig. 2 only presents the horizontal trajectories to improve
visual clarity, but both spatial dimensions (x and y) in camera
space were used to cluster the data and identify stances. As a
comparison to the ST-DBSCAN method, heel-strikes were
also manually annotated directly from the videos.

The joint trajectories and heel-strike labels were used to
calculate five features of gait for each walking bout: cadence,
number of steps, average step width, and the coefficient of
variation (CV) of step width and time. Two feature sets were
computed, one using the ST-DBSCAN heel-strike annota-
tions and the other using manual annotations. A comprehen-
sive description of these gait features and how they were
calculated is presented in previous work [28]. It is impor-
tant to note that real-world distance measures cannot be
calculated from the positions of joint coordinates in camera
space. Instead, distance measures (such as step width) were
normalized by the hip width of the participant in each frame
to compensate for the distance of the participant from the
camera. For this reason, spatial measures calculated from
video have no associated real-world units.

2) 3D GAIT FEATURES FROM VIDEO

As a comparison to the three 2D pose-estimation libraries,
ROMP, a state-of-the-art 3D pose-estimation library operat-
ing on monocular video was also explored as a means of
extracting joint trajectories from video [22]. The average
inference FPS was 31.2 for ROMP. This pose-estimation
library also predicts the location of each joint in the depth (z)
direction. Seven gait features were calculated from this data:
the five aforementioned features calculated from the 2D data,
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as well as two additional features of gait speed and step length
that require data in the depth dimension.

3) GAIT FEATURES FROM ZENO

Gait features were extracted for the same steps in the same
walking bouts using the data collected by the Zeno walkway.
Calculation of gait features from the data recorded by the
Zeno instrumented mat was performed using the PKMAS
software suite. Although more gait features are available from
PKMAS, the ones selected for evaluation in this study were:
the number of steps, cadence, velocity, step length, the mean
and coefficient of variation (CV) of stride width, and the CV
of step and swing time. As the distance measures calculated
from video were unitless and normalized, the stride width
obtained from the Zeno was analogously divided by the foot
length. In subsequent sections of this manuscript, stride width
refers to this normalized metric.

C. CORRELATION ANALYSIS

A correlation analysis was performed between pairs of gait
features extracted from video and using the Zeno system. The
pairs of gait features correlated from each feature set were
selected through discussion with a neurologist specializing
in movement disorders and are presented in Table 1. These
gait features were chosen as they were determined to be
most relevant clinically. Individuals with PD have decreased
velocity, reduced stride and step time, decreased swing time,
increased stride time, stride time variability and dual sup-
port time. These gait characteristics correlate with clinical
progression of PD and recent systematic review showed that
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TABLE 1. Paired video and Zeno gait features for correlation analysis.

TABLE 2. Clinical characteristics of study participants and walking bouts.

Video Gait Feature — Zeno Gait Feature

Study participants (n = 25)

Number of steps — Number of steps
Cadence — Cadence
Step width — mean — Stride width — mean
Step width — CV* — Stride width CV
Step time — CV* — Step time CV
Step time — CV* — Swing time CV
Speed** — Velocity
Step length — mean** — Step length — mean

*CV = coefficient of variation, **3D gait features from ROMP only

these are among the most commonly assessed features in gait
assessments in individuals with PD [29].

The correlation analysis was performed independently
for the video feature sets extracted using automated
(ST-DBSCAN) and manual heel-strike annotation, and for
each pose-estimation library. Furthermore, the subsets of
bouts where the participants were walking towards or away
from the camera were analyzed separately.

The D’ Agostino-Pearson test was first used to check for
normality of each of the video and Zeno features. Tables A
and B of the Supplemental Material present the p-values for
this normality test. At an alpha level of .05, most feature sets
were not normally distributed, so Spearman’s rank correla-
tion analysis was performed between each gait feature pair.
Right-tailed p-values were calculated to assess whether the
correlation coefficient was greater than O indicating positive
correlation between Zeno and video features. Bonferroni cor-
rection was used to adjust for the number of comparisons with
each Zeno gait feature.

Furthermore, a Wilcoxon signed-rank test was used to
assess whether there was a significant difference between gait
features in different medication and DBS treatment states.
Further details are presented in the Supplemental Material.

All statistical analysis was performed using MATLAB
9.9.0 (2020, The MathWorks Inc., Natick, MA, USA).
An external open-source package was used to perform the
normality tests [30].

Ill. RESULTS

A total of 67 walking assessments from 25 participants were
analyzed in this study. Table 2 presents demographic and clin-
ical data of the study participants and walking bouts. Eleven
participants only had one gait assessment, while fourteen had
4 associated data recordings each. In most cases, although
not for all, these 14 participants were recorded twice (the
first in an off medication and DBS state, and the second on
medication and DBS) during each of two clinical visits.

A. CORRELATION OF ZENO AND GAIT FEATURES FROM
2D POSE-ESTIMATION LIBRARIES

The 67 recorded videos were divided into 134 walking
bouts in which the participants were continuous ambulating.
The participants were walking toward the camera in half
of the walks and away from the camera in the other half.
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Age (years) 65.1+73
Sex (% male, n) 64%, 16 male
PD duration (years) 11.6 £3.7
MDS-UPDRS part III total score — 41 (17-83)
median (range)
Walking bouts (n = 67)
MDS-UPDRS part III, gait sub score — 1(0-3)
median (range)
DBS state during walking bout 36.9% (2 unknown)
(% DBS on state)
Medication state during walking bout 43.3%
(% on medication)

MDS-UPDRS = Movement Disorders Society revision of Unified
Parkinson’s Disease Rating Scale, DBS = Deep brain stimulation

TABLE 3. Number of walking bouts with successfully extracted gait
features per pose-estimation library and direction of walk.

Number of walks with successfully
extracted video gait features

ST-DBSCAN heel- Manual heel-strike
strike annotations annotations
Towards 66 64
AlphaPose Away 49 53
Towards 65 58
Detectron Away 61 64
Towards 64 58
OpenPose Away 37 63

Table 3 presents the number of walking bouts for which
video-based gait features were extracted in each direction
using each 2D pose-estimation library. Note that a minimum
of three detected steps for which joint trajectory data was
available was necessary to calculate gait features from video.
Differences in the number of walks for which gait features
could be extracted from video is therefore dependent on both
the heel-strike detection algorithm, as well as the presence
of the underlying joint trajectory data. If the underlying joint
trajectory data was not extracted successfully, the manual
annotations could not be used as they did not correspond to
any spatial data.

Gait features from the Zeno were successfully extracted for
133 bouts (the returning phase of one bout was not recorded).
Based on the heel-to-heel measurements between the first
and last step (as measured by the Zeno), the average length
per walking bout was 329.0 & 58.6 cm (normally distributed
atp <.05).

The correlation between each pair of video and Zeno gait
features was evaluated on all walking bouts. Table 4 presents
Spearman’s rank correlation coefficient (rho) and the
Bonferroni-adjusted p-value from a right-tailed hypothesis
test evaluating statistical significance of the correlation being
positive. A total of 108 correlations are presented in Table 4,
and a Bonferroni correction factor of 18 was used to account
for multiple comparisons within each pair of gait features.
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TABLE 4. Spearman’s rank correlation coefficient (tho) and bonferroni-adjusted right-tailed p-values for correlation between all walking bouts.

ST-DBSCAN Manual
Away from Towards Both Away from Towards Both
Camera Camera Camera Camera
V;g:g]%:lt Zfee l;:ﬂ%ilt Detector rho P rho P rho P rho P rho P rho )4
Number of  Number of AlphaPose .606 <.001 627 <.001 .621 <.001 785 <.001 836 <.001 .801 <.001
steps steps Detectron 487 <.001 593 <.001 553 <.001 785 <.001 .842 <.001 .804 <.001
OpenPose .674 <.001 541 <.001 .594 <.001 779 <.001 .855 <.001 .808 <.001
AlphaPose 940 <.001 .695 <.001 744 <.001 923 <.001 .865 <.001 .893 <.001
Cadence Cadence Detectron .820 <.001 545 <.001 .643 <.001 923 <.001 .862 <.001 .892 <.001
OpenPose 930 <.001 .692 <.001 735 <.001 920 <.001 .862 <.001 .891 <.001
Step width—  Stride width AlphaPose 341 163 .601 <.001 .500 <.001 393 029 617 <.001 514 <.001
mean _ mean Detectron 478 .001 .562 <.001 521 <.001 553 <.001 557 <.001 .550 <.001
OpenPose .339 .369 .585 <.001 487 <.001 .160 1.000 715 <.001 450 <.001
Step width - Stride width AlphaPose .691 <.001 403 .008 .546 <.001 .580 <.001 446 .005 519 <.001
cv _cv Detectron .585 <.001 .500 <.001 .561 <.001 .538 <.001 456 .003 .524 <.001
OpenPose .615 <.001 442 .003 528 <.001 .501 .002 .505 <.001 518 <.001
Step time - Step time — AlphaPose 333 191 110 1.000 186 424 432 .004 .608 <.001 514 <.001
v v Detectron 408 011 .106 1.000 202 213 432 .004 .608 <.001 514 <.001
OpenPose 282 .823 172 1.000 247 115 430 .005 .628 <.001 .524 <.001
Step time - Swing time — AlphaPose .003 1.000 -.039 1.000  -.001 1.000 407 .009 469 .002 421 <.001
v v Detectron 185 1.000 -.003 1.000 .063 1.000 407 .009 469 002 421 <.001
OpenPose .080 1.000 .074 1.000 147 1.000 409 .009 494 .001 435 <.001

From Table 4, it was observed that the rank correla-
tion coefficient for the number of steps was significantly
lower for the automatic ST-DBSCAN heel-strike annotation
than for the manual annotation. To further investigate this
difference in the correlation between the number of steps
detected by the Zeno and number of steps detected by each
heel strike annotation method from video, the scatterplots
presented in Fig. 3 were created. From the left column of
Fig. 3, it is observed that the ST-DBSCAN method fails to
detect heel-strikes when the number of steps in the walk
detected by the Zeno is large. As the ambulation distance
was limited to an upper limit of 6 m for each walking
bout, a large number of steps indicates that the participant
was taking very short steps. Therefore, the ST-DBSCAN
method is unable to identify heel-strikes when the participant
takes many short steps. This is of concern as our method
for calculating gait features relies on accurate heel-strike
detection, so including walks for which the ST-DBSCAN
method is known to be inaccurate affects all other correla-
tions by introducing errors in the features estimated from
video.

To determine the maximum number of steps for which the
ST-DBSCAN method can accurately identify the number of
steps in each walking bout in this dataset, the cut-off for the
maximum number of steps as detected by the Zeno was varied
and the correlation of the walks included under this threshold
was examined. Fig. A of the Supplemental Material displays
the R? and slope of the linear regression model between
the number of steps detected by the Zeno and vision-based
ST-DBSCAN heel-strike detection method.

Based on the results in Fig. A, the strongest correlation
was observed when the maximum number of steps per walk
was approximately 20, and the correlation declines quickly
with walks with greater than 20 steps. Walks with more
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than 20 steps were excluded and the correlation analysis was
repeated. A total of 8 out of 133 walking bouts (less than 7%
of bouts across all libraries) were excluded under the 20-step
threshold. The mean step length (£SD) of the excluded walks
was 10.8 + 5.4 cm (range: 4.8 — 19.2 cm).

Table 5 presents the rank correlation coefficients and their
Bonferroni-adjusted right-tailed p-value between all pairs of
gait features calculated from video and Zeno while only
including walks with up to 20 steps. A significantly stronger
correlation between the number of steps detected by the
ST-DBSCAN algorithm on video and the Zeno was observed
when a 20-step cut-off was used. Significant positive correla-
tions are observed among all gait feature pairs when manual
annotation was used, but for automatic ST-DBSCAN heel-
strike annotation, the correlation between step/stride time CV
was not significant for most detectors and directions of walk.

B. CORRELATION OF ZENO AND GAIT FEATURES FROM
3D POSE-ESTIMATION LIBRARY

The correlation analysis was repeated between Zeno and
the gait features extracted using joint trajectories extracted
using ROMP, the 3D pose-estimation library, for walks with
a maximum of 20 steps. A total of 48 feature pairs were
correlated and a Bonferroni adjustment factor of 6 was used
to adjust for multiple comparisons between each feature pair.
The results of this analysis are presented in Table 6.

For gait feature pairs that were also compared in the 2D
analysis (Table 5), the correlations when the 3D ROMP
library was used (Table 6) were generally weaker, particularly
for the automated heel-strike method. Furthermore, although
gait features that rely on data from the depth dimension (such
as speed and step length) were analyzed between video (with
ROMP) and Zeno, the correlations were not significant for
these pairs.
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FIGURE 3. Scatterplots of number of steps detected by Zeno and video analysis, grouped by heel-strike annotation method. The red line represents
the fit and confidence bounds of the linear regression model between the two variables.

A post-hoc analysis comparing the mean, mean absolute,
and percent difference between the directly comparable gait
measures of number of steps, cadence, and step time CV
estimated from the Zeno and video are presented in Table C of
the Supplemental Material. This analysis confirmed that the
features extracted using the ROMP library had a significantly
larger margin of error than any of the 2D pose-estimation
libraries for these three directly comparable features.

C. COMPARISON OF GAIT FEATURES

BY TREATMENT STATE

A subset of bouts in this data set were collected during the
same clinical visit, but under different medication and DBS
treatments. The Supplemental Material presents an analysis
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examining whether the gait features of paired walking bouts
are significantly different when collected under ON and OFF
treatment states.

From Table D of the Supplemental Material, it can be noted
that gait features calculated using manual step annotation
were more consistently different when measured in ON and
OFF treatment states. Differences between ON and OFF
treatment states were also more consistently different when
both directions of walk (towards and away from the camera)
were analyzed.

IV. DISCUSSION
In this work, Spearman’s rank correlation coefficient between
pairs of gait features extracted independently from a Zeno
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TABLE 5. Spearman’s rank correlation coefficient (tho) and bonferroni-adjusted right-tailed p-values for correlation between walking bouts with a

maximum of 20 steps.

ST-DBSCAN Manual
Away from Towards Both Away from Towards Both
Camera Camera Camera Camera
V;.g:fﬂ%:lt Zfi l;(:ug::t Detector rho P rho P rho P rho P rho P rho )/
Number of  Number of AlphaPose 770 <.001 732 <.001 750 <.001 .856 <.001 788 <.001 814 <.001
steps steps Detectron .500 <.001 815 <.001 .670 <.001 .856 <.001 796 <.001 817 <.001
OpenPose 717 <.001 717 <.001 722 <.001 .850 <.001 812 <.001 .823 <.001
AlphaPose 933 <.001 .655 <.001 713 <.001 915 <.001 .846 <.001 .883 <.001
Cadence Cadence Detectron .801 <.001 547 <.001 .619 <.001 915 <.001 .842 <.001 .882 <.001
OpenPose 926 <.001 .654 <.001 713 <.001 911 <.001 .842 <.001 .880 <.001
Step width —  Stride width AlphaPose 426 031 .563 <.001 Sl <.001 463 006 583 <.001 530 <.001
moan — mean Detectron 539 <.001 523 <.001 .530 <.001 .614 <.001 514 <.001 562 <.001
OpenPose 427 .090 .562 <.001 .502 <.001 228 1.000 .680 <.001 460 <.001
Step width - Stride width AlphaPose .687 <.001 396 015 542 <.001 555 <.001 447 .008 508 <.001
v oV Detectron 573 <.001 501 <.001 552 <.001 .509 <.001 463 .005 514 <.001
OpenPose .628 <.001 424 .008 519 <.001 479 .006 516 <.001 .507 <.001
Step time - Step time — AlphaPose 244 921 -.013 1.000 .085 1.000 364 .041 .546 <.001 441 <.001
cv cv Detectron 399 017 .033 1.000 175 .528 364 041 .546 <.001 441 <.001
OpenPose .220 1.000 .043 1.000 156 1.000 362 .048 .569 <.001 452 <.001
Step time - Swing time — AlphaPose 011 1.000 -.164 1.000 -.064 1.000 412 011 .370 .066 372 <.001
v v Detectron 265 403 -.077 1.000 .074 1.000 412 011 370 .066 372 <.001
OpenPose 173 1.000 -.059 1.000 115 1.000 414 011 400 032 .389 <.001

instrumented walkway and from standard color video was
examined. Three 2D pose-estimation libraries (AlphaPose,
Detectron, OpenPose) were the focus of the correlation anal-
ysis, however, this analysis was also repeated with a state-of-
the-art 3D pose-estimation library (ROMP). A key step in the
calculation of gait features from video is heel-strike detec-
tion; so, two methods for detecting these events were exam-
ined: manual annotation and automatic annotation using the
ST-DBSCAN algorithm.

The initial correlation analysis between Zeno and video
gait features calculated using 2D pose-estimation libraries
highlighted that the automated ST-DBSCAN heel-strike
method failed to detect short steps (Table 4, Fig. 3). Shuf-
fling steps are not far enough apart spatially from the cam-
era’s frontal view so the algorithm clusters many steps
together, or misses them entirely if the step is very short
and cannot be identified clearly in the joint trajectory
data.

A 20-step cut-off was thus selected to facilitate a com-
parison of gait features for which both the manual and
ST-DBSCAN methods were able to analyze roughly the same
steps. This threshold was selected empirically for the data col-
lection scenario used in this experiment and is likely to vary
depending on the camera, as well as its angle and position
with respect to the participant. In this investigation, the data
collection set-up and selected 20-step threshold resulted in
the exclusion of walks with a mean step length of 10.8 +
5.4 cm, suggesting that the presented ST-DBSCAN method
struggles with short, shuffling steps. However, the number
of step or step length threshold at which the method fails
will vary depending on the experimental set-up and should
thus be determined empirically for future studies in different
settings.

2100511

A. CORRELATION OF ZENO AND GAIT FEATURES FROM
2D POSE-ESTIMATION LIBRARIES
As presented in Table 5, the Spearman’s rank correlation
coefficient was significantly greater than O for most of the
gait feature pairs compared. Some key observations can be
made by comparing the ST-DBSCAN and manual annotation
columns of Table 5. Specifically, it was observed that there
was stronger correlation for the number of steps and cadence
when the manual heel-strike annotation method was used.
This is because the ST-DBSCAN algorithm uses the under-
lying joint trajectory to determine the timing and location of
the heel-strikes, whereas during manual annotation the timing
of heel-strikes is identified by viewing the video, while the
location is determined by looking at the position of the joint
trajectory at the time of the labelled heel-strike. In the case
of number of steps and cadence, the timing of the heel strikes
is the only important variable, and can be determined more
accurately and consistently through manual annotation.
Conversely, the calculation of step width relies on the
positions of the heel-strikes as well. The ST-DBSCAN algo-
rithm requires that the underlying joint trajectory signal be
sufficiently noise-free to facilitate detection of heel-strikes.
Therefore, this method only identifies heel-strikes that are
clearly captured by the joint trajectory obtained by the pose-
estimation library. No heel-strikes will be detected when the
joint trajectory is very noisy and more likely to be inaccurate.
In comparison, manual annotation of heel-strikes was done
directly from video, so it is possible that heel-strikes are
selected at times where the underlying joint trajectory signal
is noisy, resulting in less accurate estimations of step width.
From Table 5, it was also noted that the correlation between
step time CV from video and step/swing time CV from
the Zeno was poor across all pose-estimation libraries and
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directions when calculated using the ST-DBSCAN heel-
strike annotation method, but moderate when manual anno-
tation was used. These results highlight that at least moderate
correlation can be achieved for these features between the two
data collection methodologies, but the errors in detecting the
timing of heel-strikes introduced by the ST-DBSCAN method
are large enough to eliminate this correlation.

Due to the use of different units for distance measures,
it is only possible to directly compare the number of steps
and two temporal gait parameters calculated from video and
from Zeno. Table C of the Supplement presents the mean
difference, mean absolute difference, and percent difference
between the Zeno and video features for the directly compa-
rable features explored in this study (i.e., number of steps,
cadence, and step time CV). This analysis further confirmed
that the manual annotation method generally led to a lower
percentage difference for the temporal measures.

Another key observation from Table C and Table 5 is that
even a statistically significant positive correlation between
Zeno and video features does not guarantee that the esti-
mated parameters from video are accurate. For example,
the correlation between step time CV calculated using man-
ual heel-strike annotation and 2D pose-estimation libraries
is moderate and statistically significantly greater than O
(Table 5), but the percent difference between the values esti-
mated by the two modalities ranges from 65 — 90% depending
on the direction of walk (Table C). For this reason, values
estimated from video cannot be directly compared to those
collected using a Zeno instrumented walkway. Instead, it is
recommended that trends in gait features be compared over
time using the same data collection and processing method-
ology. Our correlation results indicate that data from video
capture the same trends as an instrumented walkway for
several key gait features, and could thus be used to track
longitudinal changes in gait in individuals with PD.

1) COMPARISON OF 2D POSE-ESTIMATION LIBRARIES

As seen in Table 3, there are differences in the number of
walks for which gait features were able to be calculated across
the three pose-estimation libraries and two heel-strike anno-
tation methods. All methods require that at least three steps
be detected within the available ankle joint trajectory data.
Therefore, the differences in the number of walks with suc-
cessfully extracted video gait features for the manual annota-
tion method can be directly attributed to the presence of the
underlying joint trajectories. Based on the results presented in
Table 3, it can be concluded that the OpenPose and Detectron
libraries capture joint trajectories more consistently when
the participant is walking away from the camera, while the
AlphaPose library better tracks joint trajectories in walks
towards the camera. Conversely, when the ST-DBSCAN heel-
strike algorithm was used, gait features were successfully
calculated in a total of 126 walks using Detectron, 115 using
AlphaPose, and 101 when OpenPose was used to extract
the joint trajectories. Notably, gait features were successfully
extracted for more walking bouts towards the camera than
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for bouts away from the camera all pose-estimation libraries
when using the ST-DBSCAN heel-strike detection method.
Since this algorithm relies on the quality of the joint trajec-
tories (rather than just their presence) to identify heel-strikes,
the number of walks for which gait features were able to be
calculated is a measure of how accurate and noise-free the
underlying joint trajectories are when extracted by each pose-
estimation library.

Comparing the correlations of Zeno and video gait features
across the different 2D pose-estimation libraries, no con-
sistent trends were observed across all gait feature pairs
and directions of walk. However, there are significant fluc-
tuations depending on the direction of the walking bout
and by gait feature pair. For example, the difference in the
strength of the correlation of step/stride width mean and CV
varies less for walking bouts towards and away from the
camera for the Detectron library than for the AlphaPose or
OpenPose libraries. This difference in correlation strength
is particularly pronounced when the ST-DBSCAN method
is used. Furthermore, a similar difference in gait features
calculated using the two footfall detection methods is noted
when paired walks collected under different medication and
DBS treatment states were analyzed. As observed in Table D
of the Supplemental Material, gait features calculated using
the manual footfall detection method were more commonly
associated with expected significant differences between ON
and OFF treatment states. For these reasons, it may be benefi-
cial to use multiple pose-estimation libraries to calculate gait
features and select the appropriate one based on the direction
of movement, heel-strike annotation method, and gait feature
of interest.

B. CORRELATION OF ZENO AND GAIT FEATURES FROM
3D POSE-ESTIMATION LIBRARY

As seen in Table 6, repeating the correlation analysis
using gait features extracted using ROMP, a state-of-the-art
3D pose-estimation library, resulted in weaker correlations
across all pairs of features. Notably, the gait features
that relied on data in the depth dimension (such as gait
speed/velocity and step length) had the lowest correla-
tion coefficients across all pairs for the manual annotation
method. This suggests that the ROMP library struggles to
accurately track the position of joints in the anterior-posterior
direction for the duration of each walking bout, leading to
inaccurate calculations of video gait features that rely on data
in this direction. This can be further confirmed by noting that
the correlations between step/stride width (in the lateral direc-
tion) are stronger than those for step length (anterior-posterior
direction) when manual annotation is used. This observation
suggests that the underlying joint trajectory signal extracted
using ROMP is noisy and inconsistent in its tracking of joints
in the depth direction, which prevents meaningful use of
this depth data. Overall, based on our experiments there is
currently no advantage to using a state-of-the-art 3D pose-
estimation library (ROMP) over a 2D one (AlphaPose, Detec-
tron, or OpenPose) for calculation of gait features from video.
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TABLE 6. Spearman’s rank correlation coefficient and bonferroni-adjusted right-tailed p-values for correlation between walking bouts with a maximum

of 20 steps using the romp 3d pose-estimation library.

ST-DBSCAN Manual
Away from Towards Camera Both Away from Towards Camera Both
Camera Camera
Video gait Zeno gait
feature feature rho P rho P rho P rho P rho P rho P
Number of steps Number of steps | 280 .196 .696 <.001 522 <.001 .655 <.001 744 <.001 712 <.001
Cadence Cadence -.047 1.000 -.183 1.000 -.123 1.000 906 <.001 .840 <.001 .864 <.001
Speed Velocity 075 1000 096  1.000 .090  1.000 | .232 451 119 1.000 172 306
Step width - Stride width- | = 130 500 g3 572 150 450 551 <001 603 <001 567  <.001
mean mean
Steplength - Steplength- | = ,)5 8 255 346 210 126 | 206 605  -370  1.000  -104  1.000
mean mean
Step width - CV Smdec‘f,‘dth | 301 142 006  1.000 137 561 314 148 308 080 326  .005
Step time - CV  Step time-CV | 050  1.000 .10  1.000 070  1.000 | 281 236 299 100 297 013
Step time - CVY_ Swing time - CV| .036  1.000 340 048 197 173 361 068 093 1.000 219 111

C. NOTE ON VIDEO DATA COLLECTION METHODOLOGY
The videos used in this study were collected during clini-
cal visits but were analyzed retrospectively. For this reason,
changes in camera position and orientation were common as
the data collection procedure was not standardized in this
regard. However, as demonstrated by our results, the gait
feature extraction methods used in this work are robust to
such changes in video viewpoints, with moderate to strong
correlations between video and Zeno features across many
gait feature pairs. As camera position was not controlled
or varied between pre-defined positions during data col-
lection, it was not possible to do a robust analysis with
respect to the correlations change with respect to camera
viewpoints. However, previous work by our group comparing
the correlation between gait features calculated from video
and those obtained from a body-worn 3D motion capture
system demonstrated that there was not a significant dif-
ference between cameras recording at different heights and
angles [22]. These results are particularly promising when
planning for the transition of this technology to non-clinical
settings where differences between video recording method-
ologies will be common.

V. CONCLUSION AND FUTURE WORK

In this work, we examined the correlation between six pairs of
gait features calculated from color video and a Zeno instru-
mented walkway. Feature pairs that only require the timing
of heel-strikes are more strongly correlated between video
and Zeno, while step/stride width mean and CV, which also
require the spatial positions of the heel-strikes are only mod-
erately correlated. In our experiments, we note that the ST-
DBSCAN automated heel-strike detection algorithm lever-
ages the underlying joint trajectory signal when identifying
the timing of heel-strikes, and was thus similarly correlated
to Zeno gait features as when manual annotation is used.

In our analyses, the automatic ST-DBSCAN heel-strike
annotation method struggled to identify short, shuffling
steps. Using an experimentally selected cut-off threshold of
20 steps for our dataset, walks with an average step length of
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10.8 &+ 5.4 cm (range: 4.8 — 19.2 cm), and representing
less than 7% of all walking bouts were omitted from further
analysis. This suggests that manual annotation is necessary
to analyze gait of individuals with severe PD who have very
short steps or experience freezing of gait. We also note that
there were differences in the video recording methodology
for this dataset, leading to differences in the viewpoint from
which the videos were recorded. This suggests that the pro-
posed method of calculating gait features from video is robust
and shows promise as this work moves out of the clinic and
is applied to videos collected in less controlled non-clinical
environments.

Overall, the gait feature values calculated from video and
Zeno cannot be used interchangeably as they were calculated
using different methods and have different units (in the case of
step/stride width). However, the gait features are significantly
correlated when 2D pose-estimation libraries and appropriate
heel-strike annotation methods are used. Our video-based gait
analysis tool can thus be used for longitudinal monitoring
of changes in gait in a PD population by comparing trends
within features estimated by the video modality. This infor-
mation can be used by clinicians to assess the impact of med-
ication and DBS therapies and make appropriate adjustments
to minimize gait impairments.

A limitation of this work is that gait features such as step
length that rely on data in the anterior-posterior direction
could not be calculated with the trajectories extracted using
the 2D pose-estimation libraries. For this reason, ROMP,
a state-of-the-art 3D pose-estimation library operating on
monocular video was also explored as a means of extracting
joint trajectories from video. However, the ROMP library
struggled to accurately track the position of joints in the
anterior-posterior direction for the duration of each walking
bout, leading to inaccurate calculations of gait features that
rely on data in this direction. For this reason, there is cur-
rently no advantage to using ROMP over the three 2D pose-
estimation libraries investigated in this work.

Future work will seek to improve the estimation of 3D
gait parameters from standard video. The features calculated
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in this work relied on the extraction of skeleton trajectories
from video as a preliminary step. Instead, the estimation of
gait features, including those that require information from

the

depth dimension such as gait speed and step length,

could be incorporated directly into a machine learning model
that operates on the input videos. This would allow for the
development of an end-to-end framework that is finetuned
for predicting more accurate gait features, rather than rely-
ing on general pose-estimation libraries to first extract joint
trajectories.
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