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R-peak detection is crucial in electrocardiogram (ECG) signal analysis. This study proposed an adaptive and time-efficient R-peak
detection algorithm for ECG processing. First, wavelet multiresolution analysis was applied to enhance the ECG signal
representation. Then, ECG was mirrored to convert large negative R-peaks to positive ones. After that, local maximums were
calculated by the first-order forward differential approach and were truncated by the amplitude and time interval thresholds to
locate the R-peaks. The algorithm performances, including detection accuracy and time consumption, were tested on the MIT-
BIH arrhythmia database and the QT database. Experimental results showed that the proposed algorithm achieved mean
sensitivity of 99.39%, positive predictivity of 99.49%, and accuracy of 98.89% on the MIT-BIH arrhythmia database and 99.83%,
99.90%, and 99.73%, respectively, on the QT database. By processing one ECG record, the mean time consumptions were
0.872 s and 0.763 s for the MIT-BIH arrhythmia database and QT database, respectively, yielding 30.6% and 32.9% of time
reduction compared to the traditional Pan-Tompkins method.

1. Introduction

Electrocardiogram (ECG) can describe the electrical activity
of the heart and is an essential tool for the diagnosis of car-
diovascular diseases (CAD). With the rapid development of
wearable and wireless ECG techniques, real-time and routine
ECG monitoring is attracting more and more attention due
to the increasing popularization of medical health, especially
for the elderly people [1]. Recent years, lots of publications
about ambulatory ECG monitoring devices have been
reported [2–4], aiming to automatically monitor the heart
activities and give the feedback of any CAD early warning
in real time. However, this application still needs significant
development due to the challenge of unexpected noise effects
in ECG signal, such as baseline drift, electrode motion and
stretching, motion artifacts, and muscle noise [5, 6], which
impedes the automatic ECG processing technology to per-
form effectively. The primary sources of noises are electrical
activities of muscles and baseline drift caused by respiration,
poor contact of electrodes, and equipment or electronic
devices [7, 8]. Electrode movement alters the signal baseline
and brings the signal fluctuate perpendicularly to the

baseline. If the electrode moves drastically enough to drop
from the skin, baseline drift will overwhelm the signal and
waveform distortion occurs [9]. Motion artifact is generally
attributed to the variation of electrode-skin impedance dur-
ing a subject’s motion. Changed impedance will be treated
by the ECG amplifier as a different input, resulting in imped-
ance mismatching and difficult identification of irregular
fluctuation on small amplitude waveforms, such as P wave
and T wave [10, 11]. Consequently, noise removal is the pre-
liminary issue to consider for in ECG signal processing.

ECG features are essential characteristics for CAD diag-
nosis. R-peak detection is the datum since all other features
are extracted after the R-peak location [12]. Accurate R-
peak detection is critical for arrhythmia diagnosis such as
atrial premature contraction, tachycardia, and bradycardia
[13]. Nevertheless, efficient R-peak extraction is still difficult
in the dynamic and noisy environment due to the time-
varying waveform morphology. This would be more difficult
when ECG signal is overwhelmed by noises with similar
frequency in energy distribution [9].

Over the last decades, numerous techniques have been
proposed for R-peak detection. In [14], a thorough review
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on R-peak detection methodologies for portable, wearable,
battery-operated, and wireless ECG devices was elaborated.
The authors claimed that the thresholding methods were
regarded as the most computationally efficient. However,
the suitable parameter settings for thresholds were difficult.
The most widely used R-peak detection method, proposed
by Pan and Tompkins [15], is the Pan-Tomkins method. It
is a threshold-based method with low complexity. Other
algorithms of R-peak detection can be classified as pattern
recognition [16, 17], wavelet transform [18], mathematical
morphology [19], and digital filter [20]. In [10], a real-time
R-peak detector using adaptive thresholding was proposed.
This algorithm consisted of preprocessing to initialize R-
peak threshold and thresholding to adaptively modify the
threshold. It achieved sensitivity and positive predictivity
higher than 99.3%. In [21], a different interference-based
method was developed. This method could effectively distin-
guish R-peaks from high amplitude noises but failed to detect
R-peaks when abrupt jump of baseline appeared. Some
researchers also conducted ECG feature extraction without
predenoising [22, 23]. The detection accuracy could reach
up to 94.8%, although much lower than that acquired from
the denoised signals.

Time cost is important due to the fast-responding
requirement in CAD early warning applications [4], espe-
cially in the real-time monitoring. Many ambulatory ECG
devices are generally limited in power supply and compu-
tation [1]. The conventional feature extraction algorithms
are, from a computational perspective, very intensive tasks,
which are typically executed in mainframe-type computa-
tional facilities. A significant power expenditure compo-
nent in such systems is the energy required by the radio
front-end for supporting continuous data transmission,
which may not allow a long-term sustainable operation.
To this end, some researchers have attempted to develop
algorithms of low computational load. Apart from the
aforementioned methods, in [24], the authors presented a
low-complexity ECG feature extraction approach for
mobile healthcare applications. This technique was based
on the combination of wavelet analysis and time-domain
morphology principles. Except for high accuracy and pre-
cision, low computation and fast response are also needed
in ECG feature extraction.

In this study, an adaptive and time-efficient ECG R-peak
detection algorithm is proposed. The method takes advan-
tage of wavelet-based multiresolution analysis (WMRA)
and adaptive thresholding. WMRA is applied to strengthen
ECG signal representation by extracting ECG frequency
interval of interest from wide-range frequencies, which
contain interference such as baseline drift and motion arti-
facts. All the noises produce considerable influence on the
following thresholding operation. The adaptive thresholding
is designed to exclude false R-peaks in the reconstructed
signal by WMRA. The proposed algorithm was tested by
the MIT-BIH arrhythmia database (MITDB) and the QT
database (QTDB) [25]. Both accuracy and time consumption
of the algorithm were evaluated. By exploring the time-
frequency property of ECG, this study aims to conduct pre-
liminary and tentative research on adaptive and time-

efficient R-peak detection for low-quality ECG signals, pro-
moting automatic ECG processing technology for clinical
and daily use.

The remainder of the paper is organized as follows.
Section 2 elaborated the detailed procedures of the proposed
R-peak detection algorithm. In Section 3, experiment setups
were introduced, including the datasets and the evaluation
indices. Section 4 demonstrated the experimental results over
R-peak detection accuracy, time consumption and time com-
plexity, and the selection of optimal threshold coefficients.
Section 5 discussed the advantages and the potential limita-
tion of our algorithm. The summarization of this study was
presented in Section 6.

2. Proposed R-Peak Detection Algorithm

The R-peak detection system is described in Figure 1. The
purpose of this study is to develop an algorithm which can
effectively identify R-peaks mixed in different noises.

2.1. Step 1: WMRA Enhancement. WMRA enhances signals
using wavelet transform to extract both time and frequency
domain information. This method is very suitable for ECG
processing since ECG is essentially nonstationary with small
amplitude (0.01~5mV) and low frequency (0.05~100Hz)
[26]. This method also provides low computational cost
[27]. By WMRA, signal below 0.05Hz and above 100Hz
can be filtered from the raw signal. These intervals are not
the ECG frequency bands and contain most types of noises
[28]. In addition, according to the Nyquist criterion, subfre-
quency band presented by each decomposition level is
directly related to the sampling frequency f s [26]. Conse-
quently, the ECG signals, sampled at 360Hz in MITDB and
250Hz in QTDB as illustrated in [25], are all decomposed
up to 8 levels in this study.

Figure 2 shows the decomposition procedure of eight-
level WMRA by using bior6.8 wavelet. For MITDB,
cD2~cD8 consist of frequency components in a range of
0.70–90Hz, which is the ECG frequency band of interest.
cD1 with frequency band 90~180Hz and cA8 with frequency
band 0~0.70Hz are beyond the ECG frequency; they are not
the considered coefficients containing baseline drift and
other interference. Consequently, cD1 and cA8 are set to
zeroes; cD2~cD8 are kept for reconstruction. Similarly, for
QTDB, cA8 with frequency band 0~0.49Hz is set to zero;
cD1~cD8 with frequency components in a range of 0.49–
125Hz are kept. All the retained coefficients are then filtered
by the wavelet shrinking threshold algorithm [29]. In this
study, soft thresholding is adopted due to its good continuity
and no Gibbs phenomenon on step points [30].

2.2. Step 2: Signal Mirroring. For some ECG patterns, such as
premature ventricular contraction (PVC) beat, R-peaks are
presented with amplitude below the baseline but other fea-
tures are above the baseline. To avoid the potential missing
detection, signal mirroring is designed. The mirroring proce-
dure for a PVC segment is described in Figure 3. Large neg-
ative amplitudes are mirrored by taking the baseline as
their symmetrical axis. However, not all the negative
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Figure 1: Block diagram of the proposed R-peak detection algorithm.
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amplitudes are mirrored, they should be significantly distinc-
tive from adjacent negative values. This assumption is based
on the fact that R-peaks have steep slopes while other waves
such as P wave and T wave have gentle ones [10]. Steep slope
means drastic increment and decrement on both sides of

local maximum, and the slope is finished within several sam-
pling points. If the absolute amplitude of a negative point is
1.5 times larger than that of the adjacent points within
0.278 seconds (0.278f s points) before and after it, then the
negative point will be mirrored.

where L is the signal length, AN k is the amplitude of large
negative point with position number k in signal, 0 < k ≤ L,
and AA i is the amplitude of point within 0.278 s before
and after the large negative point.

In some literatures [15, 21, 31–33], authors recommend
that signal with baseline drift removed could be squared to
highlight the difference between true R-peaks and false ones,
such as high-amplitude noise and high-amplitude P waves.
However, this operation may not be suitable in our method
due to the differences among R-peak amplitudes. If the signal
is squared, amplitude values below 1 will be smaller than the
original, and values above 1 will be enlarged. This increases
the difference among true R-peaks and is adverse for the
amplitude threshold to detect potential R-peaks, especially
when a signal segment is mixed with large and small ampli-
tude R-peaks.

2.3. Step 3: Local Maximum Location and Adaptive Threshold
Selection. Local maximums are located by implementing
first-order forward differential in the mirrored signal. The
procedure is illustrated as follows.

(1) First-order forward difference is implemented on
ECG signal with ΔECG n = ECG n + 1 − ECG n .

(2) For all the elements in ΔECG n , values less than,
equal, and more than 0 are replaced by −1, 0, and 1,
respectively,

ΔECG n ← sgn ΔECG n =
1 ΔECG n > 0
0 ΔECG n = 0
−1 ΔECG n < 0

2

(3) First-order forward difference is implemented on the
updated ΔECG n , and the value of ΔECG n is sym-
bolized by −2, 0, and 2. Local maximums in original
ECG signal are positions shifted by 1 sample to the
right of −2.

The following threshold procedure depends significantly
on the amplitude threshold a t and time interval threshold
ti t , which are adaptively determined by the location of
local maximum instead of adopting fixed thresholds, since
fixed thresholds do not copy with large or small amplitude
R-peak and slow or fast beat. The selection of the two

thresholds is displayed in Figure 4. During an ECG segment,
a t is selected to be a multiple of the amplitude maximum
MAXseg amp; ti t is selected to be a multiple of the average
horizontal distance of each adjacent local maximum
AVEmax dis. If the positions and amplitudes of these local
maximums change, the two thresholds will change corre-
spondingly; hence, a t and ti t will adjust adaptively accord-
ing to the maximum variety.

a t = KampMAXseg amp

ti t = K timeAVEmax dis
3

However, the threshold selection is strongly dependent
on the noise; Kamp and K time are coefficients designed to cor-
rect the noise influence. The detailed selection method for
them is discussed in Section 4.3. In a segment, the positions
of local maximums are fixed, correspondingly; MAXseg amp
and AVEmax dis are deterministic. Hence, only Kamp and
K time need to be decided. The thresholds are automatically
updated by the shift of new coming segment. The superiority
of automatic threshold substitution embodies in the corre-
sponding adjustment on recognition for small amplitude
and slow or fast cardiac beat, as fixed thresholds may fail to
detect R-peaks in these cases.

2.4. Step 4: Threshold Recognition. Actually, most of the local
maximums are not true R-peaks, such as burst points caused
by high-frequency interference. The difficulty of R-peak
detection lies in the recognition of false R-peaks with ampli-
tudes approximate to or even larger than true R-peaks. To
this end, a t is designed to filter the local maximums with
small amplitudes. In general, there should be no extra R-
peaks between two adjacent R-peaks; otherwise, the extra
R-peaks are definitely false. Assisted by this knowledge, ti t
is designed to further remove false R-peaks omitted by a t.
The thresholding algorithm is plotted in Figure 5. The exam-
ple ECG is from the Record 200 inMITDB with PVC beats. It
comprises of large negative R-peaks, and consequently, the
signal needs to be mirrored. The marksM in Figure 5 signify
the mirrored R-peaks, where they should originally be large
negative amplitudes. After the amplitude filtration, the time
interval threshold algorithm is summarized as follows:

(1) Step A. A local maximum and its following maximum
are chosen as true reference (Tref) and comparative

Negative
mirrored if ∀max 0, k − 0 278f s ≤ i ≤min L, k + 0 278f s , i ≠ k, ∃ AN k ≥ 1 5 AA i

unchanged else,
1
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reference (Cref) respectively, turn to Step B. If there is
no Cref, Tref is considered as a true R-peak and the
algorithm ends.

(2) Step B. The time period (t_p) between Tref and Cref is
calculated. If t_p<ti_t, it indicates that one of the two
maximums is a false R-peak, then turn to Step C.
Otherwise, Tref is considered as a true R-peak, Cref
replaces Tref as true reference, then turn to Step A
for next thresholding.

(3) Step C. Widths along the baseline of Tref (Wr) and
Cref (Wf) are compared, ifWr<Wf, Tref is considered
to be a true R-peak, ifWr>Wf, Cref is treated as a true
R-peak [34]. Then turn to Step E. If Wr=Wf, turn to
Step D.

(4) Step D. Amplitude of Tref (Ar) and Cref (Af) is com-
pared, if Ar>Af, Tref is considered to be a true R-
peak, otherwise, Cref is treated as a true R-peak
[34]. Then turn to Step E.

(5) Step E. The false maximum is replaced by the third
local maximum (Rref) just behind the two maxi-
mums, which is treated as a new Cref, and then return

to Step B. If there is no Rref in the time period, turn to
Step A.

3. Experiment Designs

3.1. Datasets. The MITDB comprises 48 ECG records, and
each contains 30-minute ECG signal [35, 36], resulting in a
total of 109966 beats that were all used. The ECG records
have acceptable quality, sharp and tall P and T waves, nega-
tive R waves, small R-peak amplitudes, wider R waves, mus-
cle noise, baseline drift, sudden changes in heartbeat
morphology, multiform PVC, long pauses, and irregular
heart rhythms [25].

The QTDB contains a total of 105 15-minute ECGs.
ECGs in this database were chosen to represent a wide variety
of QRS and ST-T morphologies with real-world variability to
challenge the detection algorithms [35, 37]. A total of 86995
beats from 82 records were used, and the rest 23 records of
sel30-sel52 were excluded since the QRS annotations were
not given.

It should be noted that both databases provide two chan-
nels of ECG signals. In this study, only the first channel was
used for algorithm development and test.

3.2. Evaluation Indices. Experimental results are evaluated
in terms of sensitivity SEN , positive predictivity +P ,
and accuracy ACC . The definitions of the indices are
expressed in

SEN =
TP

TP + FN
× 100%, 4

+P =
TP

TP + FP
× 100%, 5

ACC =
TP

TP + FN + FP
× 100%, 6

where TP (true positive) is the number of R-peaks correctly
recognized, FN (false negative) is the number of R-peaks
missed, and FP (false positive) is the number of false R-
peaks recognized as true R-peaks. The TP, FN, and FP, veri-
fied by the annotations announced in [25], are calculated
based on a tolerance window of 50ms.

Time complexity is also tested, which quantifies the
amount of time taken by an algorithm to run as a function
of the length of string representing the input. It reflects the
increment of time consumption when the input data
increase. Time complexity of an algorithm is commonly
expressed using O notation. If the number of input data n
multiplies, the time consumption multiplies with an incre-
ment of nm, the algorithm is called to have an m-order time
complexity symbolized as O nm . In this study, all the
time cost experiments were carried out on a desktop
(CPU i7-2600 3.40GHz, 8GB RAM, 64-bit Windows 7
Enterprise) installed with Matlab 2016b.

4. Results

First, for both databases, Kamp and K time were initially set as
0.25 and 0.45, respectively. The length of shifting signal was
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Tref = localmax1; Cref = localmax2; Rref=localmax3; t_p = time period (abs (Tref - Cref));
WTref = width (Tref); WCref = width (Cref); ATref = amplitude (Tref); ACref = amplitude (Cref);
If t_p < ti_t

If WTref < WCref
localmax1 is a true R-peak;
Else if WTref > WCref

localmax2 is a true R-peak;
Else if ATref > ACref

localmax1 is a true R-peak;
Else

localmax2 is a true R-peak;
End if

End if
Else

localmax1 is a true R-peak;
End if

End if
If Rref is not NULL

False R-peak is replaced by the Rref, and repeat the algorithm with new Tref and Cref;
End if

Pseudocode 1: The pseudocode of the threshold procedure.
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set as 10 s for each thresholding operation. Then, we tested
the influences of the parameters Kamp and K time.

4.1. R-Peak Detection Results. The testing results on MITDB
are summarized in Table 1. The results demonstrate a satis-
factory performance on the records. The algorithm has a total
detection failure of 1229 beats (668 FN beats and 561 FP
beats) out of 109966 beats; the average SEN, +P, and ACC
are 99.39%, 99.49%, and 98.89% respectively.

The testing results on QTDB are shown in Table 2. The
algorithm has a total detection failure of 238 beats (147 FN
beats and 91 FP beats); out of 86995 beats, the average
SEN, +P, and ACC are 99.83%, 99.90%, and 99.73% respec-
tively. Compared with MITDB, the ECG signals from QTDB
have much better waveforms with higher quality; distractors
such as motion artifacts, burst noise, large P, and T waves are
much less. Consequently, the algorithm achieves a more sat-
isfactory performance over QTDB.

Our algorithm is also compared with several existing
methods, including the most widely used Pan-Tompkins
method, as shown in Table 3. The comparison indicates that
our algorithm achieves comparable high performance.

4.2. Time Consumption and Time Complexity. The time con-
sumption for each record from MITDB is described in
Figure 6(a). In general, the Pan-Tompkins method consumes
more time than our method for most records. The mean time
of this method is 1.256 s to process one record, while our
algorithm consumes 0.872 s, achieving about 30.6% of time
reduction. Figure 6(b) shows the time consumption ratio of
the proposed method over the Pan-Tompkins method. It is
obvious that our method consumes less time for most records
except for records 107, 109, 113, and 116, which contain large
T waves that cause more frequent thresholding manipula-
tions. In some cases, our algorithm economizes nearly 50%
of time than the Pan-Tompkins method.

The time consumption for each record from QTDB is
described in Figure 7(a) and Figure 8(a). It is obvious that
our method consumes less time than the Pan-Tompkins
method for all the records. The mean time of the Pan-
Tompkins method is 1.137 s to process one record, while
our algorithm consumes 0.763 s, achieving about 32.9% of
time reduction. Figure 7(b) and Figure 8(b) show the time
consumption ratio of the proposed method over the Pan-
Tompkins method. It can be seen that all the ratios are less
than 1. The outstanding performance can be attributed to
the high-quality ECG signals in QTDB.

The time consumption reveals an important charac-
teristic of the two methods. The number of sampling
points of each QTDB ECG is 225000, and the number
is 650000 of each MITDB ECG. Although the number
has increased about two times from QTDB to MITDB,
the time consumed increases only 12.5% using our method
and 9.2% using the Pan-Tomkins method. It indicates that
when data multiplies, the time consumption increases
slightly instead of multiplying correspondingly. Both our
method and the Pan-Tomkins method are not so sensitive
to data increase.

Table 1: Detection results of ECG signals from MITDB.

Record
Total
beats

TP FN FP SEN (%) +P (%) ACC (%)

100 2273 2273 0 0 100.00 100.00 100.00

101 1865 1864 1 1 99.95 99.95 99.89

102 2187 2187 0 0 100.00 100.00 100.00

103 2084 2084 0 0 100.00 100.00 100.00

104 2229 2222 7 10 99.69 99.55 99.24

105 2572 2528 44 50 98.29 98.06 96.41

106 2027 2004 23 22 98.87 98.91 97.80

107 2137 2121 16 6 99.25 99.72 98.97

108 1763 1739 24 18 98.64 98.98 97.64

109 2532 2532 0 0 100.00 100.00 100.00

111 2124 2117 7 4 99.67 99.81 99.48

112 2539 2539 0 0 100.00 100.00 100.00

113 1795 1795 0 0 100.00 100.00 100.00

114 1879 1872 7 10 99.63 99.47 99.10

115 1953 1953 0 0 100.00 100.00 100.00

116 2412 2393 19 5 99.21 99.79 99.01

117 1535 1534 1 1 99.93 99.93 99.87

118 2278 2277 1 0 99.96 100.00 99.96

119 1987 1987 0 0 100.00 100.00 100.00

121 1863 1860 3 3 99.84 99.84 99.68

122 2476 2476 0 0 100.00 100.00 100.00

123 1518 1518 0 0 100.00 100.00 100.00

124 1619 1617 2 2 99.88 99.88 99.75

200 2601 2593 8 3 99.69 99.88 99.58

201 1963 1962 1 1 99.95 99.95 99.90

202 2136 2123 13 6 99.39 99.72 99.11

203 2980 2953 27 21 99.09 99.29 98.40

205 2656 2640 16 2 99.40 99.92 99.32

207 2332 2018 314 328 86.54 86.02 75.86

208 2955 2932 23 3 99.22 99.90 99.12

209 3005 3005 0 1 100.00 99.97 99.97

210 2650 2629 21 13 99.21 99.51 98.72

212 2748 2748 0 0 100.00 100.00 100.00

213 3251 3245 6 2 99.82 99.94 99.75

214 2262 2253 9 10 99.60 99.56 99.16

215 3363 3360 3 4 99.91 99.88 99.79

217 2208 2193 15 10 99.32 99.55 98.87

219 2154 2154 0 0 100.00 100.00 100.00

220 2048 2048 0 0 100.00 100.00 100.00

221 2427 2417 10 5 99.59 99.79 99.38

222 2483 2480 3 3 99.88 99.88 99.76

223 2605 2585 20 0 99.23 100.00 99.23

228 2053 2032 21 14 98.98 99.32 98.31

230 2256 2256 0 0 100.00 100.00 100.00

231 1571 1571 0 0 100.00 100.00 100.00

232 1780 1778 2 2 99.89 99.89 99.78

233 3079 3078 1 1 99.97 99.97 99.94

234 2753 2753 0 0 100.00 100.00 100.00

Total 109966 109298 668 561 99.39 99.49 98.89
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However, for records 107, 109, 113, and 116 in MITDB,
our method consumes the same and even more time than
the Pan-Tompkins method. The disadvantage of our method
is plotted in Figure 9 versus the Pan-Tompkins method in
terms of time complexity. In each subfigure, the abscissa rep-
resents the quantitative increment of samples. The basic
number of samples is 720; it is multiplied by the number
shown in the abscissa. In the top row, the ordinate is the mul-
tiple increments of time consumed by processing the multi-
plied samples shown in the abscissa. In the bottom row, the
ordinates are the increment of time multiples calculated from
the ordinates in the top row. Intuitively, the four records have
high increments of time consumption as the amount of data

Table 2: Detection results of ECG signals from QTDB.

Record
Total
beats

TP FN FP SEN
(%)

+P
(%)

ACC
(%)

sel100 1134 1134 0 0 100.00 100.00 100.00

sel102 1088 1088 0 0 100.00 100.00 100.00

sel103 1048 1048 0 0 100.00 100.00 100.00

sel104 1109 1109 0 1 100.00 99.91 99.91

sel114 862 858 4 8 99.54 99.08 98.62

sel116 1185 1184 1 1 99.92 99.92 99.83

sel117 766 766 0 0 100.00 100.00 100.00

sel123 756 756 0 0 100.00 100.00 100.00

sel213 1642 1636 6 1 99.63 99.94 99.57

sel221 1247 1240 7 3 99.44 99.76 99.20

sel223 1309 1307 2 2 99.85 99.85 99.69

sel230 1077 1077 0 0 100.00 100.00 100.00

sel231 732 732 0 0 100.00 100.00 100.00

sel232 865 864 1 0 99.88 100.00 99.88

sel233 1533 1507 26 1 98.30 99.93 98.24

sel301 1351 1346 5 1 99.63 99.93 99.56

sel302 1500 1498 2 1 99.87 99.93 99.80

sel306 1040 1040 0 0 100.00 100.00 100.00

sel307 853 853 0 0 100.00 100.00 100.00

sel308 1294 1285 9 5 99.30 99.61 98.92

sel310 2012 1997 15 2 99.25 99.90 99.16

sel803 1026 1026 0 0 100.00 100.00 100.00

sel808 903 902 1 1 99.89 99.89 99.78

sel811 704 704 0 0 100.00 100.00 100.00

sel820 1159 1158 1 0 99.91 100.00 99.91

sel821 1557 1556 1 1 99.94 99.94 99.87

sel840 1180 1179 1 0 99.92 100.00 99.92

sel847 801 801 0 0 100.00 100.00 100.00

sel853 1113 1113 0 0 100.00 100.00 100.00

sel871 917 917 0 0 100.00 100.00 100.00

sel872 990 990 0 0 100.00 100.00 100.00

sel873 859 858 1 1 99.88 99.88 99.77

sel883 892 891 1 2 99.89 99.78 99.66

sel891 1267 1266 1 0 99.92 100.00 99.92

sel14046 1260 1260 0 0 100.00 100.00 100.00

sel14157 1081 1081 0 0 100.00 100.00 100.00

sel14172 663 663 0 0 100.00 100.00 100.00

sel15814 1036 1035 1 0 99.90 100.00 99.90

sel16265 1031 1031 0 0 100.00 100.00 100.00

sel16272 851 851 0 0 100.00 100.00 100.00

sel16273 1112 1111 1 0 99.91 100.00 99.91

sel16420 1063 1063 0 0 100.00 100.00 100.00

sel16483 1087 1087 0 0 100.00 100.00 100.00

sel16539 922 922 0 0 100.00 100.00 100.00

sel16773 1008 1007 1 0 99.90 100.00 99.90

sel16786 925 925 0 0 100.00 100.00 100.00

sel16795 761 761 0 0 100.00 100.00 100.00

sel17152 1628 1628 0 0 100.00 100.00 100.00

Table 2: Continued.

Record
Total
beats

TP FN FP SEN
(%)

+P
(%)

ACC
(%)

sel17453 1047 1047 0 0 100.00 100.00 100.00

sele0104 804 804 0 0 100.00 100.00 100.00

sele0106 896 896 0 0 100.00 100.00 100.00

sele0107 812 806 6 2 99.26 99.75 99.02

sele0110 872 870 2 9 99.77 98.98 98.75

sele0111 907 907 0 0 100.00 100.00 100.00

sele0112 684 675 9 12 98.68 98.25 96.98

sele0114 699 698 1 1 99.86 99.86 99.71

sele0116 558 558 0 0 100.00 100.00 100.00

sele0121 1436 1431 5 0 99.65 100.00 99.65

sele0122 1415 1415 0 0 100.00 100.00 100.00

sele0124 1121 1121 0 0 100.00 100.00 100.00

sele0126 945 945 0 1 100.00 99.89 99.89

sele0129 671 644 27 23 95.98 96.55 92.80

sele0133 840 840 0 0 100.00 100.00 100.00

sele0136 809 809 0 0 100.00 100.00 100.00

sele0166 813 813 0 0 100.00 100.00 100.00

sele0170 897 897 0 2 100.00 99.78 99.78

sele0203 1246 1245 1 1 99.92 99.92 99.84

sele0210 1063 1062 1 0 99.91 100.00 99.91

sele0211 1575 1573 2 4 99.87 99.75 99.62

sele0303 1045 1044 1 0 99.90 100.00 99.90

sele0405 1216 1216 0 1 100.00 99.92 99.92

sele0406 959 959 0 1 100.00 99.90 99.90

sele0409 1737 1737 0 0 100.00 100.00 100.00

sele0411 1202 1202 0 0 100.00 100.00 100.00

sele0509 1028 1028 0 0 100.00 100.00 100.00

sele0603 870 869 1 0 99.89 100.00 99.89

sele0604 1031 1031 0 0 100.00 100.00 100.00

sele0606 1442 1442 0 0 100.00 100.00 100.00

sele0607 1184 1184 0 0 100.00 100.00 100.00

sele0609 1127 1125 2 2 99.82 99.82 99.65

sele0612 751 751 0 0 100.00 100.00 100.00

sele0704 1094 1093 1 1 99.91 99.91 99.82

Total 86995 86848 147 91 99.83 99.90 99.73
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increases, especially when the data quantity is less than 500
times of the basic number 720. One important reason is that
the four records contain numerous large T waves or P waves
to be compared by time interval threshold or large negative
amplitudes to be estimated for mirroring. Time interval com-
parison is more frequent for these waveforms, leading to
higher time complexity than that of the Pan-Tompkins
method. But on the other hand, the curves prove that our
algorithm is not so sensitive to data increase. The increments
of timemultiple fluctuate in small ranges, basically remaining

unchanged. The multiples of time consumption have linear
relationships with the increments of sample amount.

4.3. Kamp and Ktime. Amplitude threshold takes a significant
role in truncating burst points along the baseline; time inter-
val threshold is a critical measure to further distinguish false
R-peaks. According to (3), the thresholds depend signifi-
cantly on Kamp and K time. To determine optimal coefficients
and validate the feasibility of adaptive thresholding, different
a t and ti t values are tested using the 48 ECG records in

Table 3: Comparison of R-peak detection with other algorithms.

Dataset Beats TP FN FP SEN (%) +P (%) ACC (%)

Zidelmal et al. [12] MITDB 109494 109101 393 193 99.64 99.82 99.47

Pan and Tompkins [15] MITDB 116137 115860 277 507 99.76 99.56 99.33

Jung and Lee [21] MITDB 109541 108960 581 579 99.47 99.47 98.94

Chiarugi et al. [38] MITDB 109494 109288 266 210 99.76 99.81 99.57

Arzeno et al. [39] MITDB 109517 109099 354 405 99.68 99.63 99.31

Elgendi [40] MITDB 109985 109738 247 124 99.78 99.87 99.66

Christov [41] MITDB 110050 109615 240 239 99.74 99.65 99.56

Chouakri et al. [42] MITDB 110934 109488 1446 3068 98.68 97.24 96.03

Rodríguez et al. [43] MITDB 44715 42518 879 142 96.28 99.71 97.65

Yeh and Wang [44] MITDB 116137 115971 166 58 99.86 99.95 99.81

The proposed
MITDB 109966 109298 668 561 99.39 99.49 98.89

QTDB 86995 86848 147 91 99.83 99.90 99.73
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Figure 6: (a) Time consumption of processing the 48 records in MITDB and (b) time consumption ratio of the proposed method over the
Pan-Tompkins method.
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Figure 7: (a) Time consumption of processing the first 41 records in QTDB and (b) time consumption ratio of the proposed method over the
Pan-Tompkins method.
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Figure 8: (a) Time consumption of processing the last 41 records in QTDB and (b) time consumption ratio of the proposed method over the
Pan-Tompkins method.
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Table 4: Comparison of different threshold coefficients.

K time
Kamp

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

SEN (%)

0.36

98.65 98.93 98.68 97.87 96.45 93.87 90.78 87.54 84.16

+P (%) 80.94 87.29 90.23 92.38 93.69 94.55 96.56 97.89 98.67

ACC (%) 80.06 86.47 89.16 90.56 90.57 89.05 87.94 85.92 83.22

SEN (%)

0.39

96.42 97.59 98.05 97.61 96.31 93.79 90.72 87.51 84.14

+P (%) 85.94 91.24 93.64 94.99 95.58 96.37 98.08 99.04 99.39

ACC (%) 83.28 89.24 91.93 92.83 92.20 90.59 89.14 86.78 83.71

SEN (%)

0.42

95.70 97.20 97.80 97.43 96.18 93.68 90.64 87.44 84.09

+P (%) 89.98 94.56 96.42 97.40 97.79 98.27 98.98 99.38 99.56

ACC (%) 86.48 92.05 94.38 94.96 94.13 92.16 89.80 86.97 83.78

SEN (%)

0.45

94.57 96.47 97.17 99.39 95.73 93.36 90.42 87.28 83.94

+P (%) 92.51 96.73 98.28 99.49 99.09 99.26 99.42 99.54 99.63

ACC (%) 90.85 96.42 98.54 98.89 97.90 95.72 92.94 89.93 86.68

SEN (%)

0.48

93.84 95.87 96.63 96.38 95.26 92.90 89.97 86.86 83.57

+P (%) 93.54 97.20 98.59 99.07 99.26 99.38 99.48 99.56 99.64

ACC (%) 88.13 93.29 95.32 95.52 94.58 92.37 89.55 86.53 83.31

SEN (%)

0.51

93.06 95.28 96.08 95.83 94.69 92.30 89.35 86.24 82.98

+P (%) 94.04 97.45 98.68 99.10 99.28 99.39 99.49 99.56 99.64

ACC (%) 87.87 92.96 94.86 95.01 94.04 91.78 88.94 85.92 82.73

SEN (%)

0.54

92.10 94.59 95.41 95.15 94.02 91.66 88.73 85.66 82.43

+P (%) 94.26 97.63 98.73 99.12 99.30 99.41 99.50 99.57 99.65

ACC (%) 87.21 92.47 94.25 94.36 93.40 91.16 88.34 85.35 82.19

SEN (%)

0.57

90.90 93.54 94.41 94.14 93.03 90.73 87.86 84.85 81.65

+P (%) 94.31 97.68 98.76 99.15 99.31 99.42 99.51 99.57 99.65

ACC (%) 86.17 91.51 93.30 93.38 92.44 90.25 87.48 84.54 81.42

SEN (%)

0.6

89.10 91.87 92.80 92.60 91.58 89.46 86.85 83.99 80.90

+P (%) 94.28 97.67 98.76 99.16 99.32 99.43 99.52 99.58 99.65

ACC (%) 84.53 89.90 91.73 91.88 91.01 89.00 86.48 83.69 80.68
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MITDB. RR intervals of the records range from 0.54 s to
1.19 s; an average of 0.82 s is adopted to cope with different
heart rates. The validation results are summarized in Table 4.

It can be seen that the optimal a t is generally
Kamp = 0 2~0 3 times the MAXseg amp, with Kamp = 0 25
reaching the maximum SEN, +P and ACC as illustrated in
Table 1. On one hand, large a t is beneficial for the algorithm
to cut off points located near the baseline, but small true R-
peaks may be missed if a t is too large. As shown in the table,
when Kamp is larger than 0.40, most of the false R-peaks are
filtered as well as true ones, resulting in high FN but low
FP and correspondingly low SEN but high +P. On the other,
smaller a t generates fewer omitted R-peaks, but this will
increase the computational cost in time interval thresholding.
The worst situation is that all the potential R-peaks are com-
pared, as revealed in the table when Kamp is smaller than 0.20.
In this case, most of the true R-peaks are included in local
maximums as well as false ones, resulting in low FN but high
FP and correspondingly high SEN but low +P. To coordinate
with different heart rates, Kamp is recommended to be
selected from interval [0.2, 0.3] and K time from [0.42, 0.48].
After Kamp and K time are determined, a t and ti t can be auto-
matically updated by the shift of new coming signal.

5. Discussion

The proposed method has two advantages. One is from
the time efficiency as indicated in Section 4.2. The main
difference between our method and the Pan-Tompkins
method is that the latter calculates more measures for R-
peak recognition. It includes a search back operation after
a complete detection circulation, thus resulting in a high
computational complexity. Our method exclusively uses

the thresholding method, and it does not require any
search back operation. Besides, the amplitude threshold can
also contribute to the calculation efficiency since it excludes
most distractors and significantly reduces the amount of
threshold comparisons.

Another advantage is from that there is no time length
limitation for thresholding. As described in Section 2.4, the
length of new coming segment is flexible, and the threshold-
ing procedure can operate not only for a single heartbeat but
also for a complete ECG record. With adaptive Kamp and
K time, our method is suitable for different lengths of ECG sig-
nal and it requires no prelearning procedure.

From Table 1, we can see that about half of the failed
beats (314 FN and 328 FP) are from record 207. This
record consists of numerous distorted heartbeats that are
extremely difficult to be recognized even by a cardiologist.
However, few literatures reported the results on this specific
record. It is also unclear if record 207 is excluded in the
evaluations to achieve a high score. This record is also the
main interference that significantly reduces the detection
accuracy of our method.

Apart from record 207, there are still some missing and
false recognitions on some other records. The main method-
ological defect of the algorithm is that amplitude threshold
may fail to detect small R-peaks mixed in large ones (records
105, 106, 108, and 228). The a t is selected based on the local
maximums; if a segment contains numerous large R-peaks,
a t will be larger than small R-peaks. This weights against
the identification for small R-peaks because they are prone
to be partitioned below the a t, as illustrated in Figure 10.
The signal contains baseline drift, large T waves, and large
negative amplitude R-peaks. Although most of the R-peaks
are recognized, there are two FN detections for small R-
peaks. If an R-peak is missed, ti t would probably take
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Figure 10: Missing detection due to the small amplitude of R-peaks.

12 Journal of Healthcare Engineering



the following maximum as the candidate R-peak, which
actually is a distractor.

6. Conclusions

In this study, an adaptive and time-efficient methodology has
been developed for automatic ECG R-peak detection. It is an
adaptive method integrating WMRA, signal mirroring, local
maximum detection, and amplitude and time interval
thresholding. The accuracy performances were tested by
using ECG records from MITDB and QTDB. Experimental
results indicate that the proposed algorithm achieves average
SEN, +P, and ACC of 99.39%, 99.49%, and 98.89% for
MITDB, and 99.83%, 99.90%, and 99.73% for QTDB, respec-
tively. In addition, time consumption and time complexity of
the algorithm are computed to prove its time efficiency. By
processing one ECG record, the average time cost is 0.872 s
for MITDB and 0.763 s for QTDB, achieving 30.6% and
32.9%, respectively, of time reduction compared to the
Pan-Tompkins method. Experiments on time complexity
demonstrate that the proposed method is provided with
linear time complexity; both our method and the Pan-
Tompkins method are less sensitive to data increase.
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