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Prenatal marijuana exposure (PME) is linked to neurobehavioral and cognitive impair-
ments; however, findings in childhood and adolescence are inconsistent. Type-1 can-
nabinoid receptors (CB1R) modulate fetal neurodevelopment, mediating PME effects 
on growth of functional circuitry sub-serving behaviors critical for academic and social 
success. The purpose of this study was to investigate the effects of prenatal marijuana 
on development of early brain functional circuitry prior to prolonged postnatal environ-
mental influences. We measured resting state functional connectivity during unsedated 
sleep in infants at 2–6 weeks (+MJ: 20 with PME in combination with nicotine, alcohol, 
opiates, and/or selective serotonin reuptake inhibitors; −MJ: 23 exposed to the same 
other drugs without marijuana, CTR: 20 drug-free controls). Connectivity of subcortical 
seed regions with high fetal CB1R expression was examined. Marijuana-specific dif-
ferences were observed in insula and three striatal connections: anterior insula–cere-
bellum, right caudate–cerebellum, right caudate–right fusiform gyrus/inferior occipital, 
left caudate–cerebellum. +MJ neonates had hypo-connectivity in all clusters compared 
with −MJ and CTR groups. Altered striatal connectivity to areas involved in visual 
spatial and motor learning, attention, and in fine-tuning of motor outputs involved in 
movement and language production may contribute to neurobehavioral deficits reported 
in this at-risk group. Disrupted anterior insula connectivity may contribute to altered 
integration of interoceptive signals with salience estimates, motivation, decision-making, 
and later drug use. Compared with CTRs, both +MJ and −MJ groups demonstrated 
hyper-connectivity of left amygdala seed with orbital frontal cortex and hypo-connectivity 
of posterior thalamus seed with hippocampus, suggesting vulnerability to multiple drugs 
in these circuits.
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inTrODUcTiOn

Marijuana (cannabis) is currently the most frequently used illicit 
drug during pregnancy. Prenatal prevalence is approximately 
5.2%, with significantly higher rates seen in younger pregnant 
women (Warner et al., 2014). Reports of developmental deficits 
in infancy, childhood, and adolescence associated with prenatal 
marijuana exposure (PME) suggest long-lasting effects on 
brain and behavior but results are inconsistent (Huizink, 2014). 
However, such behavioral findings may be confounded by post-
natal environmental factors (Fried and Smith, 2001) over the 
often long interval between exposure and behavioral assessment. 
Moreover, findings from earlier studies may not reflect current 
levels of toxicity associated with recent increases in consumption, 
potency, and newer marijuana delivery systems (e.g., e-joints) 
(Volkow et al., 2014). Nevertheless, some but not all, studies of 
PME report increased startles and tremors and reduced visual 
habituation in infancy (Fried, 1995, 1996), impaired short-term 
memory, verbal reasoning and attention and increased impulsiv-
ity and hyperactivity in early childhood, and deficits in abstract 
and visual reasoning, problem-solving, sustained attention (Fried, 
2002), visual-motor coordination (Willford et  al., 2010), and 
increased risk for illicit drug use (Spano et al., 2010; Calvigioni 
et al., 2014) in adolescence.

Prenatal marijuana exposure may contribute to such behav-
ioral effects by altering activity within the endocannabinoid 
(eC) system during in  utero brain development. The primary 
psychoactive compound in marijuana, Δ9-tetrahydrocannabinol 
(THC), is an exogenous cannabinoid which crosses the placenta 
(Behnke and Eyler, 1993) and blood–brain barrier (Schou et al., 
1977) to bind to type-1 cannabinoid receptors (CB1R). eC signal-
ing plays a critical role in control of neurogenesis and phenotypic 
specification of immature neurons (Harkany et al., 2008), and in 
establishment of the normal fetal neuronal network architecture 
[e.g., enabling projection axons to reach their specific targets, 
modulating growth cone structure, motility, and directionality 
(Gaffuri et  al., 2012)]. CB1R is present in both dendrites and 
growth cones of developing neurons, and additionally shapes 
network connections by regulating neurite growth and synap-
togenesis (Vitalis et al., 2008). In addition, THC binding to CB1R 
during gestation alters development of central dopamine (DA) 
and opioid neurotransmitter systems in brain areas regulating 
reward and motivation, which may increase vulnerability to 
future drug use and addiction in later life (Spano et al., 2007). 
Postmortem examination of human fetal brains with PME show 
disruption of components of developing DA and opioid systems 
in striatal (DA D2 receptor, opioid precursor genes) and meso-
corticolimibic (DA D2 receptor, mu and kappa opioid receptor 
expression) regions (Wang et  al., 2006). Some or all of these 
essential processes may be reactive to exogenous cannabinoids 
such as THC during gestation, which is a critical period when 
brain structure and connectivity undergo massive growth and 
organization (Knowles, 2012).

Human brain imaging studies show that functional net-
work activity underlies the typical cognitive and behavioral 
processes reportedly altered by PME, and that aberrant con-
nectivity is linked to atypical functional development in other 

disorders (Bressler and Menon, 2010; Insel, 2010). A small 
number of research groups have begun to document how and 
when these functional networks develop in typical neonates 
(Lin et al., 2008; Gao et al., 2009; Fransson et al., 2013), and 
have shown that prenatal exposure to other psychoactive 
drugs alters early structure (Grewen et al., 2014; Knickmeyer 
et  al., 2014) and connectivity (Salzwedel et  al., 2015). 
Animal studies show prenatal THC-induced disruption of 
neural connectivity that results in long-lasting alterations 
in structure and function of cortical circuitry (Tortoriello 
et al., 2014). However, very little is known about the effects 
of PME on early brain development in human infants, or on 
the formation of early functional networks that may underlie 
the cognitive and behavioral deficits reported in studies of 
exposed children.

The purpose of the current study was to examine the effects 
of PEM on functional connectivity in human infants at a time 
proximal to in  utero exposure, in order to limit the influence 
of postnatal environmental differences. We used resting state 
functional connectivity methods to compare 2- to 6-week-old 
infants with or without PME. Because a majority of mothers who 
use marijuana during pregnancy use other psychoactive drugs 
as well, we compared infants with PME in combination with 
alcohol, nicotine, opiates, and/or selective serotonin reuptake 
inhibitors (SSRI) (+MJ) to infants exposed to these same drugs 
but without marijuana (−MJ). A second control group consisted 
of drug-naïve control infants (CTR). The hippocampus, insula, 
amygdala, caudate, putamen, and thalamus were selected as seed 
regions, given their high levels of CB1R expression in both adult 
and fetal and neonatal brain (Glass et al., 1977), the critical signifi-
cance of these structures in early brain functional development 
[insula (Alcauter et al., 2015), thalamus (Alcauter et al., 2014)], 
and the reported disruptions of connectivity related to prenatal 
exposure to other psychoactive drugs (Salzwedel et al., 2015). We 
expected both marijuana-specific and drug-common functional 
connectivity alterations in neonates with corresponding drug 
exposures, based on the significant impact of PME (Filbey and 
DeWitt, 2012) and other drugs (Kravitz et al., 2015) on establish-
ment of fetal neural circuitry.

MaTerials anD MeThODs

Participants
Infants were participants in a study of the neurodevelopmental 
effects of prenatal cocaine and other drug exposures (Salzwedel 
et  al., 2015). The results reported here are based on a subset 
(N  =  63) of the full cohort which was specifically selected to 
explore the effects of PEM. All were from the non-cocaine-
exposed comparison groups. Infants (29 males and 34 females) 
were categorized into one of three groups: 20 marijuana positive 
(+MJ) with or without in  utero exposure to alcohol, nicotine, 
SSRI, and opiates (i.e., heroin, oxycontin, methadone, and/or the 
mixed agonist/antagonist, suboxone); 23 infants with in  utero 
exposure to some combination of the aforementioned drugs −MJ; 
20 age-matched drug-free controls (CTR). Infants were medically 
healthy singletons, born at ≥36 weeks gestation. Pregnant women 

http://www.frontiersin.org/Human_Neuroscience/archive
http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org


November 2015 | Volume 9 | Article 6013

Grewen et al. Prenatal marijuana and neonatal functional connectivity

Frontiers in Human Neuroscience | www.frontiersin.org

were recruited in the third trimester of pregnancy. Primary 
recruitment sites for drug-exposed mother–infant dyads were 
local residential and outpatient treatment programs for women 
with perinatal substance abuse and their children. In addition, 
both CTR and drug-exposed mothers were recruited from local 
obstetric clinics for low income women, and from local advertise-
ments and Craigslist.

Drug-Exposure Status
Prenatal drug exposure was assessed by maternal Time Line 
Follow Back (TLFB) interview (Sobell and Sobell, 1995) and 
confirmed by perinatal medical record review of prenatal urine 
toxicology or infant meconium at delivery (available for ~65% of 
participants). The TLFB is a psychometrically sound instrument 
for assessing alcohol/drug use, with test–retest reliability over 
periods from 1 to 12 months in varied populations (Vakili et al., 
2008; Robinson et al., 2014). The TLFB interview for detection 
of illicit cocaine, cannabis, and opiates appears to give highly 
accurate estimates of substance use in both clinical trials and 
prospective studies when confirmed by biological tests (urine, 
hair) (Hjorthoj et  al., 2012). Meta-analyses reveal lowest and 
highest weighted averages for accuracy of cannabis, 87.3% 
(95% confidence interval 86.9–87.7%) and 90.9% (90.5–91.4%); 
for cocaine, 79.3% (79.1–79.6%) and 84.1% (83.9–84.2%); for 
opiates 94.0% (93.5–94.5%) (Hjorthoj et  al., 2012). Similarly, 
TLFB reports of alcohol use have been confirmed as highly 
valid by transdermal testing (Simons et al., 2015). We also used 
strategies shown to enhance accuracy of self-reports, including 
assuring participants of confidentiality and informing them of 
the NIH Certificate of Confidentiality obtained by the study, use 
of clinically trained interviewer (licensed clinical social worker) 
and validation with biological measures (prenatal urine or 
meconium toxicology reports gleaned from medical records for 
all groups).

Sample characteristics evaluated for incorporation into 
subsequent analyses included gestational age at birth (days), 
postnatal age (gestational age at time of MRI scan in days since 
conception), birth weight, categorical drug exposure (Yes or 
No to Nicotine, Alcohol, SSRI, Opiates). Socioeconomic status, 
indexed by maternal education, and maternal depressed affect, 
indexed by the Edinburgh Postnatal Depression Scale (Murray 
and Carothers, 1990), were assessed at infant MRI visit. Maternal 
education was determined by self-report, and ranged from some 
high school to post-graduate work. Rank scores were coded as: 
some high school = 3, graduated from high school = 4, trade 
school or business college = 5, some college = 6, graduated with 
4-year college degree  =  7, and post-graduate work at univer-
sity = 8. Maternal education data was missing for 15 mothers, and 
maternal depression values were missing for 4 mothers. Group 
means were compared statistically using analyses of variance 
(ANOVA); group proportions were tested using the chi-square 
statistic (X2). Independent two-tailed t-tests were used to com-
pare differences in drug use frequency between +MJ and −MJ 
groups, with Satterwaite p-values reported when group values 
had unequal variances (Table S1 in Supplementary Material). 
This study was approved by the Biomedical Institutional Review 
Board of the University of North Carolina and all mothers 

granted their written informed consent for themselves and their 
infants.

Mr image acquisition
Infants were scanned during sleep without sedation at 2–6 weeks 
after birth. Infants were first fed and swaddled. When asleep each 
was fitted with ear protection and his/her head was secured in a 
vacuum-fixation device within the scanner. Each was monitored 
by sight, touch, and by pulse oximetry for heart rate and percent-
age of oxygen saturation throughout the scan. Data were collected 
using two scanners: scanner 1 = 3 T head only Siemens Allegra 
with circular polarization head coil (n =  47), Scanner 2 =  3 T 
Siemens Tim Trio with 32-channel head coil (n = 16) (Siemens 
Medical Solutions). The number of subjects per group per scanner 
varied (Scanner 1: 15 +MJ, 19 −MJ, 13 CTR; Scanner 2: 5 +MJ, 
4 −MJ, 7 CTR). Scanner assignment was included in statistical 
analyses. T1-weighted structural images were collected using a 
3D magnetization prepared rapid gradient echo (MP-RAGE) 
pulse sequence: repetition time (TR)  =  1820  ms, echo time 
(TE) = 3.75 ms, inversion time (TI) = 1100 ms, flip angle = 7°, 
144 slices, voxel size = 1 mm3. Resting state functional magnetic 
images (rsfMRI) were acquired using a T2*-weighted echo planar 
imaging (EPI) pulse sequence: TR = 2s, TE = 32 ms, 33 slices, 
voxel size = 4 mm3, number of volumes = 150 (5-min duration).

image Preprocessing
Functional data were preprocessed using the Functional MRI 
of the Brain (FMRIB) Software Library (FSL; version 4.1.9) 
(Jenkinson et  al., 2012). Steps included discarding the first 10 
volumes (20 s), slice-timing correction, rigid-body motion cor-
rection, spatial smoothing (Gaussian kernel FWHM of 6 mm), 
bandpass filtering (0.01–0.08 Hz), and regression of whole brain 
[global-signal regression (GSR)], white matter, CSF, and the six 
motion parameters. Data scrubbing was also implemented to 
reduce the effect of motion in rsfMRI analyses; scrubbing criteria: 
0.5% signal change and 0.5  mm frame-wise displacement. The 
number of volumes removed and residual frame-wise displace-
ment were compared using individual ANOVAs to ensure motion 
was consistent between groups. Number of volumes removed 
from each of the three groups was statistically indistinguishable: 
FVolumes(2,62)  =  0.28, p  =  0.76, +MJ 7.95  ±  3.30 (SEM), −MJ 
8.09 ± 2.59, CTR 5.50 ± 2.18; Residual frame-wise displacement; 
FFD(2,62) = 0.63, p = 0.54, +MJ 0.15 ± 0.03, −MJ 0.12 ± 0.01, CTR 
0.13  ±  0.02. FSL and the Analysis of Functional NeuroImages 
software suite [AFNI version 2011-12-21-1014; (Cox, 1996)] 
were used to process the structural images. Structural image 
skull stripping was done using a two-step process. First, FSL-bet2 
was used to perform an initial skull strip, and then the result was 
bolstered using the AFNI script @NoisySkullStrip.

Alignment of functional data into a common space involved 
two steps: (1) within-subject rigid alignment [FSL FLIRT (for 
FMRIB Linear Image Restoration Tool)] between functional 
and T1-weighted images; (2) non-linear [FSL FNIRT (for 
FMRIB Non-linear Image Registration Tool)] registration of the 
T1-weighted images to a T1-weighted template image acquired 
from an independent subject scanned at 2  weeks of age. The 
combined transformation field (linear plus non-linear) was used 
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to warp the preprocessed rsfMRI data to the template space. 
Alignment was inspected visually for quality across all subjects.

Functional connectivity analyses
Standard seed-based whole-brain functional connectivity 
analyses were carried out using the temporal correlation method 
(Biswal et  al., 1995). The amygdala, hippocampus, putamen, 
anterior/posterior insula, caudate, and anterior/posterior 
thalamus were used as seed regions in the analyses. Except for the 
thalamus and insula, all other seed regions were defined using the 
Harvard–Oxford probabilistic atlas provided with FSL (Desikan 
et al., 2006). The atlas was warped into the study-specific template 
space using 4D HAMMER (Shen and Davatzikos, 2004). Masks 
from one of our previous functional parcelation studies of the 
insula (Alcauter et  al., 2015) were used to define an anterior 
and a posterior insula seed given the reported functional seg-
regation. Similarly, an anterior and a posterior thalamus seeds 
were defined due to the observed biases in their functional 
connectivity to frontal and sensorimotor regions of the brain, 
respectively. Specifically, we determined the center of mass of 
the previously defined anterior and posterior thalamic cluster 
with specific cortical connections and defined the seed regions 
as the center voxel plus the face-connected neighboring voxels. 
The posterior thalamus definition included two seeds since the 
original posterior thalamus parcelation contained two largely 
hemi-symmetrical clusters. Next, the average time series of each 
seed was extracted and used to perform whole-brain correlation 
analyses. The correlation measures were Fisher-z transformed and 
compared within and between groups (Chen et al., 2014). Within 
groups, one-sample t-tests were applied to generate group-spe-
cific functional connectivity maps. Between groups, multivariate 
analysis of variance modeling was used to detect voxel-wise 
differences in functional connectivity at the whole-brain level 
(i.e., previous functional connectivity maps were not used to 
mask the data) while controlling for other explanatory variables: 
gender, scanner, gestational age, birth weight, and postnatal age 
at scan (mean-centered continuous variables). Significance was 
determined using a combined approach (Forman et  al., 1995), 
which imposes a minimum p-value (i.e., p <  0.01) and cluster 
size (32 voxels) threshold to correct for multiple comparisons 
(α <  0.05) at the whole-brain level. Between-group differences 
included the contributions of both positive connectivity and 
negative connectivity. For the descriptions of results, hyper- and 
hypo-connectivity are used to represent positive or negative shifts 
in connectivity relative to CTR, respectively. However, we also 
use the term “disrupted connectivity” to describe both types of 
deviations from normal.

For each identified cluster, the mean Z-scores were extracted 
and additional group-wise comparisons were carried out using 
the ANOVA method (MATLAB–anovan). First, the model 
used in the 3dMVM analysis was repeated for the cluster-wise 
averages. Then, the model was expanded to include maternal 
education and depression levels (n  =  46), in order to test the 
effects of all potential explanatory variables. Here, continuous 
variables were not mean-centered in order to explicitly model 
the contributions of the combined within- and between-group 
differences to the observed variations in functional connectivity. 

Significant ANOVA main effects (p  ≤  0.05, Dunn–Sidak cor-
rected for number of seed regions N = 14) were followed up with 
post  hoc comparisons (MATLAB–multcompare, Dunn–Sidak 
corrected) on the population marginal means in order to identify 
significant (p ≤ 0.05) pair-wise differences. In order to shed light 
on the potential effects of GSR in this study and to gain a better 
understanding of relative group differences, two additional analy-
ses were implemented. Specifically, the cluster-level analyses were 
repeated using data with, (1) head-motion regression only (i.e., 
no CSF, WM, or GSR regression), and (2) head-motion regression 
+post hoc standardization (mean subtraction; see Yan et al., 2013).

Drug specificity and interactions
For each detected cluster showing group differences, additional 
post hoc ANOVAs were performed to test the specificity of mari-
juana effects within the drug-exposed sample. Specifically, we 
constructed a model with categorical drug exposures (marijuana, 
nicotine, alcohol, SSRI, opiates) as the main effects, thus, allow-
ing us to test the potential effects of all drugs on the detected 
functional connectivity alterations for each cluster.

resUlTs

Participant characteristics
Summary statistics for each group are presented in Table  1. 
Gender, gestational age at birth, postnatal age at MRI, birth 
weight, and maternal depression levels were similar for all 
three groups. Maternal education differed significantly between 
groups, with +MJ < −MJ < CTR. The distribution of categorical 
non-marijuana drug use did not differ between +MJ and −MJ 
groups. A large proportion of +MJ and −MJ groups reported 
prenatal cigarette-smoking (85, 87% respectively) and alcohol 
use (50, 30%, respectively) in at least one trimester of pregnancy, 
with similarly smaller rates of prenatal SSRI and opiate use. Table 
S1 in Supplementary Material displays the number of users and 
the frequency of use of each drug in +MJ and −MJ groups by 
trimester and in the postnatal period prior to MRI. No significant 
differences were observed between +MJ and −MJ groups for 
cigarettes smoked per day or alcoholic drinks consumed per 
week in any trimester or in the postnatal period prior to MRI, 
and both groups appeared to have fewer users and less drug use 
as pregnancy progressed. The small number of opiate users and 
heterogeneity of use in each group prevented valid statistical 
comparison; however, opiate use was more prevalent in the −MJ 
group (+MJ = 1, −MJ = 5).

Whole-Brain Functional connectivity
Whole-brain functional connectivity maps (threshold α = 0.05; 
voxel-wise p ≤ 0.01 + cluster size = 32 voxels) generated using 
the amygdala, caudate, thalamus, hippocampus, putamen, 
and insula as seed regions (see Figure S1 in Supplementary 
Material for seed locations) were visualized on high-resolution 
anatomical reference images and qualitatively compared across 
groups (Figure 1). Note, connectivity analyses were conducted 
using independent left and right hemisphere seeds for all 
regions except for the thalamus and insula that were segregated 
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according to anterior and posterior sub-divisions (see Figure S2 
in Supplementary Material for maps not depicted in Figure 1). 
In general, connectivity associated with the left and right hemi-
spheres for each region showed a high degree of similarity in 
terms of overall pattern and laterality. Qualitatively, there were 
a number of potential differences in functional connectivity 
patterns between groups that ultimately showed good corre-
spondence at the cluster level (Figure 2). For instance, in both 
drug-exposed groups (± MJ) negative connectivity between 
the amygdala and orbital frontal cortex was distinctly lacking 
compared to the CTR group (Figure  1 ↑1). +MJ infants also 
showed a distinct lack of positive connectivity between caudate 
and cerebellum/cerebellar vermis regions for both left and right 
seed regions (Figure 1 ↑2). Furthermore, negative connectivity 
between the caudate and occipital-fusiform areas appeared 
enhanced in the +MJ group (Figure 1 ↑3), and to a lesser degree 
in −MJ infants. Positive connectivity associated with the pos-
terior thalamus appeared reduced in the drug-exposed groups 
(Figure 1 ↑4), particularly in more centrally located subcortical 
structures in and near the hippocampus. −MJ infants showed 
stronger negative connectivity between the posterior thalamus 
and occipital-lingual cortices (Figure  1 ↑5). Anterior insula–
cerebellum connectivity was hypo-connective in the +MJ group 
(Figure 1 ↑6). Overall, +MJ neonates showed less bilateral posi-
tive connectivity for many of the seed regions tested (also see 
Figure S1 in Supplementary Material).

significant clusters with group 
Differences
Based on voxel-wise ANOVA analysis, seven clusters were 
detected with significant between-group differences (Figure 2A 
α = 0.05: group-wise p ≤ 0.01, cluster size ≥32 voxels) after con-
trolling for gestational age at birth, postnatal age at MRI, birth 
weight (continuous covariates mean-centered within-groups), 
gender, and scanner. The left anterior insula and right/left caudate 
seed regions yielded group-wise clusters that primarily localized 
to the cerebellum/cerebellar vermis. The right caudate also 
produced a cluster in the occipital-fusiform cortex. Group-wise 
differences for the left amygdala materialized as a large cluster in 
the orbital frontal or prefrontal cortices. The posterior thalamus 

TaBle 1 | Participant characteristics.

+MJ −MJ cTr p

Mean se Mean se Mean se

Gestational age (days) 280 ± 1 279 ± 2 280 ± 1 0.94

Postnatal age at MRI (days) 304 ± 2 305 ± 2 306 ± 2 0.89

Birth weight (pounds) 7.51 ± 0.27 7.51 ± 0.24 7.9 ± 0.26 0.50

Maternal depressed mooda 4.74 ± 1.2 5.83 ± 1.51 3.4 ± 0.78 0.37

Group n (total, male, female) 20 12 8 23 7 16 20 10 10 0.14

Other drug exposures n % n % χ2 p

Nicotine 17 0.85 20 0.87 0.034 0.85

Alcohol 10 0.50 7 0.30 1.713 0.19

SSRI 2 0.10 3 0.13 0.096 0.76

Opiates 1 0.05 5 0.22 2.497 0.11

aTotal score on Edinburgh Postnatal Depression Scale at MRI visit.

seed yielded two clusters, one centrally located encompassing 
the hippocampus and another in the occipital-lingual cortices. 
Table 2 lists each cluster and the degree of overlap (>10%) with 
different regions using the AAL nomenclature. No significant 
clusters were detected for the anterior thalamus, left/right poste-
rior insula, right anterior insula, or putamen seeds.

Significant group differences were further evaluated at the 
cluster level using post  hoc ANOVA (Figure  2B). Significant 
group effects were maintained at the whole-cluster level 
[ANOVA; FGroup (2,62) p < 0.001] for: right caudate–cerebellum 
F = 14.96, ηp

2 0 35= . , right caudate–occipital/fusiform F = 15.20,  
ηp

2 0 36= . ; left caudate– cerebellum F = 14.16, ηp
2 0 34= . ; left amyg-

dala-orbital frontal F = 14.16, ηp
2 0 34= . ; posterior thalamus–hip-

pocampus FGroup = 16.02, ηp
2 0 37= . ; posterior thalamus–occipital/

lingual FGroup = 15.84, ηp
2 0 37= . ; left anterior insula–cerebellum 

FGroup = 14.96, ηp
2 0 35= . . Subsequent group comparisons revealed 

both marijuana-specific and drug-common effects.

Marijuana-specific effects
+MJ-specific effects comprised four of the seven significant 
clusters, which are depicted in the uppermost four bar graphs 
of Figure 2B. +MJ neonates were significantly hypo-connective 
relative to the −MJ and CTR groups, while −MJ and CTR 
were statistically indistinguishable (p  >  0.05) for connectiv-
ity between: right caudate–cerebellum (+MJ vs. −MJ/CTR 
p  <  0.001); right caudate–occipital/fusiform (+MJ vs. −MJ 
p  =  0.003, +MJ vs. CTR p  <  0.001); left caudate–cerebellum 
(+MJ vs. −MJ/CTR p < 0.001); left anterior insula–cerebellum 
(+MJ vs. −MJ p  <  0.001, +MJ vs. CTR p  =  0.003). Post  hoc 
analyses with all categorical drug-exposure effects in the model 
revealed significant (corrected) marijuana-specific effects for 
each of these clusters (Table S2 in Supplementary Material). The 
Opiate drug category was the only non-marijuana drug type 
to reach marginal significance: left anterior insula–cerebellum 
(p < 0.05 uncorrected).

Drug-common and Other Drug effects
The left amygdala–orbital frontal and posterior thalamus–hip-
pocampus clusters showed a drug-common effect, where both 
drug-exposed groups differed significantly (corrected) relative to 
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the CTR group and were indistinguishable from each other (+MJ 
vs. −MJ p > 0.05). The left amygdala seed was hyper-connective 
with orbital frontal cortex (±MJ vs. CTR p < 0.001), showing sig-
nificantly greater positive functional connectivity compared with 
CTR. The posterior thalamus seed was hypo-connective with 
hippocampus (+MJ vs. CTR p < 0.000, −MJ vs. CTR p = 0.002), 
showing significantly less positive functional connectivity com-
pared with CTR. The posterior thalamus-occipital/lingual was the 
only cluster demonstrating a specific effect (hypo-connectivity) 
for the −MJ exposure group (+MJ vs. −MJ p < 0.001, −MJ vs. 
CTR p < 0.001, +MJ vs. CTR p = 0.573).

FigUre 1 | neonatal functional connectivity and prenatal marijuana exposure. Functional connectivity for different seed regions (top to bottom) and infant 
groups (left to right): marijuana positive (+MJ) with or without in utero exposure to alcohol, nicotine, SSRIs, and opiates; infants with in utero exposure to some 
combination of the aforesaid drugs minus marijuana (−MJ); and age-matched drug-free controls (CTR). Data threshold set using the combined approach: α = 0.05: 
voxel-wise p ≤ 0.01, cluster size = 32 voxels. Pseudo-coloring (see color bar at bottom) is based on Fisher’s Z-transformation of the temporal correlation between 
each voxel and the seed region. Data visualized in the axial view on a subset of high-resolution T1-weighted reference images.

non-Drug group effects
Significant main effects for scanner and gender were detected in 
two clusters [ANOVA F(1,62); p < 0.05 corrected]: left caudate–
cerebellum, Fscanner = 8.66 p = 0.005, ηp

2 0 14= .  (Allegra > Trio); 
posterior thalamus–occipital/lingual, Fgender  =  14.47 p  <  0.001, 
ηp

2 0 21= .  (females  >  males). Group × non-group interactions 
for these effects were minimal (see Figure S3 in Supplementary 
Material). Marginal main effects for gender and birth weight 
were also detected for two clusters (p ≤ 0.05 uncorrected): left 
amygdala-orbital frontal, FGender  =  4.02 p  =  0.050, ηp

2 0 07= . ; 
posterior thalamus–occipital/lingual, Fbirth weight = 5.18 p = 0.027, 
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FigUre 2 | localization of group-level (+MJ, −MJ, cTr) functional connectivity differences at the cluster level and comparisons by group. (a) 
Clusters depicted on the high-resolution anatomical reference images. Clusters were detected using the combined threshold approach controlling for gestational 
age, birth weight, scan age, gender, and scanner (α < 0.05): multivariate group-wise difference (+MJ, −MJ, CTR) p ≤ 0.01, minimum number of voxels = 32, 
nearest neighbor clustering (NN) = 3. (B) Comparisons of functional connectivity within cluster by neonatal group. (*) indicates significant (p ≤ 0.05 Dunn–Sidak 
corrected) pair-wise differences between groups while accounting for participant characteristics. Data plotted as mean ± SEM.
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ηp
2 0 09= . , however, these effects were non-significant after cor-

recting for multiple comparisons.
The effects of maternal education and depression, together with 

other control variables, were tested in a subsample with complete 
data for these variables (N = 46). Main effects and pair-wise group 
differences were found to be largely consistent with those reported 
for the reduced model (see Table S3 in Supplementary Material). 
However, with this smaller sample, group main effects for the left 
amygdala–PFC and posterior thalamus–hypothalamus clusters 
did not survive correction but reached marginal significance at 
p =  0.016 and p =  0.013, respectively. In this expanded model, 
maternal education was the only caregiver trait to reach statistical 
significance [left amygdala–orbital frontal cluster FEDU(1,45) = 6.05, 
p = 0.019, ηp

2 0 14= . ]. A linear regression analysis revealed a sig-
nificant negative relationship between functional connectivity and 
maternal education (see Figure S4 in Supplementary Material); 
Z = −0.0653 (EDU) +  0.39, r = −0.47 p <  0.001 (connectivity 
decreased with greater maternal education).

effects of global signal regression
For each of these seven clusters, group differences were re-
evaluated using data without GSR (i.e., only regressing out 
motion parameters) and, similarly, motion regressed data with 
post  hoc standardization (mean connectivity subtraction). 
Group-differences and trends were highly consistent with those 
reported using data with GSR (Figure S5 in Supplementary 
Material) although some clusters did not reach statistical signifi-
cance (three out of seven and four out seven, for the two methods, 
respectively).

DiscUssiOn

We examined the neural correlates of PEM in the neonatal 
period, focusing on functional connectivity of seed regions with 
high in  utero CB1R expression. We found marijuana-specific 
reductions in bilateral caudate and left anterior insula functional 
connectivity with cerebellum, and right caudate functional con-
nectivity with occipital/fusiform regions compared with both 
drug-free and non-marijuana drug-exposed groups. By contrast, 
both drug-naïve and non-marijuana drug-exposed infants dem-
onstrated co-activations consistent with normative functional 
connectivity between caudate and cerebellum reported in healthy 
adults (Postuma and Dagher, 2006; Di Martino et al., 2008; Barnes 
et  al., 2010). Likewise, the lack of anterior insula–cerebellum 
connectivity in CTR infants we observed in this study replicates 
our earlier findings in a separate sample of typical unexposed 
neonates (Alcauter et  al., 2015). To our knowledge, this study 
is the first to detect unique alterations in the brain’s functional 
organization in the earliest weeks of life in infants with PEM.

Animal studies demonstrate that prenatal exposure to even 
small amounts of THC disrupts eC signaling during critical 
periods of brain development, and that PME alters postnatal 
locomotor activity, cognitive function, and emotional behavior, 
as well as enhances sensitivity to psychoactive drug use in 
adulthood (Spano et al., 2007; Campolongo et al., 2011). CB1Rs 
comprise the largest class of G-protein-coupled receptors in the 
brain (Freund et  al., 2003), with large proportions located in 

both basal ganglia and cerebellum (Tsou et al., 1998). CB1R is 
functional and highly expressed early in fetal brain development, 
even prior to synapse formation. This expression dynamically 
changes across time and location (e.g., early fetal expression is 
present in multiple structures, including caudate-putamen, hip-
pocampus, cerebellum, and cortex, followed by later expression 
in fetal white matter tracts) (Mato et  al., 2003). In addition to 
guiding developing structure and organization, endogenous can-
nabinoids are also important neuromodulators of (presynaptic) 
activity in central neurotransmitter systems essential for normal 
fetal brain development including GABA (Freund and Hajos, 
2003), glutamate (Monory et al., 2015), norepinephrine (Cathel 
et al., 2014) opioids (Wang et al., 2006), and DA (Sanudo-Pena 
et al., 1999; Dinieri and Hurd, 2012).

Marijuana-specific effects
Bilateral Caudate–Cerebellum/Vermis
The caudate, together with the putamen, comprise the stria-
tum, which is the area where approximately 90% of brain DA 

TaBle 2 | cluster aal Overlap.

(%)

right caudate–fusiform/occipital (70 voxels)
O3D Occipital_Inf_R 0.25
FUSID Fusiform_R 0.25
V1D Calcarine_R 0.12
LINGD Lingual_R 0.10
O2D Occipital_Mid_R 0.10

right caudate–cerebellum (46 voxels)
CERCRU2G Cerebellum_Crus2_L 0.20
CERCRU2D Cerebellum_Crus2_R 0.15
VER8 Vermis_8 0.15
CER8D Cerebellum_8_R 0.13
CER8G Cerebellum_8_L 0.10
CER9D Cerebellum_9_R 0.10

left caudate–cerebellum (35 voxels)
CER8D Cerebellum_8_R 0.25
CERCRU2G Cerebellum_Crus2_L 0.16
CERCRU2D Cerebellum_Crus2_R 0.13
CER8G Cerebellum_8_L 0.13
VER4_5 Vermis_4_5 0.13

left anterior insula–cerebellum (47 voxels)
CERCRU2G Cerebellum_Crus2_L 0.40
CER8D Cerebellum_8_R 0.23
CERCRU2D Cerebellum_Crus2_R 0.13
CER8G Cerebellum_8_L 0.10

right amygdala–frontal (49 voxels)
F2OD Frontal_Mid_Orb_R 0.33
FMOD Frontal_Med_Orb_R 0.15
F1OD Frontal_Sup_Orb_R 0.12
F3OD Frontal_Inf_Orb_R 0.12

Posterior thalamus–hippocampus (39 voxels)
HIPPOD Hippocampus_R 0.33
PARA_HIPPOD ParaHippocampal_R 0.28
FUSID Fusiform_R 0.17
CER3D Cerebellum_3_R 0.11

Posterior thalamus–visual/lingual (100 voxels)
V1G Calcarine_L 0.47
LINGG Lingual_L 0.34
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is released (Kravitz et  al., 2015). Rodent models demonstrate 
that PME alters striatal gene expression of the DA D2 receptor 
(D2R) (DiNieri et al., 2011). Taken together with the reportedly 
high striatal CB1R concentration (Glass et al., 1977; Herkenham 
et  al., 1991; Hermann et  al., 2015), D2R–CB1R interactions 
(Anderson et  al., 1996) following repeated THC exposure are 
likely to disrupt developing motor control circuits and may 
contribute to the current finding of reduced functional connec-
tivity between caudate and cerebellar regions. Both structures 
play important roles in integrating and coordinating motor 
and non-motor activity, language, memory, and learning. The 
cerebellum, which has widespread functional connectivity, pri-
marily to association cortices (Buckner et al., 2011), is thought 
to calibrate and coordinate, rather than initiate, movements. 
eC signaling is necessary for cerebellum-dependent discrete 
motor learning (Kishimoto and Kano, 2006), and for motor 
adaptation to changing environmental cues/circumstances (e.g., 
adjusting responses to a moving target). Structurally, bilateral 
caudate–cerebellar connectivity has been documented with 
diffusion tensor imaging (DTI) methods (Leh et  al., 2007), 
however, the striatum also has widespread reciprocal connectiv-
ity via numerous polysynaptic cortical-striatal loops that may 
account for correlated functional activations in the absence of 
monosynaptic anatomical linkage (Kandel et al., 2012). Notably, 
reduced caudate–cerebellar functional connectivity is reported 
in patients with Parkinson’s disease, a disorder characterized by 
degeneration of DA nigrostriatal neurons, and by tremor and 
later cognitive deficits (Hacker et  al., 2012). Conversely, cau-
date–cerebellar connectivity is increased in heroin-dependent 
adults (Wang et al., 2013). Therefore, the PME-linked caudate–
cerebellar alterations in connectivity we observed may be related 
to aberrant eC influence on developing striatal dopaminergic 
afferents or receptor expression, and may partially explain the 
tremors and enhanced startle responses reported in infants with 
PME (Fried and Makin, 1987; Fried and O’Connell, 1987), as 
well as the impaired visual-motor coordination observed in 
prenatally exposed adolescents (Willford et al., 2010).

Left Anterior Insula–Cerebellum
We identified a distinct pattern of relative hypo-connectivity 
between the anterior insula and the cerebellum in +MJ infants 
compared with −MJ and CTR groups. Although well-documented 
in the adult brain (Cauda et  al., 2012), anterior insula–cerebel-
lar connectivity was not detected in an earlier sample of typical, 
unexposed neonates (Alcauter et al., 2015), and this finding is also 
demonstrated in the CTR group in the current study (see Figures 1 
and 2 CTR). The insula is the earliest cortical structure to develop 
in utero, suggesting an important role in development and early 
survival (Afif et al., 2007). Notably, fMRI reveals that the left insula 
is activated in newborn infants in response to milk odor (Arichi 
et al., 2013), which cues the infant to orient and/or move toward 
mother’s breast for feeding (Varendi and Porter, 2001). As early as 
the neonatal period, the insula exhibits widespread connectivity, 
serves as a hub for developing networks and displays anterior-
posterior functional specialization (Gao et  al., 2011; Alcauter 
et  al., 2015). In adults, anterior insula functional activation has 
been related to various aspects of self-control including motor 

impulsivity and reactive aggression (Smith et al., 2004; Dambacher 
et al., 2015). The insula is thought to link visceral states to con-
scious feelings and motivations (Noel et al., 2013), and integrates 
this interoceptive awareness (Noel et  al., 2013; Wiebking et  al., 
2014) with reward properties and salience estimates to compute 
the value of immediate vs. delayed gratification responses (Volkow 
and Baler, 2015). These processes are fundamentally linked to drug 
abuse and addiction (Volkow and Baler, 2015), which is consist-
ent with the enhanced risk for adolescent/adult drug abuse and 
addiction in both humans and animals with prenatal cannabinoid 
exposure (Spano et al., 2007, 2010).

Right Caudate–Occipital Fusiform
We also found hypo-connectivity between right caudate and 
right occipital fusiform in the PME group in contrast −MJ and 
CTR groups. Fusiform gyrus has been related to recognition 
of faces, words, and emotional content in facial expressions. 
Right fusiform activation, specifically, is linked to determining 
whether a “face-like” image is truly a face (Massachusetts Institute 
of Technology, 2012), and to discrimination of facial identity 
within a complex visual presentation (Hermann et  al., 2015). 
Reduced local resting state connectivity within the right fusiform 
is reported in adults with autism spectrum disorder (Itahashi 
et al., 2015), a disease characterized by impaired perception of 
facial social cues. The disrupted caudate–fusiform connectiv-
ity we observed may compromise visual-spatial processing or 
motion perception and increase risk for the maladaptive social-
emotional behaviors reported in individuals with PME (Gray 
et al., 2005; Day et al., 2011). Interestingly, negative correlations 
between dorsal caudate and fusiform are reported in non-drug 
using adults (Barnes et  al., 2010), suggesting that the negative 
connectivity we observed between right caudate and fusiform 
areas may reflect a developmental acceleration for infants with 
PME. However, exact mechanisms and behavioral implications 
of this observation warrant further investigation.

Drug-common effects
In addition to PME, prenatal nicotine, alcohol, and opiates are 
well-known neurodevelopmental teratogens. It is important to 
note that the majority of infants in both +MJ and −MJ groups were 
exposed to maternal cigarette-smoking and a large proportion to 
prenatal alcohol consumption. Moreover, although few subjects 
were opiate users, opiates were more prevalent in the −MJ group. 
Therefore, the observed drug-common effects may be partially 
due to these prenatal exposures alone or in interaction with 
other drugs and/or PME. However, post hoc analyses designed 
to specifically test the effects of individual drug exposures dem-
onstrated both marijuana-specific and non-specific findings that 
largely parallel the original group-based separation of clusters 
into marijuana specific (+MJ vs. −MJ/CTR) and drug-common 
(± MJ vs. CTR), respectively. Mainly, clusters with +MJ specific-
ity only displayed significant effects attributable to marijuana but 
not to other drugs; clusters with “drug-common” effects showed 
little drug-specific effects. Thus, the minor differences in drug-
exposure profiles (including opiate use in the −MJ group) appear 
to have minimal effects individually on the observed differences 
in functional connectivity. Still, future studies with larger samples 
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and more detailed drug-exposure assessments are needed to 
further tease apart the potential contributions of different drug 
types, interactions between drugs, and dose-related effects.

Left Amygdala-OFC
Both +MJ and −MJ groups demonstrated altered connectivity of 
amygdala to medial prefrontal/orbital frontal cortex (increased) 
and of posterior thalamus to hippocampal/medial temporal 
regions (decreased) compared with the drug-naïve comparison 
group. Importantly, the medial prefrontal/OFC cluster associated 
with the left amygdala seed partially overlapped with a cluster 
detected in our previously reported study of prenatal drug expo-
sure in the larger sample, which included infants with prenatal 
cocaine, marijuana, nicotine, alcohol, opiate, and SSRI expo-
sures. This finding also parallels reports of increased functional 
connectivity between amygdala-OFC in chronic heroin users 
compared with drug-free adults (Ma et al., 2010). Rodent models 
demonstrate that PME alters opioid precursors in the amygdala 
and increases opioid seeking in adulthood (Spano et al., 2007). 
Similarly, prenatal nicotine increases proliferation of enkephalin-
producing cells in the central nucleus of the amygdala as well as 
increasing intake of nicotine and alcohol when offspring reach 
adulthood (Chang et  al., 2013), and prenatal alcohol alters the 
moderating influence of DA on GABA in the basolateral amygdala 
(Diaz et al., 2014). Taken together, these findings suggest that the 
hyper-connectivity between the amygdala and prefrontal regions 
we observed may represent a final common signature for prenatal 
exposure to a number of psychoactive drugs, and implies risk for 
impaired prefrontal inhibition of amygdala responses (Salzwedel 
et al., 2015).

Posterior Thalamus Seed
The posterior thalamus seed also produced a non-specific drug-
common alteration of connectivity with a hippocampal/medial 
temporal cluster. eC signaling in the CA1 region by both interneu-
ron and pyramidal cells regulates activity and network patterns 
in the developing hippocampus, and this homeostatic control is 
disrupted by prenatal exposure to cannabinoids (Bernard et al., 
2005). However, rodent models also link prenatal nicotine to 
increased NMDA and reduced nicotinic acetylcholine receptor 
expression in the hippocampus. These changes are accompanied 
by long-lasting impairment in learning and memory (Li et  al., 
2015), which parallel findings of deficits in verbal memory in 
human children exposed to prenatal nicotine (Fried, 1995; Fried 
et al., 1997). Similarly, prenatal alcohol causes persistent reduc-
tions in hippocampal CA1 and CA3 neuron number and volume 
that increases with age in non-human primates (Burke et al., 2015).

neuroimaging studies of PMe
Few neuroimaging studies of PME have been reported and are 
limited to subjects tested in late childhood and adolescence. 
Notably, greater PEM has been linked to alterations in functional 
activity in young adults, in brain areas involved in spatial working 
memory and spatial localization, including parahippocampal and 
cerebellar (increased) and right medial, lateral, and ventral pre-
frontal regions (decreased) during a visuospatial working memory 
task (Smith et al., 2004, 2006). In addition, marijuana use in the 

absence of prenatal exposure is similarly associated with altered 
connectivity and CB1R expression. Chronic use in adolescence is 
related to altered functional connectivity in prefrontal networks 
involved in inhibitory control and executive function (Filbey and 
Yezhuvath, 2013) and to enhanced prefrontal–cerebellar connec-
tivity at rest and during an attentional control task (Behan et al., 
2014). Marijuana-dependent adults show region-specific CB1R 
down-regulation that is reversible with abstinence (Hirvonen 
et al., 2012), with greatest down-regulation reported in the cau-
date, putamen, hippocampus, and nucleus accumbens (Villares, 
2007). PME-linked structural differences include impaired white 
matter microstructure in left frontal callosal projection fibers in 
10-year-olds with polydrug exposure, with greatest deficits in 
those with both PME and prenatal cocaine (Warner et al., 2006). 
By contrast, findings of reduced cortical and subcortical gray 
matter volume reported in 10- to 14-year-olds with PME were 
no longer significant after adjusting for other drug exposures, 
age, and gender (Rivkin et al., 2008). When taken together, these 
diverse findings suggest that marijuana use alters brain structure, 
function, and connectivity, and that the effects of PME may per-
sist into adulthood. However, no studies, to date, have described 
the effects of prenatal exposure on brain structure or function in 
neonates, infants, or young children.

strengths and limitations
A major strength of the current study is that brain imaging was 
done in the first weeks of life, thereby minimizing the effects of 
postnatal environment to a greater extent than existing reports in 
which imaging was done years after birth. Confidence in our PME-
related findings is enhanced by the inclusion of two comparison 
groups  –  one completely drug-free, the other relatively well-
matched for sample characteristics, including prenatal exposure 
to psychoactive drugs other than marijuana. Another advantage 
is that infants described in this study were born more recently 
(between 2008 and 2014) than subjects in the majority of existing 
reports, and therefore, may more accurately reflect current toxic-
ity levels associated with use in pregnant women. This is relevant 
because marijuana consumption and perceptions of its safety are 
increasing with the recent trend of legalization (SAMHSA, 2013). 
Potency has increased six- to sevenfold since the 1970s (Warner 
et  al., 2014), and THC concentration has increased on average 
from 3.4% in 1993 to 8.8% in 2008 (Mehmedic et  al., 2010). 
Limitations of the study include the relatively small sample size, 
and the unavoidable replacement of the MR scanner prior to study 
completion, which resulted in non-random assignment of infant 
MRI acquisition on two separate Siemens 3 T scanners. However, 
we did control for scanner in all analyses. Drug group differences 
in connectivity patterns in the model showing a significant scan-
ner effect (left caudate–cerebellum) were directionally similar for 
both scanners (Figure S2A in Supplementary Material), and no 
scanner-by-group interaction was found (Fgroup = 12.01 p < 0.001, 
Fscanner  =  8.89 p  =  0.004, and Fgroup*scanner  =  0.95, p  =  0.400). To 
address the question of scanner effects more definitively, we 
explicitly tested each cluster for group-by-scanner interactions 
and found none present. Finally, GSR was used in this study as 
a preprocessing standardization technique. The use of GSR is 
widely debated (Saad et al., 2012) though its application in infant 
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studies is potentially advantageous given it has the ability to reduce 
confounds associated with physiological parameters (Chang and 
Glover, 2009), which are normally difficult to monitor in naturally 
sleeping infants. Nonetheless, we re-evaluated our results without 
GSR and with post  hoc standardization and found consistent 
qualitative group differences/trends. These results suggest that 
although GSR does shift the distribution of correlation values, it 
does not appear to alter the relative differences and main conclu-
sions of our findings, which are consistent with several of our 
previous studies (Gao et al., 2013a,b). However, the negative signs 
of the related functional connectivity values should be interpreted 
accordingly given the application of GSR.

conclusion
Our finding of altered caudate functional connectivity with 
cerebellum and occipital fusiform, and of anterior insula with 
cerebellum in +MJ neonates suggests that PME disrupts initial 
organization of these functional circuits in  utero. This early 
departure from typical network development may contribute to 
the deficits in motor and visual-spatial activity, integration and 
coordination (Willford et  al., 2010), attention (Goldschmidt 
et  al., 2012), and social-emotional stability (Gray et  al., 2005) 
reported in children and adolescents with PME (Fried and Smith, 
2001; Fried et  al., 2003). These early differences may impair 
subsequent development of inhibitory control networks that 
include striatal, cerebellar, and frontal components (Rubia et al., 
2007), and may disrupt networks in which the insula serves as 
a central hub, processing and integrating external information 
with visceral, cognitive, and affective states to determine salience 

and guide behaviors, including drug-seeking behavior (Filbey 
et  al., 2009; Feldstein Ewing et  al., 2013; Cauda et  al., 2014; 
Wiebking et al., 2014). However, it is not clear whether the results 
presented here reflect marijuana-related developmental delays or 
more permanent alterations of functional organization, since 
brain structure and connectivity continue to undergo dramatic 
growth in the first 2 years of life (Goldowitz and Hamre, 1998; 
Knickmeyer et al., 2008; Lin et al., 2008; Gao et al., 2009, 2015). 
Future longitudinal study that includes measures of structural 
and functional connectivity as well as cognitive, behavioral, 
environmental, and more detailed drug-exposure assessments 
are needed to determine timing and mechanisms that underlie 
neurobehavioral impairments, and to identify factors that may 
increase or ameliorate prenatal damage to postnatal brain devel-
opment in this at-risk group.
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