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Finding patterns in cortical
responses
Simulations predict a paradoxical effect that should be revealed by

patterned stimulation of the cortex.

ALESSANDRO SANZENI AND MARK H HISTED

A
ny system, including biological systems,

can be said to perform a computation

when it transforms input information to

generate an output. It is thought that many brain

computations are performed by neurons (or

groups of neurons) receiving input signals that

they process to produce output activity, which

then becomes input for other neurons. Many

computations that brains can perform could, in

principle, be carried out through feedforward

processes (Yamins et al., 2014). In simple terms,

feedforward means that the signals always travel

in one direction – forward to the next neuron or

network of neurons – and they never travel back-

wards or sideways to other neurons within a neu-

ron group. In the cortex, however, networks of

neurons have substantial ’recurrent’ connectivity.

Most cortical neurons are connected to other

nearby cortical neurons, and therefore, signals

can travel sideways due to these recurrent, local

connections.

One property of networks with recurrent con-

nectivity is that they can amplify certain inputs to

produce larger outputs, while suppressing other

inputs or amplifying them by a smaller factor.

However, it has been challenging to understand

how this can happen without the system display-

ing unstable or runaway activity, which is unde-

sirable in the brain because it can lead to

epileptic seizures. One plausible mechanism for

recurrent amplification is known as ’balanced

amplification’ (Murphy and Miller, 2009). In

mathematical network models that support bal-

anced amplification, recurrent connectivity

allows certain inputs to produce large outputs,

yet the networks still exhibit other properties

that are consistent with experimental data (such

as fast responses to inputs). Recurrent connec-

tions can also influence the timing of neurons’

responses, allowing shorter inputs to create

long-lasting, or time-varying outputs

(Hennequin et al., 2014).

Neurons can be excitatory or inhibitory: when

an excitatory neuron fires, the neuron receiving

that input becomes more likely to fire as well,

and when an inhibitory neuron fires, the oppo-

site occurs, and the recipient neuron is sup-

pressed. A network of excitatory and inhibitory

cells must possess strong recurrent connectivity

to support many recurrent computations, includ-

ing balanced amplification. Here ’strong’ means

that recurrent connections are sufficiently dense

to allow excitatory neurons to amplify other

excitatory neurons’ activity, and in this situation,

strong inputs from inhibitory neurons are

required to stop the network from becoming

unstable. More precisely, inhibitory-stabilized

network models are those where, if the activity

of inhibitory neurons could be locked to a fixed

level, the excitatory neurons in the network

would then become unstable (Tsodyks et al.,

1997). Inhibitory-stabilized networks have been
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found in several cortical areas, and are seen

across a range of levels of network activity –

both when sensory stimulation is present, and

when it is absent (Ozeki et al., 2009; Li et al.,

2019; Sanzeni et al., 2019, but see

Mahrach et al., 2020).

The simplest form of strong connectivity

amongst excitatory neurons in a network is

where the whole excitatory network is unstable.

This is the standard inhibitory-stabilized net-

work. But complex neural networks can have

multiple unstable excitatory modes, where sub-

groups of excitatory neurons are unstable and

would display runaway behavior if they were not

stabilized by inhibition. Networks in which inhibi-

tion stabilizes multiple excitatory modes or sub-

groups are said to be in detailed balance

(Vogels and Abbott, 2009; Hennequin et al.,

2014; Litwin-Kumar and Doiron, 2014), while

those in which inhibition stabilizes a single group

of excitatory cells, typically the group of all excit-

atory cells, are in global balance. As a general

rule, networks in detailed balance are also in

global balance.

Now, in eLife, Sadra Sadeh and Claudia Clo-

path from Imperial College London report the

result of simulations that show that networks in

detailed balance have properties that extend
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Figure 1. Inhibitory structure revealed by patterned stimulation. (A) Two possible network structures create two

types of inhibitory-stabilized networks (ISNs). In a non-specific network (top), any excitatory (or inhibitory) neuron (E

cell or I cell) has the same probability of connecting with other excitatory (inhibitory) neurons. In a specific network,

subgroups of neurons connect preferentially to other neurons within the subgroup. (B) The two types of network

require two different kinds of inhibitory balance. These types of balance are illustrated here conceptually, via a

thought experiment where one imagines inhibitory neurons’ (I cells’) activity is frozen at a fixed level. For non-

specific networks (top), if inhibitory neurons’ activity could be frozen, a single group of excitatory cells would

respond to input (x-axis) by entering runaway behavior together. Thus, during normal network operation, feedback

from inhibitory neurons is required to stabilize this single excitatory mode. The network is then said to be in global

balance. For specific networks (bottom), multiple excitatory modes (subgroups of E neurons) are unstable when

inhibition is frozen. During normal network operation, the inhibitory network must be connected in such a way as

to stabilize these multiple excitatory modes, and these networks are said to be in detailed balance. (C) Sadeh and

Clopath examine how firing rates (y-axis) of different inhibitory cells (x-axis) change when stimulated, depending

on whether the stimulation pattern (blue line) was uniform (left panels) or patterned (right panels) in non-specific

(top) or specific (bottom) networks (note that the specific networks that Sadeh and Clopath simulated have even

more than two excitatory modes; see their work for details). The dotted lines show inhibitory firing rates, before

(upper line) and after (lower line) stimulation, with the change in firing rates induced by stimulation indicated by

the arrow. In both specific and non-specific networks, stimulation that excites the inhibitory neurons uniformly (left)

paradoxically leads to a decrease in their firing rates. Patterned stimulation of inhibitory cells (right) in non-specific

networks (top) leads to a similar response as with uniform inputs. However, in specific networks (bottom),

patterned stimulation adds another effect: the inhibitory neurons that receive the strongest stimulation decrease

their activity the most.
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the basic inhibitory-stabilized network

(Sadeh and Clopath, 2020). In globally-bal-

anced networks, when inhibitory neurons are

stimulated uniformly (all of the neurons across

the network receive an input of the same

strength) a distinctive ‘paradoxical’ response,

where adding input reduces activity, can be

observed (Figure 1C). These paradoxical

responses can be used as a signature to deter-

mine whether the network is an inhibitory-stabi-

lized network (Tsodyks et al., 1997). Sadeh and

Clopath extend this idea to detailed-balance

networks with multiple unstable excitatory

modes. They show that if the inhibitory neurons

in these networks receive more complex, pat-

terned stimulation (that is, certain neurons

receive a stronger input than others) a predict-

able paradoxical signature can be observed

(Figure 1D). Sadeh and Clopath call networks in

which this happens ‘specific inhibitory-stabilized

networks’. The connectivity patterns between

neurons in their models are consistent with ana-

tomical evidence of structured network connec-

tivity in the cortex (Ko et al., 2013;

Znamenskiy et al., 2018). Further, the existence

of multiple excitatory submodes in the cortex is

suggested by recent experiments that have

found preferential amplification of specific pat-

terns of input (Marshel et al., 2019;

Peron et al., 2020).

Sadeh and Clopath thus make a concrete pre-

diction: that this “specific paradoxical effect”

will be seen in networks where the connectivity

between neurons is strong and structured. This

prediction can now be tested using a technique

called two-photon optogenetics that allows pat-

terned input to be provided to neural networks

in vivo with single-cell resolution, both for excit-

atory and inhibitory neurons (for example,

Marshel et al., 2019; Forli et al., 2018).

The article by Sadeh and Clopath also takes a

conceptual step forward by considering the

information that can be gained about network

structure and function by providing each neuron

with an input of different strength. This concep-

tual framework is timely, as two-photon stimula-

tion has this ability to vary the strength of the

input to selected neurons. Specifically, Sadeh

and Clopath predict that a pattern of input

across inhibitory neurons will generate a

response that is similar to the input pattern but

with opposite sign. These predictions should

shape future experiments, yielding new informa-

tion about a key element of cortical function:

how the recurrent connectivity in cortical net-

works is used for computation.
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