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A B S T R A C T   

Background: Anoikis, a form of apoptosis induced by cell detachment, plays a key role in cancer 
metastasis. However, the potential roles of anoikis-related genes (ARGs) in assessing the prog
nosis of skin cutaneous melanoma (SKCM) and the tumor microenvironment (TME) remain 
unclear. 
Methods: The data from TCGA corresponding to transcriptomic expression patterns for patients 
with SKCM were downloaded and utilized to screen distinct molecular subtypes by a non-negative 
matrix factorization algorithm. The prognostic signature was constructed by least absolute 
shrinkage and selection operator (LASSO) Cox regression and was validated in SKCM patients 
from the GEO cohort. Moreover, the relationship of the ARG_score with prognosis, tumor- 
infiltrating immune cells, gene mutation, microsatellite instability (MSI), and immunotherapy 
efficacy. 
Results: We screened 100 anoikis-related differentially expressed genes between SKCM tissues and 
normal skin tissues, which could divide all patients into three different subtypes with significantly 
distinct prognosis and immune cell infiltration. Then, an anoikis-related signature was developed 
based on subtype-related DEGs, which could classify all SKCM patients into low and high 
ARG_score groups with differing overall survival (OS) rates. ARG_score was confirmed to be a 
strong independent prognostic indicator for SKCM patients. By combining ARG_score with clin
icopathological features, a nomogram was constructed, which could accurately predict the in
dividual OS of patients with SKCM. Moreover, low ARG_score patients presented with higher 
levels of immune cell infiltration, TME score, higher tumor mutation burden, and better immu
notherapy responses. 
Conclusions: Our comprehensive analysis of ARGs in SKCM provides important insights into the 
immunological microenvironment within the tumor of SKCM patients and helps to forecast 
prognosis and the response to immunotherapy in SKCM patients, thereby making it easier to tailor 
more effective treatment strategies to individual patients.   
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1. Introduction 

Skin cutaneous melanoma (SKCM) is the most aggressive type of skin cancer that originates from melanocytes [1]. It is most 
prevalent in the head and neck [2]. The incidence and morbidity of SKCM have risen in recent years [3,4]. Its development involves a 
complex interaction between environmental factors, mainly sunlight exposure, and genetic alterations [1]. Patients with early-stage 
disease can be cured by surgery, in many cases, tumors are only detected when they are more advanced at which time patients exhibit a 
markedly poorer prognosis [5]. Because metastatic melanoma is not sensitive to conventional radiotherapy or chemotherapy [6], the 
treatment of melanoma remains a great challenge. 

Normal adherent cells need to be anchored to an extracellular matrix (ECM) substrate in order to survive and proliferate, and when 
a cell loses contact with its ECM or neighboring cells, cells undergo a specific type of apoptosis called anoikis [7]. This cell death is 
based on the loss of cell-matrix interactions mediated by intrinsic and extrinsic apoptotic pathways [8]. Anoikis is a key cellular 
program, and this process can be viewed as a critical event in ensuring normal development and tissue homeostasis [9]. Anoikis acts as 
an important defense for the organism by preventing exfoliated cells from re-adhering to new substrates in incorrect locations and their 
stunted growth [9]. However, cancer cells can survive in suspension without ECM adhesion or proliferate at ectopic sites where ECM 
proteins differ from their original counterparts, leading to greater metastatic potential and drug resistance [7,9]. This lack of anoikis is 
becoming a hallmark of cancer cells and contributes to the formation of metastases in distant organs [7]. Several anoikis-related genes 
(ARGs) have been reported to play central roles in cancer initiation and progression, including ovarian cancer, gastric cancer, and lung 
cancer [10–13]. Takeshita et al. [10] revealed that ANGPTL2 repressed peritoneal metastasis of ovarian cancer cells by suppressing 
anoikis resistance. In gastric cancer, nuclear MYH9 promotes CTNNB1 transcription by binding to the CTNNB1 promoter and inter
acting with myosin light chain 9, beta-actin, and RNA polymerase II, thereby making gastric cancer cells resistant to anoikis [11]. 
Takeshita et al. [12] found that the GDH1 promotes anoikis resistance and tumor metastasis through CamKK2-AMPK signaling in 
LKB1-Deficient lung cancer. However, most of the studies are limited to 1 to 2 ARGs, there are no systematic studies on ARGs in SKCM. 

Therefore, in this paper, a comprehensive analysis of anoikis-related genes was performed through the SKCM transcriptomic and 
genomics sequencing database. Consensus clustering was performed and SKCM were classified into three clusters with remarkably 
diverse prognosis and immune cell infiltration in the tumor microenvironment (TME). Then, a prognostic signature (ARG_score) was 
constructed based on the training cohort samples, and its predictive accuracy was validated in an independent testing cohort. We 
further analyzed the differences between low and high ARG_score groups regarding immune cell infiltration, gene mutation, micro
satellite instability (MSI), and immunotherapy efficacy. To increase the clinical utility of this signature, a prognostic nomogram 
integrating ARG_score and clinical traits was established. In conclusion, our finding suggests that anoikis plays a crucial role in the 
tumor immune microenvironment (TIME) and in predicting patient clinical outcomes and immunotherapy efficacy. 

2. Materials and methods 

2.1. Data source 

Raw data, composed of transcriptomic matrix and clinical information of SKCM (n = 471) and normal tissues (n = 1) in fragments 
per kilobase million (FPKM) format, was obtained from the TCGA database. The expression data of normal skin samples (n = 812) 
within the Genotype-Tissue Expression (GTEx) collection of RNA-seq experiments (platform: Illumina HiSeq 2000) were obtained from 
the GTEx portal (https://gtexportal.org/home/). In addition, the GSE65904 dataset for SKCM (n = 210) with available overall survival 
(OS) time was collected from the public Gene Expression Omnibus (GEO) database. RNA expression profiles in all datasets were 
transformed into transcripts per million (TPM), with batch effects removed using the “ComBat” algorithm in the “sva” R package [14]. 

2.2. Identification of differentially expressed ARGs 

A total of 468 ARGs from the GeneCards (https://www.genecards.org/) were identified with a relevance score >0.4 (Supple
mentary Table S1). We set |log2 fold change (FC)| > 1 and false discovery rate (FDR) < 0.05 as a threshold to screen out differentially 
expressed ARGs through performing the “limma” package in R software. 

2.3. Consistent clustering of ARGs 

To identify different gene transcriptional regulation patterns, we conducted the non-negative matrix factorization (NMF) cluster 
analysis based on the expression of differentially expressed ARGs. The consensus clustering algorithm determined the clusters and their 
stability through the “NMF” R package. Kaplan Meier curves were used to evaluate the OS of different SKCM patients and the log-rank 
test was used. In addition, we identified the content of tumor-infiltrating immune cells (TIICs) by the CIBERSORT algorithm and 
compared their differences between different molecular subtypes. 

2.4. Establishment and validation of ARG_score 

We normalized DEGs extracted from different anoikis clusters and extracted overlapping DEGs. The patients included in the TCGA 
dataset served as the training cohort, and the patients in the GSE65904 dataset served as the testing cohort. The “survival” package was 
used to identify the association between gene expression levels and patients’ OS using univariate Cox regression analysis on DEGs of 
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the training cohort. Thereafter, the least absolute shrinkage and selection operator (LASSO) Cox regression algorithm was performed to 
establish a prognostic signature (ARG_score), which could screen out DEGs with optimal performance and calculate their coefficients. 
The ARG_score for each patient will be was estimated as: 

ARG_score =
∑

expi ∗ coefi, where exp and coef are expression levels and correlation coefficients, respectively. 
The median ARG_score in the training cohort was used to separate SKCM samples into low and high ARG_score groups, after which 

this same formula and cutoff were used to assess SKCM patients in the testing cohort. Survival curve of patients in the training and 
testing cohorts was plotted based on two ARG_score groups. PCA was conducted to reduce the dimensionality, judging the ability to 
distinguish patients. The receiver operating characteristic (ROC) curves were plotted to evaluate the performance of the model with 
the “timeROC” R package. 

2.5. Establishment and evaluation of a nomogram 

We investigated whether ARG_score was an independent predictor of OS using univariate and multivariate independent prognostic 
analysis. Additionally, stratified survival analysis was conducted to evaluate OS differences between two ARG_score groups based on 
age, sex, tumor location, stage, Breslow depth, ulceration, and tumor status. To fully expand the predictive performance of ARG_score, 
we constructed another quantitative method, a nomogram to predict the individual probability of survival based on the independent 
prognostic factors by using “rms” package in R. The predictive accuracy of the nomogram was evaluated using the ROC curve and 
calibration curve plot. 

2.6. Analysis of tumor immune microenvironment (TIME) 

To explore the role of ARG_score in immune cell infiltration, we investigated the distribution of 22 types of TIICs in two ARG_score 
groups by CIBERSORT algorithm [15]. Moreover, association strengths between the fraction of 22 types of TIICs and ARG-score were 
further explored utilizing Spearman correlation analysis. In addition, the ESTIMATE algorithm was used to calculate the immune 
score, and the interstitial score to reflect the microenvironmental status. 

2.7. Prediction of immunotherapy response for SKCM 

To explore the ARG_score to predict the effect of immunotherapy, we used the TIDE online database (http://tide.dfci.harvard.edu/ 
). The immunophenoscore (IPS) of SKCM patients from the TCGA database was downloaded from The Cancer Immunome Atlas (TCIA) 
[16]. The sensitivity to PD-1 and CTLA4 antibodies of patients with low and high ARG_score was studied by the “ggpubr” R package. 
Moreover, the association between immune checkpoints and the ARG_score was calculated, and the box plot was plotted by the 
“reshape2” and “ggplot2” R packages. 

2.8. Correlation of tumor mutation burden (TMB) and ARG_score 

The somatic mutation data of SKCM was obtained from the TCGA database, and the gene mutation type and frequency for every 
sample were calculated. The “Maftools” R package and its “oncoplot” function were used to present mutational differences between 
two ARG_score groups. The TMB scores of the two ARG_score groups were compared, and the correlation of the TMB scores with the 
ARG_score was evaluated. Moreover, the OS difference between low and high TMB groups was compared by the Kaplan-Meier survival 
analysis. Next, we further evaluated the synergistic effect of TMB and ARG_score groups in prognostic stratification. 

2.9. Functional enrichment analysis 

To study the biological processes correlated with ARG_score, GO and KEGG analyses were performed by the “clusterProfiler” R 
package. With the “limma” R package, differential genes (|log2 FC| > 1 and FDR < 0.05) between different ARG_score groups were 
screened out and applied to GO and KEGG pathway analysis. 

2.10. Cell culture and real-time quantitative PCR 

Human skin melanocyte cell line (PIG1) and two melanoma cell lines (A375 and SK-MEL-1) were obtained from Shanghai Institute 
of Cell Biology, Chinese Academy of Sciences. The cell lines were cultured in Dulbecco’s modified Eagle’s medium (Gibco) supple
mented with 10% fetal bovine serum (FBS; Gibco), 100 U/ml penicillin, and 100 mg/ml streptomycin (Invitrogen) and incubated at 
37 ◦C with 5% CO2. Total RNA was extracted from cells using Trizol (Invitrogen). The PrimeScript RT Master Mix (Takara, Japan) was 
used to reverse-transcribe RNA into complementary DNA (cDNA). Following the manufacturer’s instructions, RT-qPCR was conducted 
using SYBR Green PCR Kit (TaKaRa, Japan). 

2.11. Verification of the protein expression of signature genes 

The protein expression levels of the signature genes in normal skin and melanoma tissues were verified using the immunohisto
chemical data obtained from The Human Protein Atlas (https://www.proteinatlas.org/). 
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Fig. 1. Anoikis-related genes classify the clinical and molecular features of SKCM. (A) The heatmap of the expression profiles of differentially 
expressed ARGs between the tumor samples and normal samples. (B) Volcano plot of differentially expressed ARGs. (C) NMF consensus clustering 
for the k value was 3. (D) Kaplan-Meier for SKCM patients in three clusters. (E) The distribution of infiltrating immune cells in three distinct clusters. 
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3. Results 

3.1. Identification of anoikis-related subtypes in SKCM 

The study workflow is shown in Supplementary Fig. 1. In total, 813 normal skin samples and 471 SKCM samples were obtained 
from TCGA and GTEx databases. Then, a total of 100 differentially expressed ARGs were acquired, including 39 upregulated ARGs and 
61 down-regulated ARGs (Fig. 1A and B). To further explore the expression characteristics of 100 anoikis-related DEGs in SKCM, the 
NMF clustering analysis was performed which suggested that the training cohort could be well divided into three clusters, namely C1, 
C2, and C3, respectively (Fig. 1C). Kaplan-Meier survival curves revealed clear differences in OS among the three clusters, among 
which cluster C3 had significantly longer OS than the other two clusters (Fig. 1D). Furthermore, we used the CIBERSORT algorithm to 

Fig. 2. Establishment and evaluation of the ARG_score in the training cohort. (A) The overlapping DEGs of three anoikis clusters. (B) Forest plot of 
41 DEGs associated with OS. (C) The number that corresponded to the point with the smallest cross-verification error was the gene numbers 
included in the LASSO regression risk model. (D) The lines of different colors represent the trajectory of the correlation coefficient of different 
factors in the model with the increase of Log Lamda. (E) Kaplan-Meier curve to show OS of patients in different ARG_score groups. (F) Prediction of 
the sensitivity and specificity of 1-, 3-, and 5- years survival in ROC curves based on the ARG_score. (G) PCA of the training cohort. (H) Survival 
status of SKCM patients and the distribution plot of ARG_score. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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estimate the quantification of different cell infiltration in SKCM TME. Surprisingly, cluster C3 is characterized by increased immune 
cell infiltration, while cluster C2 is characterized by immunosuppression. Specifically, cluster C3 had higher infiltration levels of 
activated memory CD4+ T cells, CD8+ T cells, activated NK cells, M1 macrophages, and dendritic cells, while cluster C2 is very 
abundant in M0 macrophages, M2 macrophages, and resident memory CD4+ T cells (Fig. 1E). 

3.2. Establishment and evaluation of the ARG_score 

According to the cut-off thresholds of |FC| > 1.5 and FDR < 0.05, we discovered 58 DEGs associated with the anoikis phenotype 
(Fig. 2A). To determine the correlation between DEGs and OS of SKCM patients, a univariate Cox regression analysis was performed in 
the training cohort. Consequently, 41 DEGs were found to be associated with OS (Fig. 2B). After using the LASSO regression method, 13 
DEGs were selected to develop a prognostic signature, namely ARG_score (Fig. 2C and D). The ARG_score was assigned to each patient 
in the training cohort using the LASSO coefficient combination of the expression level of the 13 DEGs. The LASSO coefficient of the 13 
DEGs is listed in Supplementary Table S2. Using the median ARG_score as a cutoff value, SKCM samples were partitioned into low and 
high ARG_score groups. Patients in the low ARG_score group demonstrated a substantial survival benefit compared to the high 
ARG_score group (Fig. 2E). The AUC values for one, three, and five years were 0.727, 0.735, and 0.722, respectively (Fig. 2F). Patients 
in the high ARG_score group could be completely distinguished from those in the low ARG_score group using principal component 
analysis (PCA) (Fig. 2G). Furthermore, the distribution plot of ARG_score and survival status demonstrated that as the ARG_score 
increased, more patients died (Fig. 2H). 

To further test the robustness of the ARG_score, the same coefficient and formula was used to calculate the ARG_score in the 
GSE65904 testing cohort. Similarly, patients with high ARG_score had poorer OS (Fig. 3A). The AUC values at one, three, and five years 
confirmed that the ARG_score had a well-prediction performance (Fig. 3B). PCA analysis demonstrated a reliable clustering ability of 
ARG_score (Fig. 3C). Additionally, the distribution plot of ARG_score and survival status demonstrated that as the ARG_score increased, 
more patients died (Fig. 3D). 

Fig. 3. Validation of the ARG_score in the testing cohort. (A) Kaplan-Meier curve to show OS of patients in different ARG_score groups. (B) Pre
diction of the sensitivity and specificity of 1-, 3-, and 5- years survival in ROC curves based on the ARG_score. (C) PCA of the testing cohort. (D) 
Survival status of SKCM patients and the distribution plot of ARG_score. 
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3.3. Development and evaluation of a prognostic nomogram 

The prognostic value of clinical features and ARG_score in the training cohort was further studied by univariate analysis. The results 
demonstrated that age, TNM stage, and ARC_score were significantly correlated with OS (Fig. 4A), which were further confirmed by 
multivariate Cox regression analysis as independent prognostic indicators (Fig. 4B). Moreover, we discovered that the ARG_score had 
greater survival discriminating value in several clinical subgroups, including various age groups, sex groups, Breslow depth groups, 
TNM stage groups, ulceration groups, and tumor status groups (Supplementary Fig. 2A–M). The ARG_score also has a good prognostic 
value in patients with different tumor locations, especially primary tumors, regional cutaneous, and regional lymph nodes (Supple
mentary Fig. 2N–P). The nomogram comprising clinical traits and ARG_score was fabricated (Fig. 4C), which showed robust accuracy 
in predicting OS at one, three, and five years (AUC = 0.796, 0.779, and 0.751, respectively) (Fig. 4D). Moreover, the calibration curves 
revealed that actual survival was close to predicted survival (Fig. 4E). 

3.4. Indicative role of ARG_score in TIME 

To comprehensively explore the role ARG_score in the TIME, we explored the relationship between different ARG_score groups and 
the immune landscape, including TIICs and TME scores. In terms of TIICs, a higher fraction of activated memory CD4+ T cells, CD8+ T 
cells, activated NK cells, and M1 macrophages, and plasma cells were observed in the low ARG_score group, while the proportion of M0 

Fig. 4. The nomogram predicting OS of SKCM patients. (A, B) Univariate and multivariate Cox regression analyses between ARG_score and OS. (C) 
Nomogram based on ARG_score, age, and stage. (D) The ROC curves of the nomogram in predicting 1-, 3-, and 5-year OS. (E) The calibration curves 
show the concordance between the predicted survival and actual survival. 
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Fig. 5. The relationship between ARG_score and TIME. (A) The correlation of ARG_score with 22 types of TIICs. (B–I) The infiltrating levels of 
different immune cells in the high and low ARG_score groups. (J) The distribution of immune, stromal, and ESTIMATE scores in high and low 
ARG_score groups. 
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macrophages, M2 macrophages, and resting memory CD4+ T were lower in low ARG_score group (Fig. 5A). Similarly, the ARG_score 
had evident negative associations with abundance of activated memory CD4+ T cells, CD8+ T cells, activated NK cells, M1 macro
phages, and plasma cells (Fig. 5B–F), and had evident positive associations with fraction of resting M0 macrophages, M2 macrophages, 
and resting memory CD4+ T (Figure G–I). In terms of TME scores, the ESTIMATE, stromal, and immune scores of the low ARG_score 
groups were evidently higher than those in the high ARG_score groups (Fig. 5J). 

3.5. Mutation landscape between different ARG_score groups 

Given that TMB is clinically significant in directing immunotherapy in SKCM patients, we sought to explore the intrinsic correlation 
between TMB and ARG_score. The low ARG_score group was found to have significantly higher TMB scores (Fig. 6A) and a negative 
correlation was observed between them (Fig. 6B). Kaplan-Meier analysis demonstrated that the low-TMB group represented a worse 
OS (Fig. 6C). Dividing SKCM patients into four subgroups according to ARG_score and TMB, we found that the prognostic value of 
ARG_score was not affected by TMB status (Fig. 6D). In addition, the waterfall plot in Fig. 6E and F revealed the differences in the 
genetic mutations between the high (88.94%) and low ARG_score groups (93.75%) in the training cohort. TTN was the most widely 
mutated gene in both groups, while the high ARG_score group had a TTN mutation rate of 68% (Fig. 6E), while the TTN mutation rate 
in the low ARG_score group was 75% (Fig. 6F). 

3.6. The role of ARG_score in immunotherapy 

Previous results suggest that ARG_score can influence immune cell infiltration. Therefore, we compared responses to immuno
therapy in patients with high and low ARG scores. Our results demonstrated that patients with high ARG_score have a higher levels of 
TIDE scores, which indicates that the low ARG_score patients were more sensitive to immunotherapy compared to the high ARG_score 
patients (Fig. 7A) (P < 0.05). Whether treated with PD-1 antibody alone or in combination with CTLA-antibody, patients with low 
ARG_score received higher IPS scores than those with high ARG_score (Fig. 7B–E). In addition, the association of 45 common immune 
checkpoints with the ARG_score of the training cohort was investigated, of which the expression of 42 immune checkpoints was 
significantly upregulated in the low ARG_score group, including CTLA4, PD-1, PD-L1 (Fig. 7F). 

Fig. 6. Mutation landscape between the two ARG_score groups. (A) The differences in the TMB with high and low ARG_score groups. (B) The 
relationship between ARG_score and TMB. (C) Kaplan-Meier survival analysis of OS in high and low TMB groups. (D) Kaplan-Meier curve to show OS 
of patients in different TMB and ARG_score groups. (E–F) Mutation rates and types of top 20 genes in the two ARG_score groups. 
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3.7. Functional enrichment analysis 

To investigate biologic features shared by the two ARG_score groups, a total of 1214 DEGs (|log2 FC| > 1 and FDR < 0.05) were used 
to perform functional enrichment analysis (Fig. 8A and B). The results of GO analysis suggested that the DEGs in different ARG_score 
groups were mainly enriched in signaling receptor activator activity, collagen-containing extracellular matrix, and external encap
sulating structure organization (Fig. 8C). The KEGG pathway analysis demonstrated that the DEGs were mainly enriched in cell 
adhesion molecules, T cell receptor signaling pathway, and Natural killer cell mediated cytotoxicity (Fig. 8D). 

3.8. Validating the expression of signature genes in melanoma cells 

To further validate the single expression of signature genes, qRT-PCR was performed in melanoma cell lines. Compared with PIG1 
cell lines, the expressions of AQP3, CDH3, GNLY, HCP5, HLA-DPB1, HLA-DPB2, HLA-F, LGI3, ST14, HLA-DQB2, and ZBED2 were 
downregulated in A375 and SK-MEL-1 cell lines, while the expressions of ANKRD22 and CD24 were upregulated in A375 and SK-MEL- 
1 cell lines (Supplementary Fig. 3). Then, the protein levels of ANKRD22, AQP3, CDH3, GNLY, HLA-DPB1, ST14, and HLA-DQB2 in 
normal skin and melanoma tissues were confirmed through the immunohistochemistry obtained from the Human Protein Atlas 
database (Supplementary Fig. 4), which was consistent with the results of RT-qPCR. 

Fig. 7. The correlation between ARG_score and response to immunotherapy. (A) Distribution of TIDE scores in the two ARG_score groups. (B–E) The 
IPS score and response to blockade with CTLA-4 antibody or/and PD-1 antibody. (F) The correlation between immune checkpoints and 
the ARG_score. 
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4. Discussion 

Anoikis is a type of programmed cell death that is essential for tissue homeostasis and development. However, abnormal execution 
of anoikis may represent a hallmark of cancer cells. Tumor cells often acquire anoikis resistance, which allows them to begin moving 
away from the primary lesion, thereby contributing to tumor invasion and migration, the formation of distant organ metastases, and 
the development of drug resistance [17–20]. Studies have shown that multiple pathways can lead tumor cells to acquire anoikis 
resistance [9,21–23], which highlights the concept of targeting ARGs to overcome SKCM progression and metastasis. However, there is 
currently a lack of systematic studies on the role of ARGs in the TME and the prognosis of SKCM. 

This study distinguished three distinct subtypes based on anoikis-related DEGs between SKCM samples and normal skin samples. 
Kaplan-Meier survival curves revealed that patients with cluster C3 had a favorable survival probability than the other two clusters. 
The characteristics of TME were quite different between the three clusters. Tumors were classified into three immunophenotypes: 
immunological-inflammatory, immune-desert, and immune-excluded based on the immune background of the tumor [24]. Cluster C3 
is characterized by increased immune cell infiltration in TME, including CD4+ T cells, CD8+ T cells, dendritic cells, and M1 macro
phages. The levels of these immune cells directly affect the onset of the adaptive immune response and correlate with a patient survival 
advantage [25–27]. The infiltration of these immune cells was lowest in cluster C2, and their level in cluster C1 was moderate. There is 
a tendency to classify Cluster C3 as an immune-inflammatory phenotype, and clusters C1 and C2 into immune-desert phenotype and 
immune-excluded phenotype, respectively. 

We further investigated the DEGs associated with the anoikis phenotype and established a prognostic scoring system in the training 
cohort to better assess the heterogeneity of individual anoikis patterns. No matter for the training cohort or testing cohort, the 

Fig. 8. Functional enrichment analysis of DEGs. (A) The heatmap of the expression profiles of DEGs between the two ARG_socre groups. (B) Volcano 
plot of DEGs. The orange dots indicate upregulated genes, the blue dots indicate downregulated genes, and the black dots indicate no significant 
genes. (C) The bar plot of GO analysis in DEGs. (D) The bubble plot of KEGG pathways analysis in DEGs. (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web version of this article.) 
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signature of ARGs showed robust ability to predict OS in SKCM patients. The predictive accuracy of the signature was internally and 
externally validated. In the multivariable Cox analysis, the ARG_score was proven to be a prognostic scoring system independent of 
other essential clinical features. Subsequently, we established a nomogram comprising ARG_score and clinical characteristics, and it 
had the latent force to be used as a quantitative tool to predict OS in SKCM patients, which had particular importance in clinical 
practice. 

Melanoma is a highly immunogenic tumor with crosstalk with immune cells in the TME [28,29]. Many immune cell types in the 
TIME significantly affect the prognosis of patients with SKCM [30]. Hence, we analyzed the relationship between ARG_score and 
immune landscape, including infiltrating immune cells and TME scores. We found that the ARG_score had significant negative cor
relations with immune-activating cells, including activated memory CD4+ T cells, CD8+ T cells, activated NK cells, and M1 macro
phages. On the contrary, the ARG_score had significant positive correlations with immune suppressive cells, such as M2 macrophages. 
Studies have confirmed the presence of tumor-infiltrating lymphocytes (TILs) is generally a positive prognostic indicator for SKCM [30, 
31]. The numbers, localization, and phenotypes of TILs can predict the efficacy of immunotherapy in SKCM [32–34]. CD8+ T cells play 
a central role in the adaptive immune response to cancer [35]. CD8+ T cell levels in primary SKCM tumors are associated with 
increased survival [36]. In metastatic melanoma, a high density of CD8+ T cells was also reported to be positively correlated with 
survival [37]. In addition, we also investigated the potential relationship between ARG_score and TME score and found lower stromal 
and immune scores in the high ARG_score group. This suggests that different ARG_score can have a huge impact on TME shaping. 

Anti-PD1/L1 antibodies have become a standard treatment for advanced melanoma and can effectively improve the prognosis by 
increasing infiltrating CD8+ T cells [38–40]. However, only a minority of patients have benefited from immunotherapy. Hence, we 
sought to assess whether the ARG_score could serve as a novel biomarker to predict patient responses to immunotherapy. We observed 
that high ARG_score patients had higher TIDE scores, suggesting that patients are more prone to immune escape. We further found that 
patients with low ARG_score had higher IPS scores than those with high ARG_score, whether treated with PD-1 antibody alone or in 
combination with CTLA antibody. In addition, the analysis of ICIs showed that most ICIs, such as CTLA4, PD-1, and PD-L1, were 
significantly upregulated in the low ARG_score group. TMB reflects the level of cancer mutation and the ability to produce neoantigen 
by malignancies [41]. The lower the TMB, the less likely that T cells will recognize and eradicate tumor antigens [41]. Our results 
showed higher TMB in the low ARG_score group, suggesting that patients are more likely to benefit from immunotherapy. Dividing 
SKCM patients into four subgroups according to ARG_score and TMB, we found that the prognostic value of ARG_score was not affected 
by TMB status. These results demonstrated that ARG_score may serve as a tool to screen SKCM patients suitable for immunotherapy. 

However, there were some shortcomings in our study. Firstly, our findings are based on different public databases, and the pre
dictive performance of ARG_score still needed to verify in the large-sample clinical cohort in the future. Secondly, all the findings in 
this manuscript were of speculation based on the transcriptional analyses using bioinformatics analysis, the exact mechanism of ARGs 
in SKCM need to be further investigated in vivo and in vitro. Nonetheless, this work still highlights the importance of TCGA genomic 
resources that would expand clinicians’ understanding of this lethal disease. 

5. Conclusions 

We performed a comprehensive and systematic analysis of anoikis-related gene expression in SKCM patients and screened three 
clusters with distinct TME characteristics and prognoses. We further established a prognostic signature that helps predict prognosis and 
response to immunotherapy in patients with SKCM. 
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