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The story of insulin development is a remarkable example
of what can be accomplished in medicine when academic
science meets translational biotechnology. The foundation
was laid 100 years ago this year with the discovery of insu-
lin in Toronto in 1921, prompting a Nobel Prize in 1923.

The discovery made by Banting and Best (1) was so
spectacular and of such importance for many people that
it immediately led to collaboration with industry partners,
most notably Eli Lilly in the U.S. and what became Novo
Nordisk in Europe. One of the founding fathers of Novo
Nordisk, Dr. August Krogh, was himself a Nobel Prize lau-
reate. Krogh understood the scientific significance of the
insulin discovery and partnered with people skilled in
medicine as well as in technological development and
upscaling. In the following decades, academic discoveries
such as insulin crystallization (2) and binding of zinc (3)
and protamine (4) immediately translated to benefits on
insulin product characteristics that are of importance
even today. Seminal discoveries in academia in the 1950s
and 1960s unraveled the amino acid sequence as well as
the secondary, tertiary, and quaternary insulin structures.
These academic endeavors were led by Nobel Laureates
Sanger (5) and Hodgkin (6), respectively. Another major
milestone was Don Steiner’s discovery that human insulin
is produced as a single-chain proinsulin (7). The immuno-
logical characterization of proinsulin provided the techno-
logical background that allowed the pharmaceutical
industry to refine the purification of insulin to obtain
monocomponent insulin; this breakthrough lowered the
risk of inducing an immune response in patients treated
with insulin. The characterization of proinsulin and the
realization that it could be converted into mature two-
chain insulin by enzymatical treatment with trypsin and
carboxypeptidase B led the way for industrial production
of recombinant human insulin. Furthermore, in the
1990s, the first-generation long-acting basal insulin ana-
log, insulin glargine (8), was designed by Hoechst,

probably inspired by the proinsulin structure that carries
the two arginine residues characteristic for glargine.

Alongside the breakthroughs in genetic engineering
taking place through the 1970s involving both academia,
biotech (Genentech, ZymoGenetics, Chiron Corporation),
and industry (Eli Lilly, Hoechst AG and Company, and
Novo Nordisk A/S), the fascinating structural elucidation
of the insulin hormone both inspired and facilitated
recombinant production of human insulin (9,10). Multiple
tons of insulin are required yearly for treatment of people
with diabetes, which simply would not be possible to sup-
ply without recombinant production. Identification of the
insulin receptor (11) and the mapping of receptor binding
surfaces (12) in the 1970s and 1980s were additional
examples of academic discoveries of fundamental impor-
tance for future drug design.

Thus, at the time we joined the scientific insulin jour-
ney, the insulin molecule was structurally and pharmaceuti-
cally well characterized. At the same time, however, it was
realized that human insulin in its native form was not per-
fectly suited for subcutaneous injection. Moreover, it was
during the 1990s that the Diabetes Control and Complica-
tions Trial (DCCT) (13) and UK Prospective Diabetes Study
(UKPDS) (14) provided evidence for the significance of
intensive glucose control in reducing the risk of microvas-
cular complications in people with both type 1 and type 2
diabetes, underscoring the clinical need for better insulin
preparations to improve long-term patient outcomes.

It was hypothesized and later demonstrated that ratio-
nal application of genetic engineering on the basis of
structural insights would offer a possibility to tailor insu-
lin analogs with optimized pharmacokinetic profiles. The
first article on a rapid-acting insulin analog was a copubli-
cation between industrial and academic scientists, who
had been contributing to resolving the X-ray structure of
the insulin hexamer (15). There were long-standing and
close contacts between scientists—industrial as well as
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academic—with the common aim of improving insulin
therapy. Hence, throughout the 1990s, the scientific envi-
ronment was vibrant, collaborative, and competitive at
the same time. However, it was the fatty acid acylation
technology (16) that led to the next generations of basal
insulin analogs and also proved to have the most far-
reaching consequences beyond insulin into other areas of
peptide drug delivery. This technology was inspired by the
knowledge that albumin functions as an abundant carrier
protein with immense capacity for fatty acids and drugs
and that reversible acylation is used in nature for govern-
ing subcellular trafficking.

The fatty acid acylation technology provides an exam-
ple of how scientific insights from the academic setting
were applied to insulin discovery, prolonging the action
profile for both daily (17) and weekly (18) administration.
Intriguingly, a unique mechanistic dimension enabled by
fatty acid acylation was applied to engineer insulin deglu-
dec, which is an ultra-long-acting insulin due to formation
of multihexamers at the site of injection. Furthermore,
the fatty acid acylation technology has provided a general
approach to molecular engineering and pharmacokinetic
protraction applicable to protraction of peptide drugs
(19,20) and even to facilitation of oral peptide delivery
(21–24). Thus, this principle was successfully utilized in
the field of glucagon-like peptide 1 receptor agonists to
design, for example, liraglutide, semaglutide, and tirzepa-
tide and across other areas of protein-based therapy
exemplified by the growth hormone analog somapacitan.
The acylation technology is thus a recent example of a
technology with a broad scope, first developed for insulin.

Taken together, we have been privileged to be part of a
vibrant period of insulin innovation that illustrates the
importance and strength of both academic and transla-
tional science, and we have seen that combined efforts
have led to improved quality of life and life expectancy
for people with diabetes.
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