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Abstract: Intracellular signaling pathways are essential to establish embryonic patterning, including
embryonic axis formation. Ectodermal patterning is also governed by a series of morphogens. Four
ectodermal regions are thought to be controlled by morphogen gradients, but some perturbations are
expected to occur during dynamic morphogenetic movement. Therefore, a mechanism to define areas
precisely and reproducibly in embryos, including feedback regulation of signaling pathways, is nec-
essary. In this review, we outline ectoderm pattern formation and signaling pathways involved in the
establishment of the pre-placodal ectoderm (PPE). We also provide an example of feedback regulation
of signaling pathways for robust formation of the PPE, showing the importance of this regulation.
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1. Introduction

Embryonic patterning is one of the most crucial steps for constructing a complex
body shape from a simple egg. The fundamental concept of embryonic fate determination
involves localization of signaling molecules inside an egg and differential activation of
pathways in each embryonic area, directing localized expression of specific genes. To
establish cell fates precisely, strict regulation of signaling strength in each area is essential [1].
There are two types of pattern formation, self-organization and boundary organization [2].
In the “Turing pattern”, a primary example of self-organization, it is possible to create a
periodic pattern such as a fish skin pigmentation pattern, simply by employing at least two
molecules that differ in diffusion rates and activities [3,4]. This model is very simple; it is
impossible to form the precise pattern reproducibly. The second is the so-called “French-
flag model”, by which cells generate a pattern due to the strength of a morphogen gradient.
This model allows definition of fixed areas more reproducibly than self-organization. In
ectoderm patterning, the principle of boundary formation is adopted.

Ectoderm patterning is established after fertilization in vertebrates. The ectoderm con-
sists of four distinct regions, the neural plate (NP), the neural crest (NC), the pre-placodal
ectoderm (PPE, also called the pre-placodal region (PPR)), and the epidermis. Patterning
is dependent on positional information provided by several types of signaling molecules
secreted from mesendodermal tissues. Major signaling types involved in ectodermal pat-
terning include bone morphogenetic protein (BMP), fibroblast growth factor (FGF), retinoic
acid (RA), and Wnt. In addition to the ligands themselves, antagonists of each morphogen
also contribute to gradient formation in embryos. For example, in Xenopus gastrula, several
proteins such as chordin, noggin, and follistatin allow formation of BMP gradients. Both
FGF and Wnt signaling are important for anterior–posterior neural patterning. Wnt an-
tagonists (dkk, cer, frzb etc.), secreted from anterior mesendoderm, induce anterior neural
structure, including the brain [5,6]. PPE formation requires cooperative actions of BMP,
FGF, Wnt, and RA signaling to determine the position of the PPE in naïve ectoderm [7].

The question is whether only the concentration of these molecules enables establish-
ment of the precise ectoderm pattern, because fluctuations of concentration occur, according

J. Dev. Biol. 2022, 10, 35. https://doi.org/10.3390/jdb10030035 https://www.mdpi.com/journal/jdb

https://doi.org/10.3390/jdb10030035
https://doi.org/10.3390/jdb10030035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jdb
https://www.mdpi.com
https://orcid.org/0000-0001-9047-0513
https://doi.org/10.3390/jdb10030035
https://www.mdpi.com/journal/jdb
https://www.mdpi.com/article/10.3390/jdb10030035?type=check_update&version=1


J. Dev. Biol. 2022, 10, 35 2 of 14

to various, unexpected environmental factors, resulting in uncertainty in the region of each
tissue. To avoid untenable fluctuations, molecular mechanisms must be able to counter such
influences. There are several strategies to establish robustness against noise in embryonic
patterning (Figure 1).

J. Dev. Biol. 2022, 10, x  2 of 15 
 

 

formation requires cooperative actions of BMP, FGF, Wnt, and RA signaling to determine 
the position of the PPE in naïve ectoderm [7]. 

The question is whether only the concentration of these molecules enables 
establishment of the precise ectoderm pattern, because fluctuations of concentration 
occur, according to various, unexpected environmental factors, resulting in uncertainty in 
the region of each tissue. To avoid untenable fluctuations, molecular mechanisms must be 
able to counter such influences. There are several strategies to establish robustness against 
noise in embryonic patterning (Figure 1). 

 
Figure 1. The strategy for robust pattern formation: (A) steep gradient formation of a morphogen; 
(B) mutual inhibition of transcription factors; (C) cell sorting and clear boundary formation of a 
tissue; (D) positive feedback regulation of morphogen gradients; (E) negative feedback regulation 
of morphogen gradients. 

One of these is establishment of steep gradients (Figure 1A). The larger the difference 
in morphogen concentration among cells, the more easily each cell is able to detect 
differences in signal levels [8]. Another strategy is mutual inhibition by two transcription 
factors (Figure 1B). At an early stage, both genes are expressed in the same cells, whereas 
expression of one of these genes is decreased, resulting in boundary formation between 
two regions that each express one of these genes. The third strategy is “cell sorting” 
(Figure 1C). Gathering cells that receive similar levels of morphogen enables a region to 
absorb (or average) the noise of patterning, e.g., a salt and pepper cell array around the 
boundary. The fourth strategy is “local” regulation of signaling, including feedback 
regulation of intracellular signaling pathways, especially in two regions. Positive 
feedback regulation makes the two regions more discrete, whereas negative feedback 
enables them to maintain stable levels of signaling against local turbulence of signal 
intensity (Figure 1D,E) [2]. Among ectodermal regions, the PPE and the NC are narrow; 
therefore, a system to precisely form them is more critical than in the NP and the 
epidermis. In this review, we will focus mainly on PPE formation and will discuss the 
importance of feedback regulation for local control of appropriate signaling. 

2. An Outline of PPE Formation 
The PPE is a narrow, horseshoe-shaped region induced around the boundary 

between the neuroectoderm (NE) and the non-neural ectoderm (NNE) during 

Figure 1. The strategy for robust pattern formation: (A) steep gradient formation of a morphogen;
(B) mutual inhibition of transcription factors; (C) cell sorting and clear boundary formation of a
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One of these is establishment of steep gradients (Figure 1A). The larger the difference in
morphogen concentration among cells, the more easily each cell is able to detect differences
in signal levels [8]. Another strategy is mutual inhibition by two transcription factors
(Figure 1B). At an early stage, both genes are expressed in the same cells, whereas expression
of one of these genes is decreased, resulting in boundary formation between two regions
that each express one of these genes. The third strategy is “cell sorting” (Figure 1C).
Gathering cells that receive similar levels of morphogen enables a region to absorb (or
average) the noise of patterning, e.g., a salt and pepper cell array around the boundary.
The fourth strategy is “local” regulation of signaling, including feedback regulation of
intracellular signaling pathways, especially in two regions. Positive feedback regulation
makes the two regions more discrete, whereas negative feedback enables them to maintain
stable levels of signaling against local turbulence of signal intensity (Figure 1D,E) [2].
Among ectodermal regions, the PPE and the NC are narrow; therefore, a system to precisely
form them is more critical than in the NP and the epidermis. In this review, we will focus
mainly on PPE formation and will discuss the importance of feedback regulation for local
control of appropriate signaling.

2. An Outline of PPE Formation

The PPE is a narrow, horseshoe-shaped region induced around the boundary between
the neuroectoderm (NE) and the non-neural ectoderm (NNE) during gastrulation [9–11].
The NC is also derived from a boundary region and forms craniofacial structures [12–14].
The model for dividing the PPE and the NC is discussed later.

PPE cells give rise to cranial sensory organs, including lens, olfactory epithelium, inner
ear, some of the cranial ganglia, and the anterior pituitary gland [15–20]. In contrast to
NC cells, a part of PPE cells remain on the surface of the ectoderm, and after neural tube
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closure, various patterns of cell migration occur, according to the subtypes of placode [21].
Olfactory epithelium, lens, and otic cells are mainly rearranged to form their final shape,
whereas trigeminal and epibranchial cells migrate and aggregate. Many genes are involved
in PPE specification and construct a gene network [22]. Six1, the homolog of sine oculis
(si) in Drosophila, encodes a homeodomain protein and is uniformly expressed in the
PPE [23,24]. Eya1 is a cofactor with Six1 and is also expressed in the PPE [25]. These
genes are well utilized as pan-placodal markers. The experiment on both upregulation and
downregulation has shown that Six1 is required for the gene regulatory network of PPE
formation [26,27]. Many other transcription factors including GATA2, Dlx3/5, FoxI1/3
and AP2 are involved with PPE formation (reviewed in [28]). Nonetheless, the molecular
mechanism for segregation of the PPE and the NC is controversial in ectoderm patterning,
and there are several models to explain PPE/NC formation (Figure 2).
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Figure 2. A model of PPE and NC formation: (A) the neural plate border (NPB) model; Before
division of the NC and the PPE, the NPB region is formed between the neuroectoderm and the
non-neural ectoderm; (B) binary competence model; The NC is derived from the neuroectoderm,
whereas the PPE is from the non-neural ectoderm.

In the “binary competence” model, determination of the neuroectoderm and the non-
neural ectoderm occurs during gastrulation, followed by subdivision of the PPE and the
epidermis from the non-neural ectoderm, whereas the NC and the NP are derived from
the neuroectoderm (Figure 2A). Evidence that supports this model includes the fact that
transplantation of NP cells into ventral ectoderm induces Six1, but expression is only seen
in the recipient NNE region and not in the donor NP, indicating a difference in competence
between the neural and the non-neural ectoderm [6,29]. In addition, Dlx3 plays a role for
the formation of differential competence for the PPE [29]. Furthermore, complete inhibition
of BMP signaling by dorsomorphin (an antagonist of BMP) at the blastula stage greatly
reduced PPE marker expression [30], indicating the importance of at least some BMP
signaling at an early stage.

The second model is the “NPB model” (Figure 2B). In this model, the neural plate
border (NPB) region is initially induced between the neural and the non-neural ectoderm,
followed by subdivision into the NC and the PPE. For NPB formation, several genes are
important. Pax3 and Zic1 are typical NPB markers. Knockdown of Zic1 and Pax3 reduced
Six1 expression, indicating the necessity of both gene functions for PPE formation [31]. The
latter study of conserved enhancers revealed that expression of Pax3 and Zic1 is regulated
by BMP, Wnt, and FGF, and the balance of these signals during the late gastrula stage is
essential for Zic1/Pax3 expression [32]. FGF signaling is important for Pax3 transcription via
specific enhancers (called IR2), whereas Wnt signaling positively regulates zic3 transcription
via both E1 and E2 enhancers [32]. Pax3 expression is positively regulated by itself [33].
Immunostaining with several markers indicates that the PPE and the NC, in addition to the
NP, overlap before the neurula stage in chick embryos, supporting this model [34]. Very
recently, another model was proposed [35]. The “gradient border model” draws upon both
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of the previous models. In this model, the neural plate border is induced, but in this area,
cells that express NC or PPE genes are distinct, suggesting that NPB already possesses two
regions before neurulation.

In the following section, we will discuss intracellular signaling involved in ectoderm
patterning. In this patterning, several signaling pathways, including BMP, FGF, Wnt, and
RA, participate, but in this review, we focus mainly on BMP and FGF signaling. On the
subject of feedback regulation, we will also discuss the implications of RA signaling.

3. Control of BMP Signaling in PPE Formation

BMP serves important functions in various biological events, including many kinds
of organ development in both vertebrates and invertebrates. Interaction of BMP ligands
with BMP receptors promotes phosphorylation of the C-terminal serine residue of Smad1,
directing it to bind Smad4, and regulating target gene expression (Figure 3) [5,36].
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A morphogen gradient of BMP signaling is essential to establish embryonic patterning,
as in dorsoventral axis formation [37]. Similarly, BMP signaling is crucial for ectoderm
patterning. BMP4 and 7 are expressed in NNE, next to the PPE [38–42], whereas BMP
antagonists are expressed in mesoderm underlying the PPE or in the PPE itself, contributing
to differential control of the BMP level [43,44]. Animal cap experiments indicate that NP
gene expression decreases as the dose of BMP increases [45]. Despite the fact that determi-
nation of the ectodermal region is crucial for precise body plan formation, the molecular
mechanism by which BMP morphogen establishes each region is not still fully understood.

For NC formation, various animal models indicate the importance of BMP signaling,
although what level of BMP signal is necessary remains controversial. In Xenopus embryos,
signaling from DLMZ during gastrulation is important, whereas the signal from intermedi-
ate mesoderm, as well as adjacent ectoderm is important for maintenance of the NC region,
indicating the necessity of stage-dependent inhibition of BMP signaling for NC formation
(low BMP level in the early stage, whereas high level in the late stage) [46,47]. On the other
hand, positive regulation of BMP signaling is necessary to induce the NC from the neural
plate in chick embryos [48,49]. Furthermore, a zebrafish study indicated that intermediate
levels of BMP specify a cranial neural crest progenitor [50].

For PPE formation, what function does BMP signaling serve? We need to consider
the mechanism along with the binary competence and NPB models described above.
According to the NPB model, intermediate levels of BMP signaling during gastrulation
and neurulation are necessary for PPE formation, and evidence that supports the NPB
model from the point of BMP signaling has been presented. An intermediate level of
BMP signaling activity directs PPE induction. In chick embryos, the NPB region shows
intermediate intensity of phosphorylated Smad1 protein [51]. A Xenopus study using animal
cap cells indicated that Six1 expression is highest with an intermediate dose of noggin or
chordin [27,52]. Moreover, dlx5 and dlx6 are both expressed in NPB, and the quantitative
level of expression was highest in Xenopus embryos injected with an intermediate amount
of chordin (chd) mRNA [53]. Another zebrafish study indicated that for PPE formation,
a somewhat higher level of BMP signaling is necessary than for the NC [54]. A similar
experiment was carried out using zebrafish embryos [55]. In summary, intermediate BMP
levels enable induction of NPB/placode gene expression, at least in several experimental
systems employing Xenopus, zebrafish, and chick embryos.

In the binary state model, it is likely that positive regulation of BMP signaling before
gastrulation is important for inducing the PPE, whereas the chick and Xenopus study
indicated that attenuation of BMP signaling is necessary at late gastrula/neurula stages to
induce the PPE in naïve ectoderm [6,7]. Similarly, using various doses and variable timing
of treatments with dorsomorphin, a zebrafish study showed that BMP inhibition at blastula
or early gastrula greatly reduced PPE marker expression (sox3, six4 and pax2), whereas BMP
inhibition at a later stage is important [30]. Tfap2A/C, Fox1i and Gata3, which are necessary
to acquire PPE formation competence, are induced by BMP, whereas BMP signaling is not
necessary to specify PPE fate after gastrulation [29,30,56]. A chick study also indicated
that BMP signaling is required for formation of olfactory and lens placodes [57]. From
these studies, it is suggested that during gastrulation BMP promotes PPE formation but
subsequently inhibits PPE formation in the non-neural ectoderm.

4. Involvement of FGF Signaling for PPE Formation

Many studies have reported that relevant genes are involved in NPB/NC formation
(Figure 4). Anosmin-1(Anos1), an ECM-associated, glycosylated protein directly interacts
with FGF ligands and facilitates FGF8-FGFR1 interaction in chick embryo (Figure 4A) [58–61].
Xenopus Anos1 is expressed downstream of Pax3 and Zic1 and contributes to formation
of both the NC and the PPE [62]. Meis3 is also expressed downstream of Zic3 and Pax3
and positively regulates Fgf3 and Fgf8 (Figure 4A) [63]. Lrig3, expressed in the NP and the
NC, interacts with FGFR1 and modulates FGF signaling in NC induction and specification
(Figure 4B) [64]. For establishment of the NC, the balance of ERK and AKT is important [65].
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In the NC state of animal cap cells exhibited by Foxd3 and Sox9 expression, the pERK level
is high and pAKT is low. Thus, NC formation is inhibited by either ERK inhibition or AKT
activation [66].
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The importance of FGF signaling for PPE formation has also been shown by a series
of studies. In Xenopus embryos, Fgf3, Fgf4, and Fgf8 are expressed in the dorsolateral
marginal zone [67]. In chicken blastula, Fgf8 is distributed in almost all parts of the
epiblast, and expression accumulates in the primitive streak at early gastrula stage [68].
Additionally, Fgf8 is expressed in the anterior neural ridge, adjacent to the PPE [7,69,70]. In
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Xenopus embryos, knockdown of Fgf8 by morpholino anti-sense oligo (MO) decreased Six1
expression [6,31], and experiments using SU5402 (FGFR inhibitor) also indicated that an
FGF signal is required for placode induction [6]. Although FGF signaling is necessary for
PPE specification [6,7,31], overactivation of FGF signaling represses a PPE marker gene,
Six1 [27,31]. In addition, slight inhibition of FGF signaling enhances Six1 expression [52],
suggesting that an appropriate level of FGF is required for PPE induction.

Irx, which encodes Iroquois homeodomain protein, regulates Fgf8 expression and is
involved in NPB specifier-gene expression, including Msx1, Pax3, and Zic1 (Figure 4A) [71].
Irx1 is upregulated by Six1 and Eya1, whereas Irx1 promotes Six1 expression in early PPE
formation. Irx1 expression overlaps with that of the NPB gene at first, but expression
accumulates only in the PPE region. Interestingly, Irx1 changes to suppress Six1 expression,
suggesting a differential stage-dependent role [71].

For specific placode formation from the pan-placodal domain, FGF signaling is nec-
essary [19,72,73]. Mouse KO experiments also indicate essential roles of Fgf3, Fgf8, and
Fgf10 in otic placode formation [73,74]. Integrin-α5 (Itga5) is expressed in the PPE, and
its knockdown impaired trigeminal, epibranchial, and otic cells (Figure 4C) [75]. In addi-
tion, dlx3/dlx4 negatively regulates Fgfr1/2 expression, resulting in malformation of otic
placode [44].

5. Feedback Regulation of Signaling Pathways for Ectodermal Patterning

As shown above, feedback regulation is a useful way not only to establish discrete
areas, but also to maintain levels of intracellular signaling against fluctuations. We will show
some examples of feedback regulation in BMP and FGF pathways and their contributions
to PPE formation.

5.1. BMP Signaling

Several studies have addressed feedback regulation of BMP signaling in the context of
embryonic development. In zebrafish embryos, both Pinhead and ADMP encode BMP-like
ligands that promote chd degradation, whereas their transcription is repressed by BMP
signaling (Figure 3A) [76–78]. In Xenopus ectoderm formation, R-spondins (RSPOs) antago-
nize BMP signaling by associating with the BMP receptor, affecting dorsoventral patterning.
Biochemical analysis indicates that BMP promotes Rspo2 transcription, whereas RSPO
protein antagonizes BMP signaling extracellularly, suggesting feedback loop formation
(Figure 3A) [79]. Bambi is induced by BMP4, whereas Bambi represses the ligand–receptor
complex, indicating negative loop formation (Figure 3C) [80]. This negative feedback regu-
lation extends the dynamic range of BMP signaling because this system enables responses
to more intense BMP signaling, contributing to attenuation of morphogen fluctuation in
embryos [81]. Actually, in Xenopus embryos, the myf5 expression domain induced by
intermediate BMP levels is perturbed by Bambi knockdown.

For PPE/NPB formation, there are not many studies that directly demonstrate the
contribution of feedback regulation of BMP signaling. In Xenopus embryos, expression of
crossveinless2 (cv2), which interacts with both chd and BMP, is seen in high BMP regions,
although knockdown of cv2 with cv2 MO increased vent1 and cv2 and decreased Six3
and chd, indicating that cv2 participates in a negative feedback loop of BMP signaling
(Figure 3C) [82,83]. On the other hand, the zebrafish study indicates that cv2 forms the
positive feedback loop by acting as pro-BMP factor and is required for NC induction by
locally enhancing BMP activity and regulating the NPB gene network [84,85]. In the PPE
region, dlx3 expression domain is outside the cv2 expression domain in the 5-somite stage of
zebrafish embryos. Dlx3b enhances bambi-b in the PPE, suggesting that discrete expression
of these genes specifies both the NC and the PPE region [85]. In chick embryos, casein
kinase interacting protein 1 (CKIP-1) and Smurf1, which encodes a ubiquitin ligase, are both
expressed in NPB and establish an intermediate BMP level with Smurf1 for NC formation.
Smurf1 attenuates BMP signaling via degradation of Smad1/5/8 but also degrades itself.
At the same time, CKIP-1 directly interacts with Smurf1, promoting Smurf1 degradation. In
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summary, CKIP-1/Smurf1 double-negative attenuation maintains appropriate BMP signal
levels in NPB (Figure 3B) [86].

Our analysis indicates the importance of Fam46a in PPE formation. Knockdown of
Fam46a inhibits PPE-specific gene expression, including Six1. Fam46a protein directly
interacts with the N-half region of Smad1, including the linker domain, and increases the
quantitative level of Smad1. The linker region of Smad1 is phosphorylated by GSK3β,
followed by ubiquitination and degradation via the proteosome system; thus, it is suggested
that Fam46a upregulates BMP signaling via stabilization of Smad1 protein. Moreover,
Fam46a transcription is promoted by BMP signaling, indicating formation of a positive
feedback loop in BMP signaling (Figure 3C). Notably, activation of BMP signaling by
Fam46a is not intense because Fam46a contributes to stabilization of Smad1 but not to
direct activation via promotion of C-terminal phosphorylation of Smad1 [87].

5.2. FGF Signaling

For FGF signaling, feedback controls in either NPB/PPE/specific placode formation
have been more widely reported than for BMP signaling. Tbx1 and Ripply3 contribute
to regulation of PPE gene expression. In detail, Tbx1 facilitates expression of Fgf8, Six1,
Eya1, and Ripply3. Additionally, Fgf8 promotes Ripply3 expression. On the other hand,
Ripply3 suppresses expression of Fgf8 and Tbx1 and forms a negative feedback loop with
Fgf8, Ripply3, and Tbx1 (Figure 4B). This feedback loop contributes to the postero–lateral
boundary during formation of the PPE by restricting the expressing region of fgf [88].
Fibronectin-leucine-rich transmembrane protein 3 (FLRT3) functions as a positive regulator
of Ras-MAPK signaling and also promotes ERK phosphorylation. FLRT3 transcription
is upregulated by FGF signaling, suggesting positive feedback formation (Figure 4B) [89,
90]. Xenopus FLRT3 is co-expressed with Fgf8 in the anterior neural ridge. From the
fact that overactivation of FGF signaling inhibits PPE formation, FLRT3 may play a role
in boundary formation outside the PPE region [90,91]. Recently, we showed that Dual
specificity phosphatase 6 (Dusp6, also known as MKP3) is important to precisely form the PPE
region. Dusp6 is a phosphatase that specifically interacts with dual tyrosine and threonine
residues of ERK1/2, attenuating Ras/ERK signaling (Figure 4B) [92–95]. Our study showed
that Dusp6 is expressed in the PPE at mid-neurula of Xenopus embryos in an FGF signal-
dependent manner and is necessary for both NPB and PPE formation by modulating FGF
signaling. An experiment combining FGF bead transplantation with Dusp6 knockdown
demonstrated the importance of negative feedback control for PPE formation. In this study,
it was suggested that stable spatial pattern formation against perturbation of FGF ligands
is accomplished by suppressing intracellular signaling activity [96].

Furthermore, several genes involved in FGF signaling contribute to specific placode
formation. Sprouty (Spry) functions as an intracellular negative feedback regulator of FGF
signaling in several developmental contexts [97–99]. Spry is expressed in an FGF-dependent
manner [100,101], and in mouse embryos, conditional knockout of Spry1 causes defective
craniofacial and cardiac development, indicating the importance of NC formation [102].
Spry1 and Spry2 are expressed in posterior PPE and participate in otic placode formation by
inhibiting FGF signaling [103,104]. Spry1 and Spry2 also contribute to epibranchial placode
formation and neuronal differentiation [105]. Malformation of otic placode by Spry1 and
Spry2 knockdown was rescued by haploinsufficiency of Fgf8 gene function, suggesting
the importance of feedback loop-based fine tuning of FGF signaling (Figure 4C) [105].
Similar expression of fgf (Sef ) regulates Ras-MAPK signaling, as well as other types of
signaling [61,106]. In both zebrafish and Xenopus embryos, Sef is expressed in an FGF
signaling-dependent manner, whereas FGF target gene expression is suppressed by Sef
overexpression. Injection with Sef MO expanded the Fgf8 expression region in the midbrain–
hindbrain boundary (MHB) [107]. In chick embryos, Sef is expressed in otic placode [108],
suggesting negative feedback loop regulation via Sef, at least in otic placode (Figure 4C).

RA signaling functions cooperatively with FGF signaling. RA nuclear receptor, RARa2,
reduced the expression of Ripply3, Tbx1 and Six1. As shown above, Ripply3 suppresses
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FGF signaling, suggesting that RA and FGF signaling form a negative feedback loop via
these genes [109]. Pitx2c is induced by RA and promotes transcription of Fgf8, followed
by upregulation of Cyp26c1 (an RA metabolizing enzyme) expression adjacent to the
PPE. This negative feedback regulation via both FGF and RA signaling suggests a role
in PPE specification [110]. In otic vesicle formation, FGF signaling is required for aldh3
(RA synthesizing enzyme) expression, whereas RA treatment itself downregulates fgf8
expression, resulting in feedback loop formation [111].

6. Conclusions

In this review, we discussed the role of signaling pathways in PPE formation. In
particular, we focused on BMP and FGF signaling and showed examples of their feedback
regulation in PPE patterning. Signal adjustment is obviously important not only to form
clear boundaries, but also to pattern narrow areas robustly. In particular, feedback adjust-
ment contributes to noise suppression, which reduces signal fluctuation, and contributes to
robust acquisition of patterns.

7. Future Directions

Further analysis is needed to fully elucidate the mechanisms of formation of the PPE
region, the NP, the NC, and the epidermis. In addition, other experimental approaches
may be important: one of them is to artificially change the feedback cycle by changing the
intron length of a target gene and examining the effect on PPE formation [112]. Further-
more, other principles may need to be considered. One of these is mechanical regulation.
Recently, a study using human pluripotent stem cells indicated that NPB fate determi-
nation is affected by external forces via changes in BMP signaling [113]. For directional
migration of NC cells, a gradient of stiffness in surrounding cells, so-called “durotaxis”,
is important [114]. Additionally, our studies indicate that there is a difference in cell ten-
sion between neural and epidermal ectoderm [115,116]. From these results, it appears
that mechanical forces may contribute to form each ectodermal region and to establish
their properties. Another point concerns extracellular control of ligand diffusion. Various
molecules, including ECM, membrane protein (receptors, etc.), and other cellular processes,
including endocytosis, affect ligand diffusion; thus, these mechanisms are also expected to
contribute to ectoderm patterning. Other studies report that ECM protein is involved in
NC/PPE formation [70]. In addition, anos1, which associates with FGF ligands, also binds
to heparan sulfate (HS) [60,117]. By investigating the contributions of these mechanisms
to regulation of intracellular signaling, we will better understand the robust and precise
system of embryonic pattern formation.
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