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ABSTRACT
The therapeutic index (TI) is a quantitative assessment 
of a drug safety proportional to its effectiveness. The 
estimation is intuitive when the engagement of the 
product with its target is dependent on stable chemistry 
and predictable pharmacokinetics as is the case for 
small molecules or antibodies. But for therapeutics 
with complex biodistribution and context- dependent 
potency such as adoptive cell therapy (ACT) products, TI 
estimations need to consider a broader array of factors. 
These include product- dependent variability such as 
functional fitness, unpredictable pharmacokinetics 
due to non- specific trapping, sequestration and 
extravasation into normal tissues and variable rates of 
in vivo expansion. In the case of solid malignancies, 
additional modifiers dependent on individual tumor 
immune biology may affect pharmacodynamics, including 
differential trafficking to benign compared with cancer 
tissue, hampered engagement with target cells, immune 
suppression and cellular dysfunction due to unfavorable 
metabolic conditions. Here, we propose a patient- specific 
assessment of factors affecting on- tumor from off- tumor 
activity in disparate immunologic environments that 
impact ACT’s clinical efficacy and may favorably balance 
the TI. for ACT products.

INTRODUCTION
A paramount difference between most anti- 
cancer approaches and adoptive cell therapy 
(ACT) is the ill- defined impact of the ther-
apeutic index (TI) in the latter due to the 
erratic pharmacokinetics and pharmacody-
namics of cellular products. TI is defined as 
the ratio of a drug dose that produces toxicity 
over the one yielding a clinically effective 
response: TI=TD50/ED50 (where TD50 is the 
dose that causes a toxic response in 50% of 
the population and ED50 is the dose therapeu-
tically effective with the same prevalence). 
The estimation is intuitive when the effects of 
a given product strictly depend on its engage-
ment with the respective target referred to, 
hereafter, as ‘on- target effect’. A pathway 
inhibitor targeting the V600 mutation of BRAF 
presents with an optimal TI since targeting 
of the wild- type gene is minimal. By analogy, 
cytotoxic T lymphocytes (CTLs) directed 

against mutated proteins privately expressed 
by cancer cells will cause minimal on- target/
off- tumor toxicity. Conversely, when chimeric 
antigen receptor (CAR) engineered T cells 
are aimed at non- mutated self- proteins 
expressed by benign and neoplastic tissues, 
the TI tapers according to the differential 
in respective surface antigen density. Similar 
considerations apply to tumor- infiltrating 
lymphocytes (TILs) recognizing non- mutated 
lineage- specific or tumor- specific antigens.

The differential is nullified in B- cell malig-
nancies targeted by anti- CD19 CAR- T cells. 
In this case, both normal and neoplastic cells 
express comparable surface densities of the 
differentiation marker and the therapeutic 
window is based on acceptance of the collat-
eral depletion of normal B cells compensated 
by immunoglobulin replacement.1 When the 
function of the corresponding benign cells is 
irreplaceable, as for T- cell malignancies, this 
approach is unworkable. Differential surface 
antigen density becomes critical for CAR 
targets overexpressed by cancer cells such as 
the amplification of the human epidermal 
growth factor receptor 2 (HER2) gene.2 
Here, surface differences between neoplastic 
and benign tissues demarcate the 3TI

In analogy with small molecules and anti-
bodies, the interaction between CAR- T cells 
or TILs and their targets can be reduced to 
a quasi- linear relationship when tested in 
controlled conditions such as in vitro cyto-
toxicity assays. Variability in product potency 
may still modulate the relationship but other 
factors related to the host or the tumor micro-
environment (TME) can be disregarded. We 
observed that a tight quantitative correla-
tion exists between the cytotoxic activity of 
naturally- occurring TILs and surface density 
of their cognate epitope.4 Assuming compa-
rable distribution of adoptively transferred 
cells among tissues, this linearity could serve 
as a conceptual parameter to estimate the 
number of effectors required to kill benign 
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cells expressing low densities of cognate antigen (toxic 
dose) compared with cancer cells expressing higher 
densities (effective dose). For ACT, however, things are 
not that simple and we argue that even in the hypothet-
ical condition where the TI=1 (no difference between TD 
and ED), other factors sway the balance between toxicity 
and effectiveness (figure 1). In this commentary, we will 
focus pre- eminently on key factors that impact ACT’s clin-
ical efficacy and contribute to a favorable balance in the 
TI calculation by improving the selection, monitoring 
and follow- up of patients according to their individual 
immune biological status.

Generic factors can modulate toxicity and effective-
ness upstream of the junction that regulates differential 
T- cell distribution in benign versus malignant tissues 
(table 1). To fully exploit a favorable TI, the least dose 
estimated to yield a desired therapeutic objective should 
be administered to minimize the chances of toxicity. 
However, conditions orthogonal to on- target activity can 
affect the estimate including the ‘potency’ of the product. 
Potency, characterized at the time of administration, is 
the capacity of a product to affect a given result. For T 
cells, potency depends partially on the binding affinity of 
the T- cell receptor (TCR) or the CAR for the respective 
epitope. Avidity, the intrinsic capacity of the product to 
recognize its target, results from TCR/CAR affinity, their 
expression levels and the functional status of the T cells, 
which determine the threshold for activation. Moreover, 

the level of differentiation, functional status and respon-
siveness to modulatory or chemoattractive signals affects 
CTLs ‘fitness’ to proliferate, expand, persist and function 
after infusion.5–7 Enrichment of ACT products with self- 
sustaining T memory stem cells endowed with self- renewal 
aptitude and the capacity to reconstitute the entire spec-
trum of CTL subsets8 may increase the TI by decreasing 
the number of circulating cells required for optimal traf-
ficking and expansion in the TME.

Immunogenicity may affect persistence because 
humoral or cellular responses may neutralize the thera-
peutic, particularly in the case of allogeneic products or 
those containing heterologous, non- fully humanized or 
heavily engineered proteins.9

On- target deployment may be skewed by dispersion of 
ACT products caused by trapping in the pulmonary circu-
lation, sequestration in the reticuloendothelial system 
(RES), extravasation into interstitial spaces, ‘cellular sinks’ 
for homeostatic cytokines or the immune- suppressive 
effect of the tumor- bearing status.10–14 Critchley- Thorne et 
al15 observed that the response of circulating lymphocytes 
to interferon (IFN) stimulation is frequently dampened in 
patients with cancer. The degree of dysfunction is patient- 
specific, determined by an indirect effect of cancer cell 
bioproducts16 and it is reversible ex vivo. It is consequen-
tial to postulate that CTL function may be quenched soon 
after reinfusion in such patients. To our knowledge, this 
has never been addressed by clinical trials.

Figure 1 Generic and TME- specific factors that influence the deployment of ACT products in disparate immunologic 
environments. Generic modifiers include dose, potency and fitness of the product, and modifiers that may cause their 
dispersion or dysfunction even upstream of the crossroad that determines their homing in benign and neoplastic tissues. Target 
antigen expression becomes relevant only at the end of the process, when the colonizing T cells reach the target tissue and 
deploy their residual effector cell potential. ACT, adoptive cell therapy; TME, tumor microenvironment.
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Another generic modifier affecting the TI is the uncon-
trolled and unpredictable release of cytokines resulting 
from non- specific interactions between administered and 
endogenous cells leading to cytokine release syndrome 
(CRS) or other off- target toxicities such as neurotox-
icity.17 Finally, the genetic background of the patient and 
other hidden circumstantial factors related to the host’s 
history play a subtle and unquantifiable role in sculpting 
CTL function in vivo.18

A dramatic example of discrepancy between adminis-
tered dose of effector cells and their on- target deployment 
was described by Pockaj et al13 decades ago. TILs adop-
tively transferred in patients with metastatic melanoma 

were labeled with radioactive 111Indium to trace their 
body distribution. In 12 of 38 patients (32%) receiving 
an average dose of 1.3×1011 TILs, no localization to 
metastatic sites was observed, while TILs were trapped 
in the lungs and in the RES of lymphatic organs. None 
experienced tumor regression. Among the remaining 
26 patients who experienced tumor localization, only 10 
(38%) responded. This momentous study underlines the 
dichotomy between systemic and on- target factors that 
determine the TI

An extreme example of critical problems in ACT is the 
death of a patient who received 1×1010 T cells engineered 
to express a third- generation anti- HER2 CAR construct 
that included (besides the CD3ζ chain) both costimulatory 
molecules 4- 1BB and CD28.19 CAR- T cells were adminis-
tered in combination with high- dose systemic interleukin 
(IL)-2 and lymphodepletion. Uncontrollable CRS and respi-
ratory failure ensued. Toxicity was attributed to ‘on- target, 
off- tumor toxicity’ as HER2 is expressed by normal lung 
epithelium and ‘on- target, on- tumor toxicity’ due to killing 
of HER2+ cancer cells in lung metastases possibly resulting 
in ‘tumor lysis syndrome’. However, the administration of 
IL-2, which induces uncontrolled cytokine release, increases 
capillary leakage, activates the RES and turns normal tissues 
into acutely inflamed sites with chemoattractive and T- cell 
stimulatory properties11 might have derailed the CAR- T 
cells promoting leakage into normal organs and lowering 
their threshold for activation in the context of acute inflam-
mation. Subsequent studies utilizing a second- generation 
CAR construct and no administration of IL-2 demonstrated 
limited on- target/off- tumor toxicity.20 21

TME-SPECIFIC FACTORS
The balance between the chemoattractive and immune- 
modulatory properties of benign versus neoplastic tissue 
regulates the deployment of ACT products. Since benign 
tissues are generally not inflamed and, therefore, non- 
chemoattractive, ACT products will barely engage with 
them, trafficking preferentially to inflamed tumors. We 
propose that this differential is a key TME- specific cross-
road determining theTI in solid malignancies (figure 1). 
For instance, Castellarin et al14 developed an immune- 
deficient mouse model expressing human HER2 in normal 
hepatic tissue. On- target/off- tumor toxicity was compared 
between two affinity- tuned HER2- specific CAR- T cells. In 
mice expressing high levels of human HER2, both high- 
affinity and low- affinity CAR- T cells caused lethal toxicity. 
In mice expressing low levels of human HER2, no liver 
toxicity was noted and, surprisingly, low- avidity CAR- T 
cells displayed stronger anti- tumor activity. Low- affinity 
CAR- T cells migrated out of the liver and infiltrated the 
tumor sooner, suggesting lesser compartmentalization in 
normal, non- inflamed tissues.

T-CELL HOMING ACCORDING TO IMMUNE LANDSCAPE
Response to immunotherapy is predicted by pre- existing 
inflammation.22 Transcriptional patterns such as the 

Table 1 Factors affecting the TI of ACT products

Generic factors

T- cell potency and fitness Affinity for target, 
stemness, exhaustion, 
terminal differentiation and 
immunogenicity

Dispersion Trapping in the lungs, 
sequestration in the RES, 
leakage and extravasation

Dysfunction Systemic immune suppression 
and cytokine sink

Circumstantial factors Supportive combinatorial 
therapies, comorbidities and 
microbiome

Off- target toxicity Cytokine release syndrome and 
neurotoxicity

TME- specific factors

Antigen availability Differential in antigen density, 
availability and accessibility 
between benign and neoplastic 
tissues

Trafficking to tumor Chemoattractive gradient

Engagement and exclusion Physical, functional 
and dynamic barriers—
chemorepulsive gradient, 
transient checkpoint 
upregulation in response to 
IFN- g secretion

Immune suppression Checkpoint cluster, regulatory 
T cells, myeloid suppressor 
cells and immune suppressive 
metabolites

Nutrient depletion Hypoxia, hypoxia- induced 
suppressive factors, reduced 
glucose, amino acid or fatty 
acid fuels and acidic milieu

Peripheral ignorance Combined lack of 
chemoattraction and immune- 
stimulation of adoptively 
transferred T cells

ACT, adoptive cell therapy; IFN, interferon; RES, reticuloendothelial 
system; TI, therapeutic index; TME, tumor microenvironment.



4 Wang E, et al. J Immunother Cancer 2020;8:e001619. doi:10.1136/jitc-2020-001619

Open access 

immunologic constant of rejection (ICR)23 or the tumor 
inflammation signature24 demonstrated that the activa-
tion of IFN-γ signaling, immune- effector mechanisms and 
the expression of CCR5 and CXCR3 ligand chemokines 
stand as independent predictors. Thus, based on the pres-
ence of T cells, their spatial distribution and functional 
orientation, human solid tumors are partitioned into 
three immune landscapes distributed at approximately 
equal frequency among cancers of different histology: 
‘immune- active, infiltrated or hot’, ‘immune- silent, desert 
or cold’ and ‘immune- excluded’.25 Attraction of T cells is 
favored by an inflamed, chemoattractive TME, while cold 
tumors and non- inflamed benign tissues rest ignored. 
Immune- excluded tumors sit astride as a certain degree 
of chemoattraction seems sufficient to draw T cells to 
their periphery.

TUMOR IMMUNOGENICITY AND IMMUNE SUPPRESSION
Immune- active tumors are characterized by genetic insta-
bility and high mutational rate.26 We observed that immu-
nogenic cell death (ICD) is a hallmark of this phenotype, 
correlating tightly with the ICR signature.26 27 Moreover, 
most processes implicated in immune suppression such 
as the checkpoint cluster, regulatory T cells, myeloid 
suppressor cells and metabolic inhibitors dovetail with 
the immune- active phenotype.27 The congregation of 
immune- effector and immune- regulatory mechanisms 
within the same landscape suggests that an evolutionary 
balance is required for the survival of antigenic tumors 
in the immune- competent host, where compensatory 
immune resistance offset immunogenicity.27 Adoptively- 
transferred T cells may innately infiltrate immune- active 
tumors lured by chemoattraction but face diverse chal-
lenges within the TME, becoming dysfunctional because 
of overwhelming immune suppression and metabolic 
derangement.

METABOLIC STRESS
Dysfunction of T cells is a hallmark of neoplasia and 
determines the outcome of anti- cancer immunotherapy.28 
On antigen stimulation, CTLs transition to an active 
state, requiring intensive energy production. Following 
expansion, most T cells undergo apoptotic death while 
a smaller proportion returns to a quiescent anamnestic 
state. These evolutionary stages are echoed by metabolic 
transitions allowing T cells to adapt to regional and func-
tional differences, respond to context- specific demands 
and reprogram energy production. These physiologic 
processes are disrupted in the TME that limits the avail-
ability of nutrients in competition with the high energy 
consumption of replicating cancer cells and the stromal 
response. Thus, the TME is characterized by heightened 
consumption of glucose and essential amino acids such as 
glutamine, tryptophan, cysteine, glycine and arginine.29 
Metabolic derangement is compounded by hypoxic condi-
tions that induce the production of immune- suppressive 

byproducts such as lactate, adenosine and kynurenine.30 
Moreover, hypoxia- inducible factor α activates trans-
forming growth factor-β and other soluble elements that 
bear powerful effects on T- cell trafficking, differentiation 
and function.31

TARGET ENGAGEMENT
The presence of T cells at the periphery of tumor nests 
defines the phenomenon of immune exclusion. A recent 
study characterized by immunohistochemistry the topog-
raphy of immune infiltration in approximately 1000 tumor 
specimens demonstrating that immune exclusion occurs 
in a third of cancers across several histologies.25 Without 
knowledge about T- cell spatial distribution, immune- 
excluded cancers are functionally indistinguishable 
from the immune- active. By applying the ICR signature 
to head and neck carcinoma samples, we observed that 
both immune- excluded and immune- infiltrated tumors 
display an immune- effector Th1- like signature (Pai et 
al, ASCO 2018, Abstract # 6052). Since the ICR includes 
Th1 polarization markers activated by antigen exposure, 
it is likely that T cells come into contact with and recog-
nize cancer cells at the border of the tumor nest but a 
functional barrier prevents further progression toward 
the core. Thus, trafficking of T cells to immune- excluded 
cancers is comparable to the immune- active since in both 
cases, chemoattraction recruits T cells to the tumor and 
some immunogenic stimulus promotes their persistence. 
The biology determining the two phenotypes diverges at 
this point: in inflamed tumors, no chemorepulsive signals 
hamper penetration but immune suppression dampens 
the function of T cells; immune- excluded tumors act like 
immune privileged tissue through chemorepulsion, while 
immune suppression plays a limited role. Functional 
barriers may not be present in baseline conditions but 
they may be induced when contact occurs between T cells 
and cancer cells: for instance, on encounter with tumor 
cells, T cells release IFN-γ which, in turn, induces the 
activation of dynamic barriers such as the expression of 
programmed death- ligand 1.32 Moreover, the expression 
of genes regulating physical barriers is, in some cases, 
inversely correlated with the ICR signature,33 suggesting 
an alternative mechanism of immune- exclusion when 
mechanical barriers prevent T- cell infiltration. Here, no 
direct contact occurs between cancer cells and T cells 
and, therefore, no activation of immune- effector gene 
signatures can be observed.

PERIPHERAL IGNORANCE
While inflamed and immune- excluded tumors are spon-
taneously chemoattractive, desert cancers may rest in 
peace ignored by immune cells.25 27 Indeed, immune- 
desert tumors are genetically stable, bear low mutational 
rates and lack ICD, closely approximating the biology of 
normal benign tissues and representing the ultimate chal-
lenge toward an optimal TI for ACT products.
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IMAGING TO PREDICT AND MONITOR THE TI
In this commentary, we speculate that a fundamental 
determinant of the TI for ACT of solid tumors is the base-
line status of inflammation of benign versus neoplastic 
tissues. This differential directs homing of T cells through 
chemoattraction while persistence is promoted by co- stim-
ulatory signals in situ. Yet, no mapping of a given patient’s 
inflammatory status is considered in pre- treatment assess-
ments, while it is done to evaluate chronic inflammation 
in the context of cardiometabolic and autoimmune disor-
ders.34 35 A similar organ- specific mapping could catego-
rize inflammation in the cancer- bearing host serving as a 
patient- specific predictor. Moreover, homing of infused T 
cells could be tracked by functional MRI, exploiting the 
metabolism of activated T cells.36 This strategy offers the 
opportunity to evaluate reasons for on- target/off- tumor 
effects during treatment.

COMBINATORIAL APPROACHES TO INCREASE THE TI
Converting cold into hot tumors
Cold tumors represent the ultimate challenge for ACT 
since the absence of T cells suggests lack of chemoattrac-
tion. Can a temporary disruption of their stealth biology 
open a window of opportunity for ACT? Most chemother-
apeutic agents kill cancer cells in a non- immunogenic 
manner. However, some such as anthracyclines and oxal-
iplatin can induce ICD.37 Pathway inhibitors can create an 
immunogenic TME by interfering with intrinsic cancer 
cell biology. A KRAS inhibitor induced a pro- inflammatory 
switch in immune- competent models, improving tumor 
control when used in combination with checkpoint 
inhibitor therapy (CIT).38 Levantinib, an inhibitor of the 
vascular endothelial growth factor receptor, induced CTL 
infiltration and enhanced effectiveness of CIT.39 In addi-
tion, BRAF and CDK4/6 inhibitors in combination with 
MEK inhibitors induce activation of CTLs, contributing 
to anti- tumor effects.40 Oncolytic virotherapy promotes 
intra- tumoral T- cell infiltration, improving the effec-
tiveness of CIT.41 Although these observations relate to 
CIT, immune conversion of cold tumors may also open a 
window of opportunity for the attraction of ACT products 
to the tumor site.

Multitargeting
The effectiveness of CAR- T cells aimed at a single antigen 
is limited by selection of antigen negative cancer cells. In 
addition, CAR- T cell targets are rarely exclusive to cancer 
cells, leaving space for on- target toxicity. Fine tuning of 
CAR affinity may reduce on- target/off- tumor effects.14 42 
Dual targeting of antigens co- expressed by tumor cells 
may either increase specificity or decrease chances for 
tumor escape according to the conditionality of their acti-
vation: if both antigens are required for full CAR- T cell 
activation specificity for neoplastic tissues is enhanced 
while if either one is sufficient for activation tumor escape 
will occur only with both antigens’ expression is lost but 
specificity will be dampened. Two CAR constructs can 

be included into the same product.43 Bi- specific CARs 
with two extracellular binding motifs sharing the same 
intracellular signaling have been tested in hematologic 
malignancies.44 Multiple antigens can also be targeted by 
universal CARs directed toward a soluble antigen- binding 
adaptor.45

It is not clear, however, whether dual targeting may 
increase chances of on- target/off- tumor toxicity affecting 
benign tissues expressing either antigen. To reduce such 
risk, dual CAR- T cells can be conditionally activated only 
when both antigens are co- expressed by tumor cells.

Conditional modulation of T-cell function
Lymphodepleting chemotherapy is an established adjunct 
to ACT by conditioning the host for optimal engraftment 
and expansion of transferred T cells,46 although indirect 
immune suppressive mechanisms can be triggered such 
as the overexpansion of myeloid suppressor cells.47 To 
date, lymphodepletion remains a cardinal combination 
for most ACT protocols aimed at the treatment of solid 
tumors, while approaches to increase T- cell persistence 
are being sought to bypass this need. Indeed, combining 
other synergistic anti- cancer approaches may enhance 
effectiveness. The combination of ACT with CIT can 
revive a cellular product otherwise driven to exhaustion 
by tonic antigen stimulation and co- inhibitory signaling.48 
A limitation to combinatorial approaches directed 
against solid tumors remains our poor understanding of 
the biology of synergisms related to different immune 
landscapes. As a result, empirical attempts have been so 
far discouraging. Moreover, while binary approaches are 
relatively easy to justify due to fairly predictable cumu-
lative toxicity, multiplicity of approaches exponentially 
increase the risk of combined toxicities, suffer additional 
costs and, from the trial perspective, add a number of 
permutations to be tested that go beyond realistic expec-
tations for patient recruitment.

To alleviate some of these issues, new synthetic biology 
approaches combine several mechanisms of action within 
one product such as ‘armored’ CAR- T cells constitutively 
secreting homeostatic cytokines and pro- inflammatory 
ligands,49 or delivering anti- programmed cell death-1 
(PD-1) scFvc.50 Genetic knockout of the PD-1 gene51 or 
genetic engineering of Fas variants insensitive to Fas- 
ligand- induced apoptosis enhance persistence and anti- 
tumor effects.52 The site of transgene integration during 
the engineering of T- cell products can also significantly 
improve CAR- T cell function.53 To mitigate the effects of 
inhibitory signals, chimeric ‘switch receptors’ combine 
an external domain receptor for a T- cell inhibitor, such 
as IL-4 fused to the signaling domain of an activating 
molecule such as IL-7 to turn inhibitory into stimulatory 
signals.54 Lynn et al55 observed that overexpression of 
c- Jun prevents CAR- T cells exhaustion and improves anti- 
tumor efficacy. Moreover, the overexpression of the onco-
gene prevented expression of exhaustion markers such 
as PD-1. These constitutive approaches lead, however, to 
permanent alterations of the DNA structure and increased 
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the risk for neoplastic transformation, particularly when 
master regulators of cellular proliferation are involved.

Novel approaches adopt synthetic notch receptors to 
induce transcriptional activation of various regulatory 
programs in T cells in response to antigen encounter.56 
Similarly, a non- gene editing, non- permanent, condi-
tional regulation of cellular programs adopts an antigen 
encounter- dependent nuclease- deactivated CRISPR 
(clustered regularly interspaced short palindromic 
repeats)- associated interference system (http:// ssrn. 
com/ abstract= 3656606). By introducing several single- 
guide RNAs, it is possible to conditionally prevent in 
synchrony the activation of multiple genes that have 
suppressive effects on the CAR- T cells. This strategy is 
safer than standard gene editing because it is fully revers-
ible and does not cause permanent changes in DNA struc-
ture/sequence. At the same time, this approach bypasses 
severe toxicities due to the systemic administration of 
immune modulatory products.

CONCLUSION
Success of ACT against solid tumors will depend on a 
deeper and precise understanding of individual patient’s 
immune biology and the fine balance that governs distri-
bution, deployment, expansion and activation of infused 
products. Here, we propose a logical process to define 
patient selection and therapeutic strategy for an optimal 
TI Several concepts raised here are speculative, derived 
from other disciplines or from pre- clinical models. The 
ultimate test in patients will require thoughtful, though 
not necessarily, over- burdensome study design to validate 
the usefulness of this logic. Progress in the treatment of 
solid cancers will stand a better chance only if systematic 
non- empirical approaches as the one described here are 
proactively sought.
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