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Abstract

Research Article

Introduction

Many pathological assessments depend on the quantification of 
cell nuclei. In cancer diagnosis, for instance, the quantification 
of nuclei expressing the Ki‑67 protein is a widely used method 
to determine the proliferation rate of a tumor. Furthermore, 
the quantification of lymphocytic infiltrates has been shown 
to be of strong prognostic importance.[1] Another important 
application is the determination of the progesterone and 
estrogen receptor status. The latter is arguably the most 
important predictive biomarker that exists today.[2] In clinical 
routine, such evaluations are usually done manually by 
estimating or counting a small number of nuclei, which is 
highly subjective and often not reproducible.[3] Consequently, 
the ability to automatically detect different types of nuclei on 
larger regions becomes increasingly important.

Varying staining and tissue preprocessing conditions, as well 
as different nuclear types and pathologies, lead to a huge 
variability in the appearance of nuclei, making their automatic 
detection very challenging. Recent approaches employ 

trainable algorithms to address this issue, including traditional 
machine learning[4‑6] as well as deep learning methods.[7‑9] 
Trainable detection methods come with the advantage of being 
adaptable and refinable by just using different training datasets.

Generating a good training dataset is essential for such methods. 
Most of these methods learn some kind of pixel‑wise distinction 
between nuclear and nonnuclear regions,[4,6‑9] to either create 
an intermediate segmentation or a probability map. Hence, 
the optimal training data would consist of exhaustive manual 
segmentations of all nuclei in several histological images. 
Unfortunately, creating such annotations requires an expert to 
accurately draw contour lines around each nucleus, making it 
a very tedious and time‑consuming task.

Background: Generating good training datasets is essential for machine learning‑based nuclei detection methods. However, creating 
exhaustive nuclei contour annotations, to derive optimal training data from, is often infeasible. Methods: We compared different approaches 
for training nuclei detection methods solely based on nucleus center markers. Such markers contain less accurate information, especially 
with regard to nuclear boundaries, but can be produced much easier and in greater quantities. The approaches use different automated sample 
extraction methods to derive image positions and class labels from nucleus center markers. In addition, the approaches use different automated 
sample selection methods to improve the detection quality of the classification algorithm and reduce the run time of the training process. We 
evaluated the approaches based on a previously published generic nuclei detection algorithm and a set of Ki‑67‑stained breast cancer images. 
Results: A Voronoi tessellation‑based sample extraction method produced the best performing training sets. However, subsampling of the 
extracted training samples was crucial. Even simple class balancing improved the detection quality considerably. The incorporation of active 
learning led to a further increase in detection quality. Conclusions: With appropriate sample extraction and selection methods, nuclei detection 
algorithms trained on the basis of simple center marker annotations can produce comparable quality to algorithms trained on conventionally 
created training sets.
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Annotation marks at the nuclear centers constitute an alternative 
kind of reference data. Center annotations can be created with 
much less effort because they only require the expert to mark 
nuclei with a single click. This makes the marking process 
much faster and, therefore, also allows larger amounts of 
images to be annotated. Obviously, such annotations comprise 
much less information than full segmentations.

Center marker annotations have already been employed in the 
past. The different approaches address their insufficiency by 
augmenting them in various ways. An iterative thresholding 
approach was used by Gul‑Mohammed et al.[10] to distinguish 
nuclear and nonnuclear areas around the center markers. In 
a study by Janowczyk and Madabhushi,[9] this distinction is 
performed by a naive Bayesian classifier with center positions 
as nuclear training data and randomly selected noncenter 
positions as nonnuclear training data. However, these 
approaches tie the capability of the machine‑learning algorithm 
to the capability of the previous step. In both the studies by 
Sirinukunwattana et  al.[11] and Xu et  al.,[8] an assumption 
regarding the size of the nuclei is incorporated to supplement 
the annotation data: In a study by Sirinukunwattana et al.,[11] 
a regression is trained using the distance to the next center 
marker to compute the target value. In a study by Xu et al.,[8] 
nonnuclear training samples were drawn from positions that are 
further away from any center marker than a given threshold.

The quality of the mentioned approaches is hard to compare as 
the authors usually use different data sets with different nuclear 
types and often also different quality measures.

In a study by Vink et  al.,[4] a nucleus detection method 
for Her2‑stained breast tissue is proposed. The authors 
report a detection rate, which equals recall, of 0.95. Breast 
tissue nuclei are also detected in the studies conducted 
by Xing et  al.[7] and Xu et  al.[8] The approaches work on 
H&E‑stained images and yield f1‑measures of 0.78 and 
0.84, respectively. In the study conducted by Arteta et al.[5] 
and Janowczyk and Madabhushi,[9] lymphocytic nuclei are 
detected in H&E‑stained breast images. They state f1‑measures 
of 0.88 and 0.90, respectively. Kårsnäs et al.[6] reported that 
a detection method for Ki‑67‑positive nuclei in breast tissue 
is proposed. The authors announce 1.0% missing objects, 
2.6% missing annotations, and 4.1% multiple annotations. 
A nuclei detection method for H&E‑stained colorectal tissue 
is described by Sirinukunwattana et al.[11] and an f1‑measure 
of 0.80 is reported.

In this paper, we perform a systematic comparison of different 
methods for generating training sets solely from center marker 
annotations. In addition, we evaluate how the proposed center 
marker‑based sample extraction methods compare with manual 
segmentations.

Methods

Training set generation
A training set consists of a set of training samples, which 
in turn consist of a feature vector and a class label. The 

content of the feature vector depends on the classification 
method that is to be trained. It might comprise hand‑crafted 
features or in case of feature learning methods such as deep 
convolutional neural networks, small image patches. In both 
cases, a training sample is produced with respect to a given 
position in the image.

All of the examined training set generation approaches consist 
of two main steps, which are the extraction and the selection 
of training samples.

Given a set of training images with labeled center markers, the 
extraction step needs to identify image positions that can be 
labeled as nuclear or nonnuclear regions and derive a training 
sample from it. The main difficulty here is that center markers 
obviously provide far less information about the nuclear and 
nonnuclear regions in the image, especially with regard to 
their boundaries.

The output of the extraction step already forms a valid 
training set. However, the abundance of training samples often 
deteriorates the analysis quality and the runtime performance 
for the training process of the classifier. Depending on the 
type of the classifier, also, the runtime of the nuclei detection 
can be increased considerably. Thus, the second step of the 
considered training set generation approaches is the selection 
of optimal subsets of training samples.

Training sample extraction
We compare two different methods for extracting training 
samples from a given set of images.

Distance‑based
We assume that positions close to the annotated center markers 
can be considered to represent nuclear regions whereas 
positions far away from any center marker are very likely to 
represent nonnuclear regions. Training samples are extracted 
as follows:

For each position x, y in an image, we compute the distance to 
the closest center marker. That distance and the index of that 
closest marker are stored in two maps d(x, y) and m(x, y). To 
be designated as nuclear region, a position must not be further 
away from the closest marker than a threshold called tnuc. Thus, 
all positions x, y where d(x, y) < tnuc can be labeled as nuclear 
region. To be designated as nonnuclear region, a position 
may not be closer to any marker than a threshold called tbg. 
Consequently, all positions x, y where d(x, y) > tbg are labeled 
as nonnuclear region. For our experiments, we set tbg to 15 
pixels and tnuc to 3 pixels each at 20× resolution.

Voronoi‑based
The distance‑based approach has the drawback that the 
boundary positions of the nuclei are not considered at all. 
Boundary positions, however, are very informative because 
they shape the decision boundaries of the classifier. In our case, 
nuclear boundaries should be labeled as nonnuclear region so 
that clustered nuclei can be separated by the classifier. The 
Voronoi‑based extraction method augments the distance‑based 
method with such boundary samples.
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We investigated three different sample selection methods 
addressing the described issues.

Stratified random subsampling
The most straightforward way to reduce the amount of samples 
and to achieve a balance of the class labels is stratified random 
subsampling. From each class, samples are randomly drawn 
until a target number is reached or until there are no more 
samples of one class available. This method has the advantage 
that it can be integrated into the sample extraction methods. 
The subsampling can be already applied to the image positions 
before the features are calculated. This leads to a much better 
runtime performance than subsampling the samples in a 
separate step afterward.

Kd‑tree subsampling
In the study by Pechenizkiy et al.,[13] the Kd‑tree subsampling 
is suggested as an alternative or supplementary method for 
stratified random subsampling. It also reduces the number of 
samples while retaining their distribution in feature space. The 
general concept of the Kd‑tree is explained by Bentley.[14] For the 
sample selection task, a Kd‑tree with limited depth is constructed 
on the extracted samples using their features as dimensions. In 
each node, the splitting feature is chosen as that with maximum 
variance across the samples of the node and the median is 
used as pivot, as suggested by Omohundro.[15] Then, a single 
sample can be drawn randomly from each leaf of the tree. The 
granularity and the amount of resulting samples can be controlled 
by adjusting the depth limit of the tree. To also address class 
imbalance, we apply the Kd‑tree subsampling independently for 
both classes and join the sample sets afterward.

Active learning
Active learning[16] selects samples with respect to their 
informativeness to the classifier. A classifier is trained using 
a subset S of the available samples. Then, iteratively, the 
remainder of the samples is classified and the classification 
confidence for each sample is considered. The samples with 
the least confident classifications are added to S for the next 
iteration. The iterations are terminated as soon as the size 
of S reaches a target number. By following this uncertainty 
sampling approach, the most informative samples are chosen 
from the training set. In our implementation, to produce a 
training set of n samples, the first subset is generated by 
randomly choosing n/10 samples from the available samples 
and n/100 samples are added in each iteration. In contrast to 
the previous methods, active learning does not address any 
class imbalance of the sample set.

The training sample selection methods are applied to either 
the samples extracted from a single image or the whole set of 
extracted samples. They can also be combined to utilize their 
different strengths.

Experimental setup
The different sample extraction and selection methods were 
compared using image data from a study described by Molin 
et al.[17] In that study, eight pathologists were asked to select 

The marker map m(x, y) is equivalent to the Voronoi diagram 
of the center markers. Assuming that neighboring nuclei are 
similarly sized, the Voronoi boundary between nontouching 
nuclei only crosses nonnuclear regions. As soon as two 
nuclei are touching, the Voronoi boundary crosses exactly 
that touching point. Consequently, for overlapping nuclei, 
the region of overlap is crossed by the Voronoi boundary. 
The assumption above may not always be valid, leading to 
Voronoi boundaries crossing nuclear regions, but we found 
that being a rare case in our experiments. Thus, the Voronoi 
boundaries are suited to extract nonnuclear samples along 
them.

Figure 1 illustrates the sample extraction methods.

Training sample selection
Selecting a subset of training samples from those extracted 
in the previous step can be beneficial. Reducing the amount 
of samples leads to a decrease of the runtime of the training 
process. For some classifiers, such as the random forest, the 
runtime of the classification is reduced as well.

Moreover, subsets of training samples often result in a 
higher quality of the nuclei detection if the samples show 
class imbalance. The extraction methods generally produce 
more samples of nonnuclear regions than nuclear regions 
because of the relative area fractions in the image. A small 
tnuc further increases that imbalance. A classifier confronted 
with substantial class imbalance is deluged by instances of 
the majority class, leading it to ignore the instances of the 
minority class. Such imbalance is a well‑known issue in the 
field of machine learning.[12]

During the training of a machine‑learning classifier, the most 
interesting regions of the feature space are those close to the 
decision boundary of the classifier. Here, the classifier is most 
uncertain. That is why samples near the decision boundary 
are much more informative than samples far away. The ratio 
between samples of high and low informativeness in a training 
set can have a strong influence on the resulting detection 
quality. The samples extracted in the previous step are, in 
addition to the class imbalance stated above, likely to contain 
a large amount of uninformative instances.

Figure 1: Visualization of the sample extraction methods. The left image 
shows the original image with overlayed center marker annotations. 
The center image shows the positions, where nonnuclear samples are 
extracted in gray and those where nuclear samples are extracted in red 
and blue for positively and negatively stained nuclei, respectively. The right 
image additionally shows the Voronoi boundaries in black, where also 
nonnuclear samples are extracted in the Voronoi‑based extraction method
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circular hot‑spot regions containing approximately 200 nuclei 
from digitized Ki‑67‑stained breast tumor slides. From these 
hotspots, areas containing staining or scanning errors as well 
as overlapping areas were removed resulting in a set of 101 
hot‑spots from 24 different slides and cases. The digitized 
slides were downsampled if necessary to a magnification 
of 20×, and for each hotspot, a subimage containing that region 
was extracted. Center marker annotations for all nuclei within 
the circular hot‑spot regions were created by a trained expert 
and verified by an experienced breast pathologist. Figure 2 
examplary shows annotated hot-spot regions.

The evaluation is based on the nuclei detection method 
described by Kost et al.[18] A random forest assigns a probability 
value to each input image pixel for being close to the center 
of a nucleus. The feature set comprises:
•	 The normalized H, S, and V color channels
•	 The box filtered S channel
•	 An approximation of the difference of Gaussian on the S 

channel using box filters
•	 The radial symmetry on the S channel
•	 The box filtered radial symmetry.

Then, an optimized gray scale watershed algorithm is used to 
find and separate the individual nuclear regions. The algorithm 
is configured to only include positions with probability values 
above 0.5 into the nuclear regions as lower values indicate that 
it is more likely that the position belongs to background than 
to a nucleus. Another random forest uses the H, S, and V color 
channels to classify the staining within the nuclear regions and 
performs a majority vote to decide whether a nucleus is Ki‑67 
positive or negative.

To train the second classifier, we used modified versions of the 
sample extraction methods. For each position x, y with d(x, y) 
< tnuc, an additional training sample for the second classifier 
was generated. The class label of the training sample was set 
depending on whether m (x, y) corresponds to a center marker 
of a Ki‑67 positive or negative nucleus. This way, one training 
set was produced for each classifier. The selection methods were 
then applied to both sets individually using the same parameters.

The quality of the nuclei detection was assessed by comparing 
the results to the center marker annotations. Each detected 

nucleus was assigned to the closest center marker, provided that 
the distance of their positions was sufficiently close. A threshold 
of 10 pixels was found to be adequate. It corresponds to the 
approximate radius of the nuclei in the images. A one‑to‑one 
match was then considered a true positive  (TP), a detected 
nucleus without a matching annotation was considered a false 
positive (FP), and an annotation without a matching detected 
nucleus considered a false negative (FN). In case when multiple 
detected nuclei were matched with the same center marker, one 
of these was considered TP whereas the others were counted as 
FP. Based on these values, precision, recall, and the f1‑measure 
were computed as overall quality measures.

For the experiments, we combined the sample extraction and 
selection methods in several ways to produce different training 
sets. The nuclei detection algorithm was then trained using these 
sample sets and the quality of the detection was assessed. To 
produce more robust results, the experiments were performed 
with 5‑fold cross‑validation. The folds were created in a way 
that images originating from the same slide were assigned to 
the same fold. This way, no training set is tested on the same 
slide it is created from. For all experiments, the same folds 
were used to ensure comparability. The quality measures of 
the individual folds were averaged to obtain the final measures.

Results

Experiment 1: Comparison of sample extraction and 
selection combinations
For the following experiment setups, distinct sample 
sets have been extracted by the distance‑based and the 
Voronoi‑based method. Then, different combinations of 
sample selection methods were applied to these sample sets. 
To obtain comparable results, all experiments, but (1a), which 
incorporates no selection method, produce a training set 
containing 2000 samples. This amount was found to produce 
adequate results while keeping the processing time for the 
classifier at an acceptable level. For the experiments involving 
two selection methods, the first one was applied per input 
image, leaving 256 samples per image. The latter one then 
was applied to the total of the remaining samples.
(a)	 No selection: As a base experiment, the outputs of the 

extraction methods were directly used to train the nuclei 
detection algorithm

(b)	 Random:  The extracted samples were, as a whole, 
subjected to the stratified random subsampling selection 
method

(c)	 Kd‑tree:  The extracted samples were, as a whole, 
subjected to the Kd‑tree subsampling selection method

(d)	 AL: The extracted samples were, as a whole, subjected 
to the active learning selection method

(e)	 Random  +  AL:  The random subsampling selection 
method was applied per image. The final training set 
was then selected from the remaining samples using the 
active learning selection method

(f)	 Kd‑tree + AL: The Kd‑tree subsampling selection method 
was applied per image. The final training set was then 

Figure 2: Visualization of the center marker annotations for two different 
images. The circle is scaled to contain approximately 200 nuclei. Inside 
the circle, all nuclei are annotated
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selected from the remaining samples using the active 
learning selection method

(g)	 AL  +  random:  The effect of inverting the order of 
experiment (e) was examined. The active learning 
selection method was applied per image, followed by the 
stratified random subsampling selection method

(h)	 AL  +  Kd‑tree:  The effect of inverting the order of 
experiment (f ) was examined. The active learning 
selection method was applied per image, followed by the 
Kd‑tree subsampling selection method

(i)	 Kd‑tree + random: In this experiment, both class balancing 
methods were combined. The Kd‑tree subsampling 
selection method was first applied per image, and then 
the stratified random subsampling selection method was 
applied on the remaining samples afterward

(j)	 AL + AL: In this experiment, the active learning selection 
method was applied to both the per‑image and the 
remaining samples.

Table 1 shows the results of the described experiment setups. 
First of all, we can state that the Voronoi‑based extraction 
method yields quality measures slightly superior to the 
distance‑based method in most experiment setups. Looking at 
the selection methods, we can see that the experiments that do 
not comprise a class balancing method lead to far worse quality 
measures. This can be observed in experiments (1d) and (1j), 
which only consist of active learning, and especially in 
experiment (1a), where no selection is performed at all. The 

best results are obtained by the combinations that include class 
balancing and active learning.

The tested sample extraction methods produce highly 
imbalanced training sets. On average, only 6.09% or 5.54% of 
the samples belong to the nuclear class for the distance‑based 
and Voronoi‑based extraction, respectively. The imbalance 
affects the resulting classification in a negative way. This can 
be observed in experiment (1a). The detection quality for the 
unprocessed training sets is low.

The usage of active learning alone, as shown in experiments 
(1d) and (1j), does improve the detection quality slightly 
but still yields results well inferior to other experiments. 
This indicates that active learning is not very well suited to 
deal with these large imbalances, which stems from the way 
active learning selects new samples. When there are mostly 
nonnuclear samples to choose from, the most uncertain 
samples are likely to be imbalanced toward nonnuclear 
samples as well. For this reason, a proper balancing of the 
samples is advisable.

The absence of class balancing in experiments (1a), (1d), 
and (1j) results in a strong bias of the classifier, which can be 
observed as a considerable difference in the precision and recall 
values. In experiment 2, precision‑recall‑curves (PR‑curves) 
are analyzed to further examine this issue.

The stratified random subsampling and the Kd‑tree‑based 
selection seem to be equally suited for balancing as 

Table 1: Quality measures of both proposed sample extraction methods combined with different sample selection 
methods

Ki‑67‑positive nuclei Ki‑67‑negative nuclei All nuclei

TP FP FN TP FP FN TP FP FN Precision Recall f1‑measure
Distance‑based

(a) No selection 650.8 74.0 189.8 803.6 239.2 2024.0 1454.4 313.2 2213.8 0.823 0.396 0.530
(b) Random 716.8 156.8 123.8 2220.6 500.6 607.0 2937.4 657.4 730.8 0.817 0.801 0.806
(c) Kd-tree 721.6 174.0 119.0 2203.0 509.4 624.6 2924.6 683.4 743.6 0.811 0.797 0.801
(d) AL 688.6 66.2 152.0 1658.0 232.0 1169.6 2346.6 298.2 1321.6 0.887 0.640 0.740
(e) Random + AL 732.8 161.2 107.8 2290.4 556.2 537.2 3023.2 717.4 645.0 0.808 0.824 0.814
(f) Kd-tree + AL 732.6 151.2 108.0 2246.6 535.0 581.0 2979.2 686.2 689.0 0.813 0.812 0.810
(g) AL + random 706.2 118.6 134.4 2176.8 451.4 650.8 2883.0 570.0 785.2 0.835 0.786 0.807
(h) AL + Kd-tree 715.8 107.4 124.8 2202.8 460.4 624.8 2918.6 567.8 749.6 0.837 0.796 0.813
(i) Kd-tree + random 718.2 192.2 122.4 2188.6 516.6 639.0 2906.8 708.8 761.4 0.804 0.792 0.795
(j) AL + AL 683.4 76.6 157.2 1964.2 369.4 863.4 2647.6 446.0 1020.6 0.856 0.722 0.781

Voronoi‑based
(a) No selection 611.8 66.6 228.8 585.0 151.4 2242.6 1196.8 218.0 2471.4 0.846 0.326 0.467
(b) Random 746.0 206.4 94.6 2333.6 558.4 494.0 3079.6 764.8 588.6 0.801 0.840 0.817
(c) Kd-tree 750.4 192.6 90.2 2294.2 506.4 533.4 3044.6 699.0 623.6 0.813 0.830 0.819
(d) AL 628.8 50.8 211.8 1535.0 208.0 1292.6 2163.8 258.8 1504.4 0.893 0.590 0.711
(e) Random + AL 761.8 192.6 78.8 2364.8 561.8 462.8 3126.6 754.4 541.6 0.806 0.852 0.826
(f) Kd-tree + AL 763.2 188.0 77.4 2364.2 576.0 463.4 3127.4 764.0 540.8 0.804 0.853 0.825
(g) AL + random 728.8 119.4 111.8 2210.6 458.6 617.0 2939.4 578.0 728.8 0.836 0.801 0.815
(h) AL + Kd-tree 726.8 120.4 113.8 2195.8 444.0 631.8 2922.6 564.4 745.6 0.838 0.797 0.814
(i) Kd-tree + random 744.6 176.6 96.0 2314.8 541.4 512.8 3059.4 718.0 608.8 0.810 0.834 0.819
(j) AL + AL 694.8 91.4 145.8 1734.4 288.2 1093.2 2429.2 379.6 1239.0 0.865 0.662 0.747

TP: True positive, FP: False positive, FN: False negative, AL: Active learning
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the comparison of the quality measures in experiments 
(1b) and (1c), (1e) and (1f), as well as (1g) and (1h) indicates. 
However, since stratified random subsampling is much simpler 
and improves the runtime performance when integrated into 
the extraction step, it is to be preferred over the Kd‑tree‑based 
approach. The best results were achieved by experiment setup 
(1e) being the combination of Voronoi‑based extraction, stratified 
random subsampling, and active learning. Two example outputs 
are visualized in Figure 3. Another interesting approach is (1b), 
the solely applied stratified random subsampling. It is simple, 
yields good results, and has a good runtime performance due 
to the integrability into the sample extraction step. However, in 
general, the differences of the methods that use balancing are 
rather small. In contrast, the differences between the methods 
with and without balancing are major.

Experiment 2: Precision‑recall‑curves
As described in section 2.2, a cutoff value of 0.5 was used for 
the experiments, which is the natural threshold for a two‑class 
problem. However, it is interesting to investigate how different 
cutoff values influence precision and recall.

For each approach described in experiment 1, the cutoff 
value was altered in 16 steps between 0 and 1, and at each 
step, precision and recall were determined. Figure 4 shows 
the PR‑curves for all approaches in an overview graph. In 
the subsequent graphs, the curves are reduced and grouped to 
highlight different aspects. Furthermore, the axes are scaled to 
only show the most interesting quadrant of the graph.

In Figure 5, the PR‑curves are divided into approaches that 
contain a sample selection method and approaches that do not, 
which is only the case for (1a) curves. It is clearly visible that 
the application of even the most basic sample selection methods 
improves the quality of the nuclei detection considerably. This 
is the case for both sample extraction methods.

Figure 6 shows the approaches that contain sample selection 
grouped according to their sample extraction methods. Here, 
it becomes apparent that the Voronoi‑based extraction leads 
to better results than the distance‑based extraction. This is 
especially the case for recall.

In Figure  7, only the approaches using the Voronoi‑based 
sample extraction are plotted. We found that approaches 
consisting of two subsequent sample selection methods with 
at least one of them incorporating active learning perform 
especially well. These approaches are highlighted in this 
figure. Active learning per image followed by a selection that 
performs class balancing (1g) and (1h) leads to the best results 
for both extraction methods.

The PR‑curves shown in this section have an unusual shape. 
Normally, with cutoff values becoming lower, the precision 
declines while the recall grows toward 1. In our case, the recall 
does not increase after a certain value but decreases again. The 
reason for this behavior is the watershed algorithm which is 
part of the nuclei detection method. This limits the number of 
detected nuclei. With a low cutoff value, more pixel positions 

are being considered by the algorithm. Nevertheless, those are 
likely to be assigned to an existing nuclear region instead of 
constituting a new region. Another effect is that the nuclear 

Figure  4: Overview plot of the precision‑recall‑curves for all training 
approaches and both distance‑based (dist.) and Voronoi‑based (voro.) 
sample extraction. The labels 1a–1j correspond to the notation in 
experiment 1

Figure  5: Precision‑recall‑curves showing the quality improvements 
when using a sample selection method (blue) compared to approaches 
without sample extraction (gray)

Figure 3: Example results of experiment (1e). The red and blue markers 
show Ki‑67 positive and negative nuclei as detected by the algorithm, 
respectively
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regions, which are segmented by the watershed algorithm, 
become larger. The nuclear positions are computed as the 
center points of the nuclear regions and the positivity of the 
nuclei is derived from the staining classification results within 
the nuclear regions. When such regions become unreasonably 
large, nuclear positions or their positivity might become 
incorrect. This effect causes the decrease of recall at low 
cutoff values.

Experiment 3: Impact of the training set size
The impact of the training set size on the quality of the 
nuclei detection was evaluated in experiment 3. Training sets 
of different sizes were produced using the Voronoi‑based 
extraction method, followed by a selection method as described 
in (1b) and (1e), which appeared to be the most interesting 
approaches in experiment 1. For the latter approach, the 
active learning was parametrized to select 10% of the samples 
selected by the stratified random subsampling, which is 
comparable to the ratio in the above experiments. The overall 
f1‑measure of the training sets was then assessed to compare 
the learning curves of these two methods. Training set sizes 
from 100 up to 5000 samples have been evaluated with an 
offset of 100 and up to 15,000 samples with an offset of 1000.

Figure  8 shows the results of experiment 3. Both learning 
curves have an approximately asymptotic shape. They rise 
steeply until about 2000  samples and ascend more slowly 
afterward. Nevertheless, the learning curve for the approach 
containing active learning shows superior quality values 
throughout all training set sizes. The experiment shows that 
the number of 2000 samples for a training set is a reasonable 
choice. Although more samples would slightly increase 
the quality of the nuclei detection, we consider this a good 
compromise between quality and runtime performance.

Experiment 4: Comparison of extraction methods with 
manual segmentations
To assess the quality of the sample extraction methods, we 
compared a manual nuclei segmentation with the proposed 
distance and Voronoi‑based extraction methods. To produce 
a training set from segmentation annotations, nonnuclear 
samples were generated from all positions outside nuclear 
regions. Since the trained method should yield maximum 
nucleus probability at the center of the nuclei, the nuclear 
samples were only generated at the centers of the nuclei, 
equally to the extraction methods proposed.

As the selection method, we used stratified random 
subsampling per image followed by active learning (1e), which 
appeared to achieve the best results in experiment 1. We used 
ten images with exhaustive nuclei segmentation annotations 
which do not belong to the image set used in experiment 1–3. 
Samples were extracted from the annotations for each pixel. To 
compare those samples with the described extraction methods, 
the segmentation annotations were reduced to center markers 
by computing the center of gravity of each segment. For this 
experiment, we did not perform a cross‑validation but tested the 
resulting training sets using the image set described above. The 

Figure 6: In most cases, the approaches using Voronoi‑based sample 
extraction (blue) lead to better detection quality than those using 
distance‑based sample extraction (gray)

Figure  7: Most approaches that combine multiple selection methods 
and contain active learning  (blue) yield better quality measures than 
others  (gray), here shown for the approaches using Voronoi‑based 
sample extraction

Figure 8: In experiment 3, training sets of different sizes were produced 
for the approaches described in experiment (1b) and (1e). The graph 
plots the f1‑measures of the nuclei detection trained with these sets 
against their size
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methods represents a valid alternative to conventionally 
produced training sets. In this manner, the effort for the creation 
of annotations can be greatly reduced.

In addition, while machine learning‑based nuclei detection 
methods are usually trained on all training samples available, 
our study shows that subselecting samples can improve the 
detection quality considerably at no additional cost in terms 
of execution time or complexity of the nuclei detection 
method.

In future work, we will further evaluate the general 
applicability of the proposed approaches using different image 
datasets and detection algorithms, especially within the area 
of deep learning.
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