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1 Hotchkiss Brain Institute, University of Calgary, Calgary, Canada, 2 Cell Biology and Anatomy / Surgery, University of Calgary, Calgary, Canada, 3 Lions Centre for Retinal

Degeneration Research, University of Calgary, Calgary, Canada, 4 Department of Ophthalmology, University of Alberta, Edmonton, Canada

Abstract

The Cacna1fnob2 mouse is reported to be a naturally occurring null mutation for the Cav1.4 calcium channel gene and the
phenotype of this mouse is not identical to that of the targeted gene knockout model. We found two mRNA species in the
Cacna1fnob2 mouse: approximately 90% of the mRNA represents a transcript with an in-frame stop codon within exon 2 of
CACNA1F, while approximately 10% of the mRNA represents a transcript in which alternative splicing within the ETn
element has removed the stop codon. This latter mRNA codes for full length Cav1.4 protein, detectable by Western blot
analysis that is predicted to differ from wild type Cav1.4 protein in a region of approximately 22 amino acids in the N-
terminal portion of the protein. Electrophysiological analysis with either mouse Cav1.4wt or Cav1.4nob2 cDNA revealed that
the alternatively spliced protein does not differ from wild type with respect to activation and inactivation characteristics;
however, while the wild type N-terminus interacted with filamin proteins in a biochemical pull-down experiment, the
alternatively spliced N-terminus did not. The Cacna1fnob2 mouse electroretinogram displayed reduced b-wave and
oscillatory potential amplitudes, and the retina was morphologically disorganized, with substantial reduction in thickness of
the outer plexiform layer and sprouting of bipolar cell dendrites ectopically into the outer nuclear layer. Nevertheless, the
spatial contrast sensitivity (optokinetic response) of Cacna1fnob2 mice was generally similar to that of wild type mice. These
results suggest the Cacna1fnob2 mouse is not a CACNA1F knockout model. Rather, alternative splicing within the ETn
element can lead to full-length Cav1.4 protein, albeit at reduced levels, and the functional Cav1.4 mutant may be incapable
of interacting with cytoskeletal filamin proteins. These changes, do not alter the ability of the Cacna1fnob2 mouse to detect
and follow moving sine-wave gratings compared to their wild type counterparts.
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Introduction

Influx of calcium through voltage-gated calcium channels

(VGCCs) leads to excitation-contraction coupling, excitation-

transcription coupling, neurotransmitter release, and programmed

cell death. Disorders of synaptic transmission are thought to be

instrumental in two forms of human X-linked congenital

stationary night blindness (CSNB): the ‘‘incomplete’’ form

(iCSNB, or CSNB2), in which rod- and cone-driven electroreti-

nogram (ERG) responses are reduced in amplitude, but oscillatory

potentials (OPs) can be recorded; and the ‘‘complete’’ form

(cCSNB, or CSNB1), in which rod-driven ERG responses are

greatly reduced or absent but cone-driven responses are relatively

well preserved, and OPs are rarely recorded. Mutations within the

CACNA1F gene coding for Cav1.4 L-type calcium channels have

been identified as one cause of CSNB2 [1,2], as well as X-linked

cone-rod dystrophy (CORDX3) [3] and Åland Island eye disease

[4]. Over seventy CSNB2 nonsense and missense mutations have

been identified (for example, [5–12], several of which have been

shown to alter the biophysical properties of the channels [13–19];

reviewed in [20]).

Knockout of CACNA1F protein in mice following insertion of a

self-excising Cre-lox-neo cassette into exon 7 results in an in-frame

premature stop codon (G305X) in the Cav1.4 protein [21]. These

Cacna1fG305X mice are characterized by complete loss of the b-

wave and oscillatory potentials of the electroretinogram (ERG),

absence of cone-driven visually-evoked activity in the superior

colliculus, .90% reduction in calcium influx in photoreceptors,

and disrupted retinal morphology with loss of photoreceptor

synapses and sprouting of horizontal and bipolar cell dendrites

into the outer nuclear layer [21]. Cacna1fG305X mice, therefore,

resemble CSNB1 patients in their lack of cone-driven functions.

More recently, a second mouse model said to be null for CACNA1F

has been described [22]. This Cacna1fnob2 mouse arose by
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spontaneous insertion of a transposable element (ETn) into exon 2,

which is predicted to produce an in-frame premature stop codon.

Interestingly, while the Cacna1fnob2 mouse also displays disrupted

retina morphology similar to that of the Cacna1fG305X mouse, the

ERG of the Cacna1fG305X mouse is more similar to that of CSNB2

patients, being characterized by a reduced b-wave and oscillatory

potentials while cone-driven responses are maintained.

The ETn element responsible for the Cacna1fnob2 mouse belongs

to a family of early retrotransposons, approximately 5600 base

pairs in length, which are transcribed during embryogenesis [23–

25]. While they often are a source of mutations by insertion into

the coding frame of genes, their characteristic long terminal repeat

regions allow them to be alternatively spliced. This property can

result in transcription of the gene into which they were inserted, at

reduced levels [26,27]. We hypothesized that the difference in

phenotypes of the two mouse models was the result of alternative

splicing of the ETn element, which would allow some transcription

and synthesis of Cav1.4 protein. We have found two mRNA

species in the Cacna1fnob2 mouse, one of which encodes an in-frame

stop codon, and another in which the stop codon is missing as a

result of splicing within the ETn; as a result, full-length protein was

detectable by Western blotting using an antibody raised against

the C-terminus of the a1F channel subunit (Cav1.4) protein. The

alternatively spliced protein did not differ from the wild type

protein with respect to activation and inactivation characteristics

in an expression system; however, unlike the wild type protein N-

terminus, the alternatively spliced N-terminus did not bind to

cytoskeletal filamin proteins. Interestingly, while the outer retinal

layers of the Cacna1fnob2 mouse were significantly disorganized, the

optokinetic response was not dramatically different from that of

wild type mice.

Results

Two mRNA species are detected in the Cacna1fnob2

mouse
Total RNA from the eyes of Cacna1fwt and Cacna1fnob2 mice was

analyzed by RT-PCR. As shown in Figure 1.B, while only a single

band was detected in Cacna1fwt mice with either primer

combination (RR44+RR 45, or RR44+RR46), two bands were

detected in Cacna1fnob2 mice (see table 1 for primers). Using the

fluorescence intensity of the bands to assess relative quantity, we

estimated that ,90% of the mRNA is accounted for by the larger

(Mr) band, and ,10% by the smaller (Mr) band (consistent results

from three separate reactions/gels). The cDNA bands were

subsequently isolated and sequenced; the larger and more intense

band corresponded to the CACNA1F-encoding sequence con-

taining the ETn transposable element with an in-frame stop codon

(Figure 2A), whereas the smaller and less intense band corre-

sponded to the CACNA1F-encoding sequence containing the

shorter ETn element that lacks the in-frame stop codon

(Figure 2B). Genotyping of these mice, along with genomic

DNA samples purchased from Jackson Laboratory, confirmed that

our Cacna1fnob2 mice were identical in genotype to the original

Cacna1fnob2 mouse line, as described previously [22]. An alignment

of the predicted protein sequences corresponding to wild type

Cav1.4 (hereafter referred to as Cav1.4wt) and Cav1.4 from the

smaller size band (hereafter referred to as Cav1.4nob2) is provided

in Figure 2C.

To test for Cav1.4 protein in the Cacna1fnob2 mouse, we probed

lysates from spleen with a Cav1.4-specific antibody [16]. As shown

in Figure 3, a band near 230 kDa was detected in samples from

both Cacna1fwt and Cacna1fnob2 mice, but not from Cacna1fG305X

mouse. A lower-Mr band (,150 kDa) was also detectable in

extracts from all mouse strains tested, except Cacna1fG305X; this

band likely is a truncated form of the wild type protein, as is

characteristic of other L-type calcium channel proteins [28].

Cacna1fnob2 mouse has a selective b-wave defect
These results indicated that a full-length Cav1.4 channel

(corresponding to the mRNA sequence from the smaller Mr, less

intense band in Figure 1B) could be present in the Cacna1fnob2

mouse. This was surprising, since this mouse was reported to be

null for the Cav1.4 channel protein [22]. Therefore, we next tested

to ensure that the ERGs in our mice were identical to those

previously published.

ERG recordings showed a selective b-wave defect in Cacna1fnob2,

compared with that in age-matched Cacna1fwt mice (Figure 4), as

previously reported [22,29]. Under both scotopic and photopic

adaptation conditions, the amplitude of the b-wave was selectively

diminished. The intensity-response curves for the scotopic a-wave,

as well as maximal a-wave amplitudes and thresholds (minimum

luminance to reach criterion amplitude of 20 mV), were

comparable in our mutant and wild type mice. In contrast,

however, the b-waves in mutant and wild type mice were very

different. The proportion of maximal b-wave remaining in

Cacna1fnob2 compared with age-matched Cacna1fwt was statistically

significantly greater (p,0.05, U-test) under scotopic (0.5160.11)

than under photopic (0.2960.19) conditions. A typical way to

document selective b-wave loss, clinically, is to compare the b/a

ratios with values from control subjects: lower ratios mean selective

b-wave defects. There was a statistically significant decrease in b/a

ratios in mutant compared to wild type mice. The reductions in b/

a ratios were more pronounced under photopic (0.9960.19 in

Cacna1fnob2 compared with 3.5860.81 in Cacna1fwt; p,0.05, U-test)

than scotopic conditions (0.8860.05 in Cacna1fnob2 compared to

1.9460.09 in Cacna1fwt; p,0.05, U-test). In addition, the threshold

was higher in Cacna1fnob2 mice under scotopic as well as photopic

conditions, and the photopic thresholds in Cacna1fnob2 mice were

significantly higher than the scotopic thresholds. One b-wave

property that was not affected in the Cacna1fnob2 mice compared

with Cacna1fwt mice was the intensity at which maximal b-wave

amplitudes were attained. Finally, while we did not systematically

quantify the amplitudes of ERG oscillatory potentials, qualitatively

they were depressed in Cacna1fnob2 as compared with those in

Cacna1fwt mice.

Upon histological examination, we found that the structure of

retinas from Cacna1fnob2 was disorganized compared to that of

Cacna1fwt mice, with substantially reduced outer plexiform layer

thickness and dendritic sprouting of second-order neurons into the

outer nuclear layer (data not shown). These findings are consistent

with those reported previously in the original Cacna1fnob2 mouse

strain [22,30].

Cacna1fnob2 and Cacna1fwt optokinetic responses (OKR)
are similar

Given that our Cacna1fnob2 mice produced mRNA capable of

encoding full-length Cav1.4 calcium channels (albeit at reduced

levels, with only ,10% of the mRNA encoding full-length Cav1.4

protein) but still had defects in ERG and retinal structure, it was

important to test the consequences of these deficits for vision.

Therefore we assessed the ability of the mouse to track moving

sine-wave gratings.

All Cacna1fnob2 mice tested showed robust optokinetic (more

correctly, head-turning or optocollic) responses to moving sine-

wave gratings, over a wide range of drift velocities and spatial

frequencies (Table 2; Figure 5). Their contrast sensitivities (CS)

were maximal at V = 12 degrees/second (d/s), at all spatial

Altered Cav1.4 Expression
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frequencies (data for other velocities not shown). The CS functions

at V = 12 d/s were identical in litters 2 and 3; CS was maximal at

0.061 cycles/degree (c/d), and declined precipitously at spatial

frequencies above 0.2 c/d but more gradually at spatial

frequencies below 0.061 c/d. In litter 1, however, CS was

maximal at 0.1 c/d and was substantially lower than that of litters

2 and 3 at most spatial frequencies tested (Figure 5). The lower

limit of spatial frequencies that the animals could follow was

0.019–0.031 c/d, and the upper limit (‘‘acuity’’) was 0.275 c/d, in

all three litters. There was no significant difference between the

contrast sensitivities of litters 2 and 3 (P.0.05; Student-Neuman-

Keuls Multiple Comparisons Test), whereas the contrast sensitivity

of litters 2 and 3 (at V = 12 d/s) differed significantly from that of

litter 1 (both P,0.001) at most spatial frequencies.

The contrast sensitivities of Cacna1fwt mice were maximal at

V = 12 d/s, at all spatial frequencies tested (data for other

velocities not shown). The CS function at V = 12 d/s was similar

to that of Cacna1fnob2 litters 2 and 3 at 0.031–0.1 c/d, but contrast

sensitivity remained high at 0.2 c/d and declined precipitously

only at spatial frequencies $0.275 c/d (Figure 5). The upper limit

of spatial frequencies that could be followed by Cacna1fwt mice was

0.4 c/d, or ,1.56 the acuity of Cacna1fnob2 mice. The diminished

contrast sensitivity seen in the one litter (#1) of Cacna1fnob2 mice

has not been seen in any WT mice, regardless of litter or age (S.P.

Bonfield, unpublished results).

Biophysical properties of Cav1.4wt and Cav1.4nob2

channels are statistically indistinguishable
Next, we tested whether the Cav1.4nob2 channel could support

ionic currents. Standard whole-cell electrophysiological recordings

Figure 1. RT-PCR analysis of Cacna1fwt and Cacna1fnob2 mice. A. Schematic representation of the location of PCR primers used. Primers RR44,
45, and 46 were used for RT-PCR reactions; primers RR50, 51, 52, and 53 were used for genomic PCR reactions. B. Agarose gel depicting RT-PCR
reaction products for mRNA isolated from Cacna1fwt and Cacna1fnob2 mice. Regardless of the primer pair used, only a single band is detected using
mRNA from Cacna1fwt mice. Using mRNA from Cacna1fnob2 mice, however, two bands are visible (see arrows). The relative intensities of the
fluorescence signals indicate that the larger-Mr band accounts for ,90%, and the smaller-Mr band for ,10%, of the total mRNA.
doi:10.1371/journal.pone.0002538.g001

Table 1. Primer sequences.

Primer Name Primer Sequence (59R39) Primer Use

RR44 atgtcggaatctgaagtcgg RT-PCR (Figure 1A)

RR45 caatgctgatgcaggaccg

RR46 gcagtgttggagtcgtcctc

CDRR69 ggatccaaatgtcggaatctgaagtcg N-terminus amplification

CDRR70 gaattctcacttccactctacaatgctcatgc

doi:10.1371/journal.pone.0002538.t001
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Figure 2. Sequencing results of Cacna1fwt and Cacna1fnob2 mice. A. Sequencing results from the larger-Mr, more intense band. Sequences are
given for the DNA (small letters) and corresponding protein (capital letters); the sequence corresponding to wild type Cav1.4 protein is highlighted in
grey. The ETn transposable element is inserted after the ninth Cav1.4 amino acid, and encodes an in-frame stop codon (highlighted in red) which is
predicted to result in truncation of the Cav1.4 protein after only 25 amino acids. The underlined ETn sequence highlights a repetitive sequence
(compare to the beginning of the ETn sequence, beginning at amino acid number 4). B. Same as A., but for the smaller-Mr, less intense band. Note
that the inserted ETn element is shorter, and the in-frame stop codon is missing. C. Alignment of the predicted N-terminal amino acid sequences of
wild type Cav1.4 protein and Cav1.4 protein encoded in the smaller-Mr band. A region of approximately 22 amino acids differs in the N-termini of the
two clones.
doi:10.1371/journal.pone.0002538.g002
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were obtained from tsA-201 cells transfected with mouse Cav1.4wt

or Cav1.4nob2 (along with rat b2a and a2–d1) constructs. With

20 mM Ba2+ as charge carrier, the average activation and

inactivation parameters for Cav1.4nob2 were not significantly

different from those of Cav1.4wt (p.0.05, t-test; Table 3; Figure 6).

Also, with 2 mM Ca2+ as the charge carrier and using ramp

protocols [31,32], no differences were observed in the activation

properties between the two clones (see inset, Fig 6).

The Cav1.4wt N-terminus contains a putative site for phosphor-

ylation by mitogen-activated protein (MAP) kinase that is not

present in Cav1.4nob2 (serine residue in PEPSPAN region of wild

type clone (Figure 2C) identified by ELM – Functional Sites in

Proteins, http://www.elm.eu.org). To test whether this predicted

phosphorylation site is differentially phosphorylated, thereby

causing a functional difference between the two clones, we

blocked MAP kinase activity in serum-starved cells by treating

them for 2 hours with 20 mM PD98059 (a specific inhibitor for

MAP kinase kinase; e.g., [33,34]). PD98059 did not significantly

alter the biophysical properties of either Cav1.4wt or Cav1.4nob2

channels (p.0.05) in comparison with those that were recorded in

the absence of the inhibitor (Table 3).

N-terminus from Cav1.4wt and not Cav1.4nob2 can interact
with filamin proteins

To test whether Cav1.4wt and Cav1.4nob2 constructs differen-

tially interact with cellular proteins, we utilized a biochemical pull-

down assay. As shown in Figure 7A, a band of approximately

37 kDa was pulled down by Cav1.4wt but not Cav1.4nob2 N-

termini. This band was excised, and the protein was subsequently

identified as filamin A by means of LC/MS/MS.

To investigate these interactions further, both -N-termini and

filamin proteins were used as biochemical pull-down ligands.

Filamin A and filamin B constructs with an HA tag were mixed

with the GST- Cav1.4wt and GST-Cav1.4nob2 lysates. As shown in

Figure 7B, the N-terminus of the Cav1.4wt channel protein

interacted with the C-termini of both filamin A and filamin B,

whereas the N-terminus of the Cav1.4nob2 channel protein did not.

Discussion

Taken together, our results suggest that alternative splicing

within the ETn element inserted into exon 2 of the CACNA1F

gene of the Cacna1fnob2 mouse allows for full-length Cav1.4 protein

to be produced, and therefore this mouse model is not null for the

Cav1.4 calcium channel. These results contrast with those

previously published [22].

Because of their highly repetitive sequence, transposable

elements have previously been shown to undergo alternative

splicing; this allows for full-length protein to be produced, albeit at

reduced levels relative to those in WT controls [26,27]. In

agreement with these previous findings (depicted in Figure 1B), we

detected differentially spliced mRNA isoforms in the Cacna1fnob2

mouse, with approximately 90% of the mRNA expected to be

transcribed to Cav1.4 protein having a premature stop codon in

exon 2, and 10% of the mRNA expected to be transcribed to full-

length channel protein with a mutated N-terminus (Figure 2C).

Full-length protein was detected in spleen samples with Western

blots (Figure 3), confirming that the alternatively spliced mRNA

species is capable of producing Cav1.4 channel proteins with a

molecular mass of ,230 kDa. We attempted to detect Cav1.4

channel protein in sections of mouse retina; however our antibody

is directed against the C-terminus of the human protein, which

shares only ,50% sequence homology with the mouse protein

(rendering the antibody only weakly cross-reactive and therefore

unsuitable for immunohistochemistry in mouse). Therefore, it was

necessary to use concentrated protein lysates from spleen on

Western blots, where Cav1.4 protein appears to be greatly

enriched [16]. While it is possible no functional Cav1.4 protein

is present in the Cacna1fnob2 mouse retina, the reduced protein

levels in the retina may have accounted for the apparent

background labeling in previous reports (for example, the faint

labeling in Figure 1b from Chang et al., 2006). Thus, the CSNB2

phenotype in the Cacna1fnob2 mouse could arise simply from

reduced Cav1.4 protein levels, rather than complete knockout of

protein. This hypothesis is supported by previous studies, which

have shown that R508Q and L1364H mutations of CACNA1F

linked to CSNB2 reduce the amount of functional protein in the

membrane, without significantly altering the biophysical proper-

ties of the channel [15].

Since our findings differ substantially from those reported

previously [22], it was necessary to ensure that the CACNA1F gene

mutation in the Cacna1fnob2 mouse line that we were testing was the

same as that originally described. Therefore, we sequenced

genomic DNA, obtained both from our in-house colony and as

supplied by the Jackson Laboratory. In both cases the genomic

sequence confirmed the presence of the ETn element inserted into

exon 2 of the CACNA1F gene. Additionally, the mice we tested

showed alterations in the ERGs (Figure 4) that were consistent

with previous findings [22,30]. Taken together, these results

suggest that the CACNA1F gene mutation in the mice we were

testing was identical to that in the line originally described, and

that the inherited defect in our colony was not the result of a

random genetic mutation or a deletion of the ETn element from

exon 2.

As shown in Figure 4, the Cacna1fnob2 mouse retina is

characterized by a functional defect that selectively affects the

light-driven activation of neurons in the inner retinal layers; this is

supported by the depression of the ERG b-wave (reflecting

diminished modulation of activity in depolarizing bipolar cells),

while the a-wave amplitudes are unaffected (indicating that

photoreceptor activity is relatively unaffected). The partial

preservation of the b-wave in these mice is reminiscent of the

Figure 3. Western blot of spleen samples from Cacna1fwt,
Cacna1fnob2, and Cacna1fG305X mice probed with a Cav1.4-specific
antibody directed against the C-terminus of the channel. Full-
length protein is visible in all lanes except for Cacna1fG305X.
doi:10.1371/journal.pone.0002538.g003
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Figure 4. ERG results showing selective inner retina defect in Cacna1fnob2 mice. Representative ERG traces of responses obtained at various
intensities under scotopic (panel A) and photopic (panel B) adaptation are given for a Cacna1fwt (left column) and an age-matched (52 days)
Cacna1fnob2 mouse (right column); numbers on left of the traces correspond to the luminances (log cd/m2) of the flashes that elicit these responses;
arrows point to the b-wave apex. Corresponding amplitudes of the a-wave and b-wave under scotopic conditions are shown in panels C and D,
respectively; and of b-wave amplitudes under photopic conditions are shown in panel E. Finally, examples of comparisons of responses obtained
from Cacna1fwt and Cacna1fnob2 are illustrated by superimposing the respective traces obtained from these two mouse types. Responses to high-
intensity stimuli (1.89 cd/m2) are shown in panels F (scotopic adaptation) and G (photopic adaptation), and responses to low-intensity stimuli are
shown in panels H (20.81 cd/m2 under scotopic adaptation) and I (0.38 cd/m2 under photopic adaptation).
doi:10.1371/journal.pone.0002538.g004
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incomplete form of CSNB (CSNB2 due to CACNA1F mutations),

in contrast to the complete absence of a recordable b-wave in the

complete form of CSNB (CSNB1; [35,36]. As previously reported

in Cacna1fnob2 mice, CACNA1F mutations in humans cause ERG b-

wave reductions under both dark-adapted (scotopic) and light-

adapted (photopic) conditions. Another similarity between Cac-

na1fnob2 mice and CSNB2 patients is the depression of the OPs

under scotopic conditions. Finally, both humans with CACNA1F

mutations and Cacna1fnob2 mice have normal photopic and scotopic

a-wave amplitudes [35,36], (Figure 5). There is evidence that

decreases in b-wave amplitude might lead to increases in a-wave

amplitudes. For instance, pharmacological blockade of mGluR6

receptors (with intravitreal injections of L-glutamate or APB) does

completely abolish the b-wave (also known as PII) and reveal

photoreceptor activity (also known as PIII) over its full time course,

and does increase the amplitude of the a-wave/PIII. However, in

cases of complete b-wave loss due to nyctalopin mutations, a-wave

amplitudes are normal under both scotopic and photopic

adaptation. So the outcome, whether b-wave reductions affect a-

wave amplitudes, might depend on the mechanism by which the

b-wave is abolished or decreased in amplitude. The possibility that

the mutated Cav1.4 channel might lead to reduced a-wave

amplitudes, and that these reductions might be compensated by

the indirect effect of increased a-wave amplitudes due to reduced

b-wave amplitudes, does exist, but we have no experimental

evidence to verify whether this is the case.

Previously, Cacna1fnob2 mice were found to have a reduced b-

wave, and morphological studies of the Cacna1fnob2 retina showed a

reduced OPL thickness and sprouting of second-order neurons

into the ONL. Therefore, we expected that the visual performance

of Cacna1fnob2 mice would be greatly reduced or absent, as in

Cacna1fG305X mice [37]. Quite unexpectedly, our Cacna1fnob2 mice

responded robustly to a full range of sine-wave gratings, showing

only slight differences from the optokinetic performance of WT-

C57/BL6 mice. The major difference in visual performance of the

best-performing Cacna1fnob2 mice was that their CS functions cut

off more sharply than those of Cacna1fwt mice at spatial frequencies

$0.2 c/d, resulting in an optokinetic acuity of 0.275 c/d (Figure 6;

Table 2). As a result, the spatial acuity of Cacna1fnob2 mice is about

two-thirds of the acuity of C57BL6 mice, which is 0.4 c/d [37].

Thus, our behavioral results show that the Cacna1fnob2 mouse has

good vision (at least for the optokinetic response), despite its severe

ERG phenotype and morphologically abnormal outer retina. The

relatively good vision of Cacna1fnob2 mice contrasts starkly with the

lack of optokinetic responses in a targeted CACNA1F knockout, the

G305X mutant [37], suggesting that the Cacna1fnob2 phenotype is

not due solely to a truncation or loss-of-function mutation. Since

our Cacna1fnob2 animals perform nearly as well as wild type

controls, it is clear that in spite of the histological and

electroretinographic evidence of severe retinal dysfunction, the

Cacna1fnob2 mouse maintains at least some nearly normal visual

processing in proximal levels of the retina. Our finding that about

10% of whole-retinal Cacna1fnob2 mRNA is expected to encode a

full-length channel protein similar to the wild type (whereas 90%

carries the in-frame stop codon) raises the question whether every

photoreceptor cell makes 10% WT-like protein, or 10% of

photoreceptor cells make 100% wild type-like protein (or some

combination of these). On the one hand, the loss of synapses in the

OPL and the sprouting of dendrites into the ONL point to

significant defects in the synthesis of Cav1.4 protein, and

consequently of transmitter release, in the vast majority of

photoreceptor cells; this suggests that nearly all Cacna1fnob2

photoreceptor cells are making insufficient amounts of functional

channel protein. On the other hand, the retention of normal

contrast sensitivity and near-normal optokinetic acuity under

photopic conditions indicates that cone pathways are only

minimally affected. We suggest, therefore, that the wild type-like

transcript is expressed mainly or exclusively in cone photorecep-

tors, accounting for the relative sparing of cone transmission as

seen in the optokinetic response, and that the mutant transcript is

Figure 5. Optokinetic spatial contrast-sensitivity functions for
three different Cacna1fnob2 litters and one Cacna1fwt litter. Mean
contrast sensitivities6standard deviation, at drift velocity (V) = 12 de-
grees per second (d/s) and various spatial frequencies (SF) in cycles per
degree (c/d). See Table 2 for further details and statistics.
doi:10.1371/journal.pone.0002538.g005

Table 2. Optokinetic Response Data for Cacna1fnob2 and Cacna1fwt mice.

Group (n)
Optimum spatial
freq. @ V = 12 d/s

Threshold Contrast
(%) at Optimum

Contrast Sensitivity
at Optimum

Mean Difference
( 0.061 c/d; V = 12 d/s) P (2-tailed t-test)

nob2 - Litter#1 (6) 0.1 c/d 13.39% 7.47 N/A ——

0.061 c/d 25.9% 3.86 212.038 vs Litter #3; ,0.001 (highly significant)

10.458 vs Litter #2 ,0.001 (highly significant)

nob2 – Litter#2 (4) 0.061 c/d, 6.3% 15.9 21.58, vs Litter #3 .0.05*

nob2 – Litter #3 (5) 0.061 c/d, 7.0% 14.32 See above ——

nob2 -Combined
Litters#(2+3) (9)

0.061 c/d, 6.7% 15.08 (averaged) N/A ——

WT (C57/BL6) (6) 0.061 c/d, 6.3% 15.9 0.88 vs Litters(2+3) 0.3454

doi:10.1371/journal.pone.0002538.t002
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expressed mainly or exclusively in rod photoreceptors, accounting

for the striking loss of synaptic terminals and consequent thinning

in the OPL. The discrepancy, between retention of cone function

in the optokinetic response and loss of cone signals in the ERG,

may be due to differential processing of cone information or

mutation-dependent changes in the retinal circuits responsible for

the OKR and ERG. The experiments that would be required to

test this hypothesis are beyond the scope of the present study.

While full-length Cav1.4 protein is produced (albeit at

presumably reduced levels) in the Cacna1fnob2 mouse, the encoded

amino acid sequence differs from that in the wild type by

approximately 20 residues in the N-terminus of the protein

(Figure 2C). As shown in Figure 6, the electrophysiological properties

of Cav1.4nob2 are not significantly different from those of Cav1.4wt

when expressed in tsA-201 cells, with either 20 mM Ba2+ or 2 mM

Ca2+ as charge carrier, suggesting that the differences between

Cacna1fnob2 and Cacna1fwt mice do not arise from changes in the

activation or inactivation characteristics of the Cav1.4 channels.

Interestingly, within the span of amino acids that differ between the

mutant and wild type proteins, the Cav1.4nob2 channel sequence

lacks a putative MAP kinase phosphorylation site that is present in

the wild type protein. PD98059, a specific inhibitor of MAPKK, did

not have a differential effect on the biophysical properties of either

Cav1.4nob2 or Cav1.4wt, suggesting that the difference in biophysical

properties of these channels is not due to a difference in

phosphorylation within these 20 amino acids.

However, as shown in Figure 7, the mutant and wild type N-

terminal regions do differ in that they interact with different

proteins, since the N-terminal GST-fusion protein for the Cav1.4wt

sequence pulls down filamin protein, whereas the Cav1.4nob2

peptide does not. Filamins are a family of cytoskeleton proteins

(200–300 kDa) that regulate and crosslink filamentous actin. They

are highly sensitive to proteolysis, and numerous fragments of

varying size, from 10 kDa to 280 kDa, have been identified [38];

reviewed in [39]. Calpain 3 has been shown to cleave full-length

filamin A (,260 kDa), yielding one identified product of

,220 kDa [40]; the other cleavage product, which is expected

to have a molecular mass of ,40 kDa, thus may account for the

filamin fragment identified in Figure 7A. Additionally, several

previous studies have demonstrated that interactions of ion

channels with filamin proteins result in enhanced targeting of

the ion channels to the plasma membrane accompanied by

increased current densities, specifically for Kir2.1 (binds to C-

terminus of FLNA; [41]), Kv4.2 and Kv4.3 [42], and CFTR [43–

46]. In the case of Kv4.2, a proline-rich region of the channel was

identified as necessary for the interaction, with only four amino

acids (PTPP) required for binding [42]. In our case, the wild type

sequence of the 20 amino-acid region unique to the N-terminus of

Cav1.4wt contains six proline residues, while that of Cav1.4nob2

only contains one; furthermore, at the boundary of this region with

the downstream N-terminal sequence, the wild type clone has a

PGPP motif (recall PTPP motif for Kv4.2), while the Cav1.4nob2

construct has an NRPP motif. While we did not map the exact

residues in this 20 amino acid region necessary for this interaction,

these data suggest that the CSNB2-like phenotype of the Cacna1fnob2

mouse may result not only from lower Cav1.4-mediated calcium-

current densities, due to the diminished production of full-length

protein, but also to a failure of targeting of the mutant protein to the

plasma membrane, due to its inability to interact with filamin. Since

filamin proteins are present in most cell types, any effects on current

densities may be masked in our overexpression (transfected cell)

system, but such effects could be profound in the highly regulated

environment of photoreceptor cells.

Methods

Cacna1fnob2 (AXB6/pgnJ, stock #001678) mice were purchased

from Jackson Laboratory (Bar Harbor, ME, USA). A colony was

established by breeding Cacna1fnob2 mice with in-house C57BL/6

mice at the University of Calgary Health Sciences Animal Resource

Centre. One male Cacna1fG305X mouse was obtained from Dr. N.T.

Bech-Hansen (University of Calgary). PCR was used to confirm the

genotype of all the mice used in this study. All experimental protocols

were approved by University of Calgary Animal Care Committee, in

accordance with guidelines established by the Canadian Council of

Animal Care and the ARVO Statement for the Use of Animals in

Ophthalmic and Visual Research.

RT-PCR, splice variant generation, and genomic analysis
Total RNA was isolated from a whole mouse eye (minus lens),

using Trizol (Invitrogen). To synthesize cDNA, 5 mL of isolated

RNA was added to oligo-dT primers along with Superscript II

reverse transcriptase (Invitrogen) and incubated according to the

manufacturer’s instructions. To probe for CACNA1F transcripts,

corresponding primers were synthesized flanking the ETn element in

exon 1 (RR44) and exon 2 (RR45) or exon 3 (RR46) (Table 1;

Figure 1A). For amplification, 2 mL of cDNA and Hot Start Taq

(Qiagen) were used according to the manufacturer’s instructions, and

the reaction product was analyzed on a 1.5% agarose gel; DNA

bands were isolated using a gel extraction kit (Qiagen), cloned into

pGEM-T-easy (Stratagene), and then sequenced to confirm identity.

Full length mouse Cav1.4 cDNA (Cav1.4wt; [47] was subcloned

into pCDNA3.1zeo, and the Cav1.4nob2 splice variant was

synthesized using site-directed mutagenesis and Not I and Spe I

Table 3. Summary of biophysical properties of mouse Cav1.4wtand Cav1.4nob2 constructs recorded with 20 mM Ba2+ as charge
carrier.

Vact (mV) Gmax (nS) S (mV) Erev (mV) Vinact (mV) z

Cav1.4wt 2364 (11) 463 (11) 961 (11) 4466 (11) 218611 (11) 1.960.6 (11)

Cav1.4nob2 2164 (13) 361 (13) 8.260.8 (13) 4566 (13) 222610 (12) 363 (12)

Cav1.4wt (s.s.) 2166 (4) 463 (4) 961 (4) 4467 (4) 22269 (4) 2.060.6 (4)

Cav1.4wt (s.s.+PD98059) 162 (4) 3.460.8 (4) 8.460.8 (4) 4664 (4) 21769 (4) 1.860.4 (4)

Cav1.4nob2 (s.s) 2463 (4) 2.160.3 (4) 8.760.3 (4) 4166 (4) 22866 (4) 2.460.7 (4)

Cav1.4nob2 (s.s.+PD98059) 2562 (5) 2.060.9 (5) 8.460.3 (5) 4166 (5) 21865 (5) 1.760.5 (4)

s.s. denotes serum starvation for 2 hours; no statistical difference is observed between mouse Cav1.4wt and Cav1.4nob2, or between the constructs when currents were
recorded in the absence or presence of 20 mM PD98059 following two hours of serum starvation (p.0.05, one-way ANOVA).
doi:10.1371/journal.pone.0002538.t003
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restriction enzymes. After the sequences had been confirmed,

constructs were transfected into an expression system for

electrophysiological analysis (see below).

Biochemistry
For analysis of Cav1.4wt or Cav1.4nob2 expression by polyacryl-

amide gel electrophoresis, protein concentrations in spleen lysates

were determined using a DC protein assay kit (BioRad), and equal

total protein was loaded into each lane. Cav1.4 proteins were

detected using 0.7 mg of an affinity purified rabbit polyclonal anti-

Cav1.4 antibody (1:1000 dilution; [16]). The membranes were

then washed, incubated with secondary HRP-conjugated anti-rat

IgG antibody (1:5000 dilution, GE Healthcare) and detected using

standard ECL methods. Spleen lysate from a Cacna1fG305X mouse,

Figure 6. Biophysical properties of Cav1.4wt and Cav1.4nob2 channels, coexpressed with b2a and a2–d1 subunits in tSA-201 cells. A.
Representative current waveforms for Cav1.4wt (left) and Cav1.4nob2 (right) recorded with 20 mM Ba2+ external saline. Horizontal scale bars denote
25 ms, and vertical scale bars 25 pA. B. Average activation (filled symbols) and inactivation (hollow) symbols for Cav1.4wt (squares) and Cav1.4nob2

(circles) recorded with 20 mM Ba2+ external saline. Average activation parameters from 11 Cav1.4wt cells and 13 Cav1.4nob2 cells are: Vact,

wt = 2364 mV, Vact, nob2 = 2164 mV (n = 13); Gmax, wt = 463 nS and Gmax, nob2 = 361 nS; Swt = 961 mV and Snob2 = 8.260.8 mV. These values are
stastically identical, and are summarized in Table 3. Average inactivation parameters from these cells are Vinact, wt = 218611 mV and Vinact,

nob2 = 222610 mV, with a large fraction of non-inactivating current for both channels. These values statistically identical and are summarized in
Table 3. C. Average half-inactivation potentials for channels recorded with 2 mM Ca2+ as charge carrier. Currents were substantially smaller than with
20 mM Ba2+, but were distinguishable from background noise, and were obtained using a ramp protocol identical to that previously reported [31],
obtained by ramping voltage from 2100 mV to +100 mV over 500 ms. Values were Vact, wt = 21768 mV (average peak current size 2964 pA) and
Vact, nob2 = 21766 mV (average peak current size 2963 pA). The shift observed with switching from 20 mM Ba2+ to 2 mM Ca2+ as external charge
carrier is similar to that we have previously reported for the human Cav1.4 channels [16].
doi:10.1371/journal.pone.0002538.g006
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which does not make complete Cav1.4 channel protein [21], was

prepared similarly as a negative control. For the Western blots, 4

separate experiments (n = 4) were performed and revealed the

same results.

PCR was used to amplify the N-termini of mouse Cav1.4wt and

Cav1.4nob2 from their appropriate cDNA templates, using primers

CDRR69 (with incorporated BamHI restriction site; Table 1) and

CDRR70 (with incorporated EcoRI site, Table 1). The fragment

was ligated into the T-easy vector system (Promega). After the

PCR product sequence had been verified, the N-terminal

fragments were excised (BamHI, EcoRI) and subcloned into the

pGEX-5X-1 GST Fusion System (Pharmacia). The resulting

GST-fusion proteins were purified using glutathione sepharose

beads (Amersham) according to the manufacturer’s instructions. A

50 mL aliquot of beads was mixed with 20 mL eye or spleen lysate

overnight at 4uC (whole eyes minus lens, from 7 C57/BL6 mice,

were pooled and homogenized in 200 mL total volume; spleens

from these mice were pooled and homogenized in 1 mL total

volume), beads washed, and then proteins resolved on a 10%

polyacrylamide gel stained with Coomassie Brilliant Blue. These

experiments were performed 3 separate times (n = 3) resulting in

identical results. Protein bands of interest were excised from the

gel, and the protein sequence was determined using LC/MS/MS

(Southern Alberta Mass Spectrometry Centre).

Mouse filamin cDNA was obtained from OpenBiosystems. PCR

was used to amplify (past repeat 23) and add an HA tag onto the C-

terminal regions of filamins A and B. Each fragment was ligated into

the T-easy vector system (Promega), the sequence was confirmed,

and the fragment was subcloned into the expression vector

pCDNA3.1neo. The resulting construct was transfected into tsA-

201 cells (transfection details below). After a two-day incubation the

cells were lysed on ice with lysis buffer (300 mM NaCl, 50 mM Tris

pH 7.5, 0.1% Triton X-100) containing a protease-inhibitor cocktail

(complete Mini EDTA-free, Roche). The lysate was incubated with

sepharose G beads (Amersham) and Anti-HA High Affinity antibody

(Roche) at 4uC for 4 hours. The beads were then washed and

incubated with 1 ml of GST- Cav1.4wt or GST- Cav1.4nob2 cell

lysate, overnight at 4uC. The beads were washed again, and then

proteins were resolved using PAGE (12% gel), transferred to a PVDF

membrane, and probed with Anti-GST antibody (1:2000 dilution,

GE Healthcare). Finally the membranes were washed, incubated

with HRP-conjugated anti-rat-IgG antibody (1:5000 dilution, GE

Healthcare) and detected using standard ECL methods. These

experiments were performed 3 independent times (n = 3) and had

the identical results.

Tissue culture and transfection
Culturing and transfection of tsA-201 cells via the calcium

phosphate method have been previously described by us in detail

[16]. Briefly, tsA-201 cells were maintained in DMEM supple-

mented with 10% FBS and 50 U/mL penicillin-streptomycin.

Cells were grown to 80% confluency (37uC, humidified, 5% CO2),

dissociated enzymatically (trypsin-EDTA), and then plated at 10%

confluency on glass cover slips. After recovering for 8 hours, cells

were transfected using standard calcium phosphate techniques (in

all cases 6 mg each of cDNA encoding mouse a1, rat b2a, and rat

a2–d1 subunits, and 1 mg pIRES transfection marker). Twelve

hours later, cells were washed with fresh media and then moved to

29uC (5% CO2, humidified) for two to three days before

evaluation by the whole-cell patch clamp technique.

Electrophysiology
Electrophysiological data were acquired using an Axopatch

200B amplifier (Axon Instruments, Union City, CA) linked to a

Figure 7. A. Representative Coomassie Brilliant Blue-stained
10% PAGE gel from three separate experiments. N-termini from
Cav1.4wt or Cav1.4nob2 were fused to glutathione S-transferase and
purified on glutathione beads. Lysates from eye (lanes D–F) or spleen
(G–I) were then incubated with the beads, and subsequently washed.
Unpurified eye or spleen lysates (5 mL) or purified beads+lysates (40 mL)
were loaded onto the gel. Lanes are as follows: A: unpurified eye, B:
unpurified spleen, C: protein ladder, D: glutathione-sepharose bead-
s+eye lysates, E: glutathione-sepharose beads+eye lysates+GST-Cav1.4
N-terminus, F: glutathione-sepharose beads+eye lysates+GST-Cav1.4nob2

N-terminus, G: glutathione-sepharose beads+spleen lysates, H: gluta-
thione-sepharose beads+spleen lysates+GST-Cav1.4 N-terminus, I: glu-
tathione-sepharose beads+spleen lysates+GST-Cav1.4nob2 N-terminus. A
prominent band of Mr slightly larger than 37 kDa is observed in lanes E
and H, but is absent from lanes F and I. This band was interpreted as a
filamin A protein fragment. B. GST-fused N-termini from Cav1.4wt or
Cav1.4nob2 were incubated with HA-tagged C-termini of filamin A or
filamin B. Only GST-Cav1.4wt N-terminus was capable of interacting with
either filamin A or filamin B. Lanes 1-3 correspond to filamin A (with
GST-Cav1.4wt, GST-Cav1.4nob2, and GST, respectively); lanes 4–6
correspond to filamin B (with GST-Cav1.4wt, GST-Cav1.4nob2, and GST,
respectively); lanes 7 and 8 to filamin A and B, respectively (no GST
construct); lanes 9–11 GST-Cav1.4wt, GST-Cav1.4nob2, and GST, respec-
tively (with no filamin constructs); lane 12 is unpurified GST-Cav1.4wt

lysate; lane 13 is unpurified GST-Cav1.4nob2 lysate.
doi:10.1371/journal.pone.0002538.g007
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personal computer with Digidata 1322A interface, using pClamp

9.1 (Axon) software. In all cases, pipette capacitance and series

resistance were compensated (series resistance by 80%). Currents

were filtered at 1 kHz and digitized at 2 kHz. Prior to recording,

individual cover slips were transferred to a 3 cm culture dish filled

with bath recording solution (in mM: 20 BaCl2 (or 2 CaCl2 for

ramp protocols), 65 CsCl, 40 TEA-Cl, 1 MgCl2, 10 glucose, 10

HEPES, pH 7.20 with TEA-OH). Pipettes (BF-150-86 borosilicate

glass, Sutter Instruments, Novato CA) were pulled on a P-87

microelectrode puller (Sutter Instruments) and fire-polished with

an MF-830 microforge (Narishige, Japan) to a resistance of 1–

4 MV when filled with recording solution (in mM: 108

CsCH3SO3, 4 MgCl2, 9 EGTA, 9 HEPES pH 7.20 with CsOH).

Current-voltage relations were obtained by holding cells at

2100 mV before stepping to various test potentials for 150 ms,

typically at a frequency of 0.2 Hz. Ramp experiments were

obtained by changing membrane voltage from 2100 mV to

+100 mV over 500 ms. Whole-cell current-voltage relations were

fitted with Equation 1, where I denotes peak current amplitude, V

is the test potential, Vact is the half-activation potential, S is a slope

factor, Gmax is maximum chord/slope (whole-cell) conductance,

and Erev is reversal potential.

I~
Gmax V{Erevð Þ

1ze
Vact{V

S

ð1Þ

Inactivation-voltage relations were obtained by holding cells at

2100 mV, depolarizing to a test potential of +20 mV for 50 ms,

stepping back to 2100 mV for 1 ms before initiating a 10 s

conditioning pulse to various potentials, stepping back to

2100 mV for 1 ms, and initiating a second test pulse to

+20 mV for 50 ms. The degree of inactivation was determined

as the ratio of the second test pulse to the first test pulse.

Inactivation-voltage relations were fitted with Equation 2, where I

is the degree of inactivation, V is the conditioning potential, Vinact

is the half-inactivation potential, z is a slope factor reflecting

effective gating charge, and x represents the non-inactivating

fraction of current. Since experiments were typically carried out at

room temperature, R (universal gas constant), F (Faraday

constant), and T (absolute temperature) simplify to a value of

25.6 mV in this equation (ie. RT/F = 25.6 mV).

I~xz
1{x

1ze
{z Vinact{Vð Þ

25:6

ð2Þ

Electrophysiological data were analyzed using Clampfit9.1

software (Axon Instruments, Union City, CA) and SigmaPlot2000

(Jandel Scientific, Chicago, IL).

PD98059, a mitogen-activated protein (MAP) kinase inhibitor,

(Tocris Biosciences) was dissolved in DMSO at a stock

concentration of 25 mM, and then diluted into the final recording

solution immediately before recording. Control and test cells were

serum-starved for 2 hours in the presence or absence of inhibitor

(see for example, [34,48–50]) prior to electrophysiological analysis.

Control (with DMSO vehicle) and drug (20 mM) saline solutions

were delivered by a gravity-driven microperfusion system.

ERG recordings
ERGs were recorded from Cacna1fnob2 (n = 6) and age-matched

Cacna1fwt (n = 5) mice, as previously described [51]. Briefly, after

overnight dark-adaptation, mice were prepared for bilateral

recordings under dim red light. While under anesthesia (xylazine

10 mg/kg i.p; ketamine 150 mg/kg i.p.) the mouse body

temperature was monitored with a rectal probe and maintained

at 38uC using a homeothermic blanket. Both pupils were dilated

using 1% tropicamide. A drop of methylcellulose, applied on each

cornea, prevented dehydration and allowed electrical contact with

the recording electrode (gold wire loop). A pair of 25-gauge

platinum needles inserted subdermally behind each eye served as

reference electrodes. Amplification (1–1000 Hz bandpass), stimu-

lus presentation, and data acquisition were provided by the Espion

E 2 ERG system (Diagnosys LLC, Lowell, MA). First, scotopic

intensity-response functions were determined using single flashes

(6500K, 10 ms duration) presented to dark-adapted animals at

nineteen increasing intensity steps from 25.22 to 2.86 log cds/m2.

The inter-stimulus-interval (ISI) was increased progressively from

5 sec (at the lowest stimulus intensity) to 2 minutes (at the highest

stimulus intensity), so as to minimize rod photopigment bleaching

and desensitization. The amplitude of the b-wave was measured

from the a-wave negative peak to the b-wave positive apex, and

not to the peak of oscillatory potentials (OPs), which can exceed

the b-wave apex [52]. After 10 min photopic adaptation (30 cd/

m2 background), cone-driven intensity-response functions were

obtained, using single flashes (6500K, 10 ms duration) presented at

eleven increasing intensity steps from 21.63 to 2.86 log cds/m2.

The time interval between steps was 10 seconds, and each stimulus

was presented 6 times at 5 sec intervals. Responses were averaged

for the six flashes at each intensity. For data analysis, responses

from both eyes were considered, therefore the values in the graphs

represent average6standard deviations for n = 12 Cacna1fnob2 and

n = 10 Cacna1fwt eyes.

Optokinetic (Head-Turning or Optocollic) Responses.

Contrast sensitivity functions were obtained for optokinetic

responses to moving sine-wave gratings, using the virtual

optomotor apparatus, OptoMotryTM (Cerebral Mechanics,

Lethbridge, AB, Canada; [53,54]). Briefly, three sets of Cacna1fnob2

littermates of either sex (litter #1: n = 6; litter #2: n = 4; litter #3:

n = 5), or their wild type background littermates (n = 6), aged 90–110

days, were placed individually on a 5 cm platform mounted in the

middle of a closed testing chamber enclosed by four 17-inch LCD

computer monitors (model 1703FP; Dell, Phoenix, AZ). We

observed head-following responses by means of a digital video

camera mounted above the platform in the lid of the chamber.

Horizontally drifting sine-wave gratings, drifting to either the left or

right, were presented at various spatial frequencies (0.019 cycles/

degree (c/d) to 0.3 c/d) and drift velocities (6, 12, 18, 24, 30 and

36 degrees/second (d/s), for most spatial frequencies). Contrast

threshold, defined as the lowest contrast at which the animal could

follow the moving grating reliably (Michelson contrast: Equation 3,

where Lmax and Lmin are the maximum and minimum luminances of

the monitors), was determined by a modified staircase procedure and

a two-alternative forced-choice paradigm. Contrast sensitivity was

defined as the inverse of contrast threshold (100/threshold %

contrast), and acuity was defined as the highest spatial frequency at

which the animal could follow the drifting grating at 100% contrast.

Mc~
Lmax{Lmin

LmaxzLmin

ð3Þ

Contrast, spatial frequency, and rotation velocity are expressed

here as the computer settings. True contrast and luminance at the

center of the animal’s viewing platform were measured with a

Minolta LS-110 Luminance Meter, operating as a spot photom-

eter with a 1 degree acceptance angle. The mean luminance was

55 cd/m2 for a 1.0 c/d sine-wave grating of maximum contrast

moving at 12 d/s, and the mean luminances of ‘‘black’’ and
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‘‘white’’ (i.e., the maximum and minimum luminances), deter-

mined with a stationary 0.011 c/d grating at 100% contrast, were

3.98 cd/m2 and 104.2 cd/m2, respectively. Thus, the actual

Michelson contrast range was 3.8–100%; contrast thresholds, and

the related contrast sensitivities reported in this paper, were not

corrected for this small discrepancy from the instrument’s contrast

settings of 0–100%. Mean luminance of the gratings varied from

27.5 to 110 cd/m2 with distance from the monitor screens, as the

animal moved freely on the platform.

Statistics
Statistical analyses were performed using either SigmaStat2.03

(SSI, Richmond, CA), or PrismTM or InStatTM (GraphPad

Software Inc., San Diego, CA, USA). Unless otherwise stated,

numbers shown are mean6standard deviation, and numbers in

parentheses denote the number of experiments ( = number of

animals tested). Significant differences are denoted by * (p,0.05).

For optokinetic responses, a one-way ANOVA (InStatTM) was

used to determine whether significant differences existed among

the data gathered for the three litters.
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