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Laboratory evolution studies provide fundamental biologi-
cal insight through direct observation of the evolution
process. They not only enable testing of evolutionary theory
and principles, but also have applications to metabolic
engineering and human health. Genome-scale tools are
revolutionizing studies of laboratory evolution by provid-
ing complete determination of the genetic basis of adapta-
tion and the changes in the organism’s gene expression
state. Here, we review studies centered on four central
themes of laboratory evolution studies: (1) the genetic basis
of adaptation; (2) the importance of mutations to genes that
encode regulatory hubs; (3) the view of adaptive evolution
as an optimization process; and (4) the dynamics with
which laboratory populations evolve.
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Introduction

Due to the lack of experimental approaches, the study of the
process of evolution has been mostly limited to theoretical
studies. Thus, this field is rich with abstract concepts that were
for a time difficult or impossible to test experimentally. Recent
advances in DNA sequencing, high-throughput technologies,
and genetic manipulation systems have enabled empirical
studies that directly characterize the molecular and genomic
bases of evolution. Specifically, these tools allow the direct
measurement and analysis of short-term evolutionary pro-
cesses, and thus the testing of conceptual evolutionary models
and theories (Wagner, 2008).

Microbes are well suited to adaptive laboratory evolution
(ALE) studies for a number of reasons: fast generation times,
repeatability, the ease of maintaining large population sizes,
and the ability to store populations for later examination
(Elena and Lenski, 2003). In the wild, evolution has diverse

causes such as environmental change or isolation of small
populations. ALE studies, also referred to as experimental
evolution studies, seek to observe microbes under controlled
scenarios in which evolution is expected to occur. While the
controlled environments may not always precisely represent
those in the wild, ALE studies have proven successful in
grounding evolutionary theories to the actual molecular
and mechanistic bases of evolution. In this review, we will
highlight a few central lessons obtained through microbial ALE
studies thus far. First, genomic sequencing can determine the
complete set of mutations responsible for an evolved
phenotype, and has led to the discovery that interactions
between these mutations are very common. Second, adaptive
mutations frequently target regulatory mechanisms. Third,
principles of systems-level optimization underlie the genetic
changes seen in adaptive evolution, and with a systems-level
understanding, these optimization principles can be harnessed
for the purposes of metabolic engineering. Fourth, mutant sub-
populations of improved fitness invariably arise in growing
populations, but their dynamics in the population are
complicated due to factors such as natural selection, clonal
interference, drift, and frequency-dependent selection.

Full genomic changes occurring during
ALE can be directly observed

Darwin’s theory of evolution preceded any knowledge of the
molecular mechanisms of heredity, and the development of
evolutionary theory since has frequently omitted these
mechanisms. Yet, the molecular details are at the heart of the
evolutionary process and, thus, of central interest. The
development of next-generation sequencing technology has
at last provided the means to study the molecular basis of
evolution on a genome scale (Metzker, 2010; Brockhurst et al,
2011). Many recent studies have utilized next-generation
technologies to find mutations on a genome-wide basis (Albert
et al, 2005; Friedman et al, 2006; Herring et al, 2006;
Velicer et al, 2006; Gresham et al, 2008; Barrick et al, 2009;
Conrad et al, 2009; Araya et al, 2010; Atsumi et al, 2010;
Charusanti et al, 2010; Kishimoto et al, 2010; Lee and Palsson,
2010; Lee et al, 2010).

Mutations found by whole-genome resequencing (WGS) of
several non-mutator evolved clones from E. coli ALE experi-
ments as compared with the sequence of the starting strain are
summarized in Figure 1. In the studies summarized in Figure 1
(Herring et al, 2006; Barrick et al, 2009; Conrad et al, 2009;
Charusanti et al, 2010; Kishimoto et al, 2010; Lee and Palsson,
2010), single-nucleotide mutations were the most common
type of mutation observed (61% of observed mutations) and
c4t/g4a mutations were disproportionally observed (48 of
111 SNPs). Deletions (29%), insertions (7%), and insertion
sequence movements (3%) were also commonly observed.
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WGS of ALE strains has uncovered the single-nucleotide
substitutions, small insertions and deletions (indels), large
genomic duplications (Herring et al, 2006; Conrad et al, 2009),
large deletions (Barrick et al, 2009; Charusanti et al, 2010), and
transposable element insertions (Gabriel et al, 2006; Gresham
et al, 2008; Atsumi et al, 2010) acquired during adaptation.
WGS of several strains evolved in replicate shows the extent to
which evolutionary genetic paths are constrained. Parallel
evolution also reveals the mutations conferring the largest
benefit, since only the few mutations conferring large fitness
gains should be repeatedly selected for in multiple replicates
(Cooper et al, 2003; Elena and Lenski, 2003; Herring et al,
2006; Conrad et al, 2009; Charusanti et al, 2010). In another
approach, WGS has been applied in a longitudinal manner, in
which the genome was sequenced at various time points. This
approach was applied to E. coli evolved in glucose minimal

medium for 40 000 generations (Barrick et al, 2009), and to
E. coli adapted to growth in successively higher temperatures
for 7500 generations (Kishimoto et al, 2010). In both cases, the
rate of mutation appearance increased in the later phase of the
adaptation due to the development of a mutator phenotype.
Surprisingly, the E. coli strain grown in glucose minimal
medium acquired beneficial mutations at a nearly linear rate
over 20 000 generations before obtaining a mutator phenotype
(Barrick et al, 2009).

Through the use of allelic replacement, the fitness conferred
by a mutation can be assessed using growth rate measure-
ments or competition experiments (Applebee et al, 2008).
Allelic replacement experiments have shown that most
mutations found in non-mutator populations are beneficial
when introduced to the ancestral strain (Cooper et al, 2003;
Herring et al, 2006; Giraud et al, 2008; Conrad et al, 2009;
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Figure 1 Intragenic mutations identified in E. coli ALE studies. (A) Single-nucleotide substitutions, insertions, and deletions found within the open reading frames
by whole-genome sequencing in multiple E. coli ALE studies (Herring et al, 2006; Barrick et al, 2009; Conrad et al, 2009; Charusanti et al, 2010; Kishimoto et al,
2010; Lee and Palsson, 2010) are shown on a circular representation of the E. coli chromosome. (B) The set of genes displayed on the E. coli chromosome was
subjected to enrichment analysis for Gene Ontology Slim (GOslim) categories (Camon et al, 2004). Wedges that protrude outward represent statistically enriched
GOslim categories (also marked by ** in the legend). (C) Genes that were mutated in multiple studies are shown. 20K¼growth on glucose minimal medium for 20 000
generations (Barrick and Lenski, 2009), 45A¼adaptation to high temperature (Kishimoto et al, 2010), ETM¼adaptation of ethanol tolerance (Goodarzi et al, 2009),
Glyc¼growth on glycerol minimal medium (Herring et al, 2006), Lact¼growth on lactate minimal media (Conrad et al, 2009), and PGI¼growth on glucose minimal
media following the deletion of pgi (Charusanti et al, 2010).
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Goodarzi et al, 2009; Auriol et al, 2011; Tremblay et al, 2011).
In addition to enhanced fitness, single allelic replacement has
shown other genotype–phenotype relationships of adaptive
mutations. For instance, it helped to link a mutation of a gene
involved in Wsp signaling to the ‘wrinkly spreader’ phenotype
in Pseudomonas fluorescens (Knight et al, 2006; Bantinaki
et al, 2007), to show contribution of mutations to the spoT
regulatory gene to expression patterns found in evolved E. coli
(Cooper et al, 2003), and to show the effect of an adaptive
mutation to a Geobacter sulfurreducens gene encoding a
periplasmic cytochrome on Fe2O3 reduction (Tremblay et al,
2011). Furthermore, allelic replacement has been used to
iteratively reconstruct the complete multiple-mutation geno-
type found by WGS of the adapted strain. Complete recovery of
the adapted phenotype in the reconstructed strain suggests
that all relevant mutations have been identified (Herring
et al, 2006; Conrad et al, 2009; Goodarzi et al, 2009; Lee and
Palsson, 2010).

Allelic replacement experiments have shown that some
mutations exhibit a neutral or deleterious effect on fitness
when introduced into the ancestral background, but appear to
confer positive fitness in the presence of other mutations
acquired during adaptation. These interactions between
mutations are examples of epistasis (non-additive or non-
multiplicative fitness effects of multiple mutations) and
appear to be a very common feature observed in ALE
and genetic interaction studies (Dykhuizen and Hartl, 1980;
Herring et al, 2006; Spencer et al, 2007; Applebee et al,
2008; Beaumont et al, 2009; Conrad et al, 2009; Charusanti
et al, 2010; Costanzo et al, 2010; He et al, 2010; Lee and
Palsson, 2010). Epistatic mutations are sometimes compen-
satory, providing a remedy for complications introduced to
the cell by earlier adaptive mutations (Maisnier-Patin and
Andersson, 2004). Alternatively, sometimes the fitness attrib-
uted to the mutation is positive only in a fast growing
cell (Chou et al, 2009). Epistatic interactions can severely
constrain viable evolutionary trajectories, since there may be
relatively few trajectories in which fitness increases mono-
tonically with each single mutation (Weinreich et al, 2006;
Poelwijk et al, 2007).

WGS and allelic replacement experiments determine the
genetic basis of evolution. However, in the cases where many
mutations are found (e.g., in populations with high mutation
rates), it is difficult or unrealistic to iteratively construct allelic
replacement collections. Two recent methods may help to
overcome this limitation. First, multiplex automated genome
engineering provides an inexpensive and high-throughput
platform for introducing specific sequence diversity into the
population (Wang et al, 2009). Under this approach, a set of
synthetic oligonucleotides representing the mutations found
by WGS randomly undergoes recombination with genomic
DNA, creating a library of allelic replacement strains. Second,
array-based discovery of adaptive mutations (ADAM) uses
genetic foot printing to selectively identify mutations that
provide a competitive advantage to the cell (Goodarzi et al,
2009). When reconstructing phenotypes through allelic
replacement, ADAM allows the researcher to avoid the wasted
effort of reconstructing non-beneficial mutations. These
methods have the potential to accelerate and increase the
scope of ALE studies.

Broad and systemic regulatory changes
found in ALE strains

Microarrays have been used extensively to measure the global
gene expression phenotype of evolved bacteria. Routine
analyses exist to retrieve information from the large, complex
data sets generated by these experiments (Eisen et al, 1998;
Cui and Churchill, 2003). Clustering can group genes based on
similar expression patterns across multiple samples. Genes
showing statistically significant differential expression can
further be analyzed for enrichment within functional cate-
gories or established regulons. Sometimes, the significant gene
functions that come out of these analyses have obvious
relevance to the strain in the adaptive growth condition, while
other times the meaning of the expression changes is hard to
interpret based on our current understanding of the function of
the mutated gene product. Measurement of expression
changes in multiple replicate evolved lines can identify the
changes that are more likely to be relevant to adaptation by
finding genes that are consistently differentially expressed.
Likewise, fitness profiling using gene overexpression and gene
knockout libraries can provide coarse-grain determination of
the specific gene expression changes that are adaptive for a
strain (Goodarzi et al, 2010).

Sometimes, a large degree of parallelism is observed in the
gene expression changes of replicate evolved populations
(Cooper et al, 2003; Fong et al, 2005b; Stoebel et al, 2009).
Sequencing of these populations shows that similar regulatory
genes acquire mutations within replicate populations. A single
mutation to a regulatory hub can result in broad-scale changes
to the expression state of cells in the mutated population
(Philippe et al, 2007). In general, such mutations of large effect
were expected to be deleterious (Fisher, 1930). However, ALE
experiments have shown that mutations to regulatory hubs
can provide a large increase to fitness (Cooper et al, 2003;
Crozat et al, 2005; Herring et al, 2006; Giraud et al, 2008;
Conrad et al, 2010). Due to their large benefit, mutations to
regulatory hubs are common and are frequently found in
replicate populations (Figure 1B and C).

One of the most central transcriptional regulatory hubs is
likely the RNA polymerase (RNAP) itself (Klein-Marcuscha-
mer et al, 2009). ALE studies subjecting the E. coli K-12
MG1655 strain to continuous exponential growth in minimal
media have found that the genes encoding the RNAP core
enzyme are frequently mutated (Friedman et al, 2006; Herring
et al, 2006; Conrad et al, 2009, 2010; Charusanti et al, 2010;
Figure 1C). Mutations to the rpoC gene, encoding the RNAP b0

subunit, were found in B80% of MG1655 strains that were
adapted to glycerol M9 minimal media (Conrad et al, 2010).
These rpoC mutations resulted in a 60% increase to growth
rate in glycerol minimal medium when introduced to the
ancestor strain, while simultaneously changing the expression
pattern of 20–27% of genes in the genome. These genes fell
into certain functional classifications, suggesting that ele-
ments of the RNAP have transcription factor-like activity.
In vitro assays indicated that separate adaptive rpoC muta-
tions resulted in similar changes in transcription kinetics of
the mutants, including decreased open-complex half-life at a
sensitive promoter, decreased pausing half-life, and increased
elongation rate. Thus, these mutations to the core enzyme may
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affect broad and complex changes to the transcriptome by
altering the transcription kinetics.

In bacteria, sigma factors bind core RNAP, providing
preference for specific promoters and assisting in open-
complex formation. There are several different types of sigma
factors that compete with each other for binding to free RNAP
core enzyme to form the holoenzyme. Each sigma factor
recognizes different sets of promoters, and thus affects the
global transcription profile of the bacteria. The rpoS gene of
E. coli, which encodes the stationary phase sigma factor and is
needed for the global stress response (Weber et al, 2005), is
frequently affected by mutations (Notley-McRobb et al, 2002;
Cooper et al, 2003; Ferenci, 2008; Spira et al, 2008; Conrad
et al, 2009, 2010; Charusanti et al, 2010; Wang et al, 2010).
Whereas binding of the RpoS sigma factor to the RNAP core
enzyme results in a global stress response, the predominant
sigma factor during exponential growth is Sigma 70, which is
needed for transcription of many metabolic and growth-
associated genes. The competition between RpoS and Sigma
70 for RNAP core enzyme sets up a tradeoff between stress
survival and robust growth that has been termed the ‘self-
preservation and nutritional competence’ (SPANC) balance
(Ferenci, 2005). Therefore, mutations to rpoS and its regulators
can serve to adjust the SPANC balance by reducing or
eliminating the size of the RpoS pool that is able to bind
RNAP core enzyme. Under conditions of strong growth
pressures and weak environmental stress, such mutations
are expected to be favorable.

These examples of regulatory hub mutations demonstrate
that while the transcriptional regulatory network of E. coli is
not wired to optimally respond to all environments, the
network structure allows a single mutation to a hub to rewire
the network into a more efficient state. While the process of
discovering these mutations by WGS and introducing them
into the ancestor through allelic replacement has become
routine, careful characterization of the genotype–phenotype
relationship of mutations to regulatory genes is difficult due to
the large scale and complexity of phenotypic consequences.
Understanding can be further impeded by unknown secondary
functions of the mutated gene. These challenges to uncovering
the genotype–phenotype relationship of mutations to regula-
tory hubs can to some extent be overcome using genome-scale
fitness profiling (Goodarzi et al, 2010) and computational
models (Lewis et al, 2010). The hard work of uncovering the
genotype–phenotype relationship may be rewarded by in-
sights into secondary and unknown functions of the mutated
gene (Copley, 2003; James and Tawfik, 2003). ALE can thus
serve as a discovery tool where the hypotheses about function
are generated through the evolutionary process.

Cellular optimization in ALE

Models of evolution frequently invoke the concept of adaptive
landscapes (Orr, 2005). These are often depicted graphically as
three-dimensional landscapes in which the sequence space
serves as a plane on which to map the fitness of each genotype.
Adjacent points on this plane represent similar sequences. The
landscape can be smooth (Figure 2A), with a single optimum,
or rugged (Figure 2B), with multiple optima. In a rugged

fitness landscape, accessible optima may depend on the
starting point within the landscape. Thus, there may be a
diversity of evolutionary outcomes. Results of ALE experi-
ments suggest that bacteria encounter both smooth land-
scapes, in which the population is constrained to acquire
specific mutations in an exact order (Weinreich et al, 2006;
Poelwijk et al, 2007; Stoebel et al, 2009), and rough land-
scapes, in which WGS shows few patterns in the genes that
acquire mutations among replicate populations (Gresham
et al, 2008; Conrad et al, 2009; Wang et al, 2010). The continual
fitness improvement of E. coli over tens of thousands of
generations of adaptive evolution, albeit with diminishing
returns, suggests that populations may only asymptotically
approach local optima on the fitness landscape (Barrick et al,
2009).

The concept of traversing the fitness landscape depends on
the assumption that cells will modify their genotype to
optimize their fitness in the given environment. Therefore,
insight into cellular optimization is gained through the use of
mathematical models. When the organism’s metabolic net-
work and biomass composition are known, flux-balance
analysis (FBA; Orth et al, 2010) and other constraint-based
modeling methods can be used to predict optimal phenotypes
and their corresponding flux distribution based on measured
nutrient uptake rates. Essentially, FBA calculates the max-
imum rate that biomass can be produced given the uptake
rates of nutrients. FBA results can be presented on phenotypic
phase-plane (PhPP) plots of model-predicted optimal biomass
production (growth rate) versus carbon source uptake rate
(SUR) and oxygen uptake rate (OUR). The graph of optimal
OUR as a function of SUR is linear under physiological
constraints. When mapped on to the PhPP, this line defines the
line of optimality (LO) describing the most efficient ratio of
SUR and OUR for biomass synthesis. Under several conditions,
the experimentally measured E. coli phenotype corresponds to
the LO of the PhPP (Edwards et al, 2001). When E. coli growth
is not consistent with the LO, populations migrate toward the
LO through adaptive evolution (Ibarra et al, 2002; Figure 2C).
Migration toward the model-predicted optimal phenotype has
also been observed in Lactobacillus plantarum adapting to
growth in glycerol (Teusink et al, 2009). These studies show
that cells will optimize their metabolic efficiency consistent
with the demands from the selective pressure.

Achieving an optimal metabolic flux state requires sufficient
expression of enzymes, yet proteins are costly for the cell to
express (Kurland and Dong, 1996; Scott et al, 2010) due to
limited quantities of free RNAP enzymes and ribosomes in the
cell (Stoebel et al, 2008). Therefore, there is expected to be an
optimal protein expression pattern. The principle of optimiza-
tion of protein expression is exemplified by a cost-benefit
analysis of Lac operon expression in the presence of lactose
(Dekel and Alon, 2005). The mathematical model developed in
this study shows that the optimal Lac expression level varies
with the lactose concentration in the media. ALE experiments
revealed that strains that initially expressed suboptimal levels
of LacZ for a given lactose concentration rapidly evolved to
produce the predicted optimal amount of LacZ, demonstrating
optimization of gene expression for a single operon. Efforts
have also been made to show economy of protein expression
on the genome scale. Constraint-based modeling analyses of
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ALE outcomes have shown that evolved strains exhibit a
general pattern of increased expression of genes and proteins
associated with the optimal flux distribution, and decreased
expression of genes and proteins associated with unused
pathways (Becker et al, 2007; Lewis et al, 2010). Thus, the
optimization of expression levels is a significant goal of
adaptation.

The concept of evolution toward optimal phenotypes has a
practical application in metabolic engineering. Strain engi-
neering aims to coerce a cell to produce large amounts of
product. However, this often inhibits growth. As a conse-
quence, production strains often lose their ability to excrete
product as the cellular fitness improves. Algorithms have been
developed to predict gene deletions that couple fast growth
with metabolite excretion (Burgard et al, 2003; Pharkya et al,
2004; Patil et al, 2005; Lun et al, 2009; Kim and Reed, 2010).
In these growth-coupled designs, the metabolic pathways of an
organism are altered such that the predicted optimal growth
rate requires the secretion of the desired product (Figure 2D).
Thus, adaptation for a faster growth rate can result in higher
product yields, and the production strains become more stable.
Many growth-coupled designs have been predicted in silico
(Burgard et al, 2003; Bro et al, 2006; Feist et al, 2010) and
improved product yield following the adaptation has been
observed in designs for lactate and ethanol producers in the
laboratory (Fong et al, 2005a; Trinh and Srienc, 2009).

Currently, the most extensive and detailed optimization
models used to assess ALE experiments are constraint-based
models (Feist et al, 2009). However, these focus primarily on
metabolism, which accounts for less than one third of the
genes in E. coli. Therefore, mechanistic conclusions drawn
from metabolic models alone might be incomplete, since they
do not directly include important biochemical mechanisms
such as regulation, cellular maintenance and protection,
and other non-metabolic functions. Efforts are being made
to incorporate the functions of transcriptional regulation
(Gianchandani et al, 2006; Chandrasekaran and Price, 2010)
and the transcription/translation machinery (Thiele et al,
2010), thereby increasing the genome coverage by these
models. In addition, alternative modeling frameworks are
also being developed to model multiple cellular processes
beyond metabolism (Covert et al, 2008; Molenaar et al,
2009). However, mutations in regulatory proteins still will
pose a challenge regardless of the modeling framework.
Mutations may alter the binding kinetics and motifs of
these proteins, thereby changing the topology of the regula-
tory network. Despite this potential challenge, the assessment
of high-throughput data in the model context may allow for
the elucidation of the topological changes through an analy-
sis of genes and proteins that failed to behave as predicted
by the optimization models. Therefore, the use of optimi-
zation models in the assessment of ALE experiments will
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complement the analysis and provide hypotheses to possibly
guide the difficult assessment of individual mutations.

Mutational dynamics and diversity within
evolving populations

When placed into a challenging environment, natural selec-
tion acts on bacteria to select for populations harboring
mutations that provide improved growth or survival. ALE
studies have addressed the dynamics with which these
mutations are acquired and propagated through a population.
In many cases, there are expansions of diversity as additional
beneficial mutations appear in the population, followed by
contractions in which a sub-population of superior fitness
eliminates the inferior alleles. In other cases to be discussed,
mechanisms for stable population diversity have been
observed.

Mutations provide the raw material for population diversity
and adaptation. Thus, the mutation rate has profound effects
on population diversity and evolution dynamics. A low
mutation rate will result in slow discovery of adaptive
mutations, while a fast mutation rate will increase the rate of
occurrence of both deleterious and beneficial alleles, and
result in more diverse populations. Mutator phenotypes
frequently appear during adaptation and are characterized
by an increased mutation rate, including a higher fraction of
synonymous mutations (Sniegowski et al, 1997; Gresham et al,
2008; Barrick et al, 2009; Kishimoto et al, 2010). Mutator
phenotypes may be transiently useful for accelerated discov-
ery of a beneficial mutation, allowing the mutator allele to
‘hitchhike’ during an adaptive sweep. However, they may be
harmful over the long term due to accumulation of deleterious
mutations (increased genetic load) (Giraud et al, 2001; Elena
and Lenski, 2003). Furthermore, the mutation rate varies with
environment and exposure to antibiotics (Notley-McRobb
et al, 2003; Sakai et al, 2006; Kohanski et al, 2010). Frequent
DNA damage or oxidative stress due to environmental stresses
could provide a mechanism by which the mutation rate
increases during a stressful condition (Notley-McRobb and
Ferenci, 1999b; Notley-McRobb et al, 2003).

The mutation rate of a bacterial strain can be measured by a
fluctuation test (Luria and Delbruck, 1943), in which the
mutation rate is approximated by frequency of phage
resistance or antibiotic resistance in an initially sensitive
population, or by a mutation accumulation experiment
(Kibota and Lynch, 1996; Lind and Andersson, 2008), where
serial passage of single cell bottlenecks is used to measure the
rate of appearance of mutations in a lineage over time.
However, rates measured by either of these methods greatly
over-approximate the rate at which mutations appear at a
detectable frequency in laboratory evolution cultures (Lenski
and Travisano, 1994). This discrepancy points to the im-
portance of mutational dynamics within the population. First,
many mutations are deleterious and will often be removed by
selective pressures from the culture before reaching detectable
frequency. Second, in large bacterial populations, multiple
sub-populations can exist that possess differing beneficial
alleles. When one sub-population gains and maintains a
substantial fitness advantage over the rest of the population,

it can increase its fraction in the population and even sweep the
population (Muller, 1932), eliminating other sub-populations
completely or to undetectable levels in a phenomenon known
as clonal interference. Clonal interference may also impose a
‘speed limit’ on adaptation, in which an increase in the
mutation only results in an increase in adaptation rate to a
certain point, after which selection, not the supply of
beneficial mutations, becomes rate limiting (Arjan et al,
1999). Finally, many laboratory evolution experiments include
‘bottlenecks’ in which a random fraction of the population is
transferred to fresh medium to maintain exponential rates of
growth. In serial passage experiments, the fraction of the
population discarded tends to be very high. Thus, even
beneficial mutations are routinely lost to drift. In chemostat
experiments, cells are discarded continuously as quickly as
new cells replicate. Therefore, the experiments are free of
bottlenecks, with higher numbers of mutants remaining in the
population.

To demonstrate the effect of drift and clonal interference in a
serial passage experiment, consider E. coli grown in glycerol
M9 minimal medium where cultures are maintained in
continuous exponential growth by transferring a small amount
of the culture to fresh media once each day before late
exponential phase is reached (Herring et al, 2006). If there is an
average of 2.5�10�3 mutations across the genome per cell
division (Drake, 1991) and 1011 cells in a 250-ml culture of
E. coli at the time of passage, there will be B2.5�108 muta-
tions appearing during a single passage cycle. Because only
B108 cells or fewer are passaged, only a small fraction of the
mutants avoids extinction by drift each passage. However,
mutants with a growth advantage will replicate more often
before the next passage, giving a higher probability of surviv-
ing subsequent passages. For example, during adaptation in
glycerol M9 minimal medium, an rpoC mutant was identified
that increased the growth rate by 60%. Because the rpoC
mutant sub-population grows much faster than the rest of the
population, a single rpoC mutant cell passaged among 2�108

cells of wild-type growth rate will increase to represent on
average 46 of the 2�108 cells of the subsequent passage.
Within 144 h, 498% of the population is expected to have the
mutant rpoC allele (Figure 3A), and eventually the small,
shrinking sub-population with the wild-type allele will be lost
to drift. As an example of clonal interference, the population
sweep of rpoC mutants will be slowed down if it enters the
population in the presence of another mutant sub-population
that grows at a rate intermediate between the wild-type and
rpoC mutant growth rates (Figure 3B). As in the previous
scenario, the rpoC mutant eventually sweeps the culture, this
time eliminating a lesser beneficial allele from the population.

As the above examples suggest, homogeneous populations
are often found in serial passage experiments, where strong
selective pressures favor sweeps and small bottlenecks purge
diversity (Herring et al, 2006; Conrad et al, 2009; Lee and
Palsson, 2010). In contrast, sweeps are more rarely observed in
chemostat ALE experiments (Kao and Sherlock, 2008). High
levels of diversity within a single niche rapidly appear in
chemostat conditions (Notley-McRobb and Ferenci, 1999a, b;
Maharjan et al, 2006; Wang et al, 2010). Diversity within
chemostat cultures is unintuitive, since, as the competitive
exclusion principle (Hardin, 1960) states, if two mutants are
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competing for the same resource, one mutant should win out
if it has even a small edge of the other mutant. However,
diversity may exist given the large number of generations
needed to edge out a slightly less fit competitor, especially
when even a nearly down-and-out competitor can make a
comeback in the population through acquiring additional
mutations (Kao and Sherlock, 2008). High population diversity
may also be due to elevated mutation rates in slow-growing
chemostat cultures (Notley-McRobb et al, 2003) and a lack of
bottlenecks.

The stable coexistence of two clonal sub-populations on
a single resource has been witnessed in ALE experiments.
A number of phenomena can explain these populations.
Evolution of cross-feeding commensalisms (Pfeiffer and
Bonhoeffer, 2004) allow for a first sub-population to consume
a primary nutrient (i.e., glucose) and excrete a secondary
compound (i.e., acetate) that is metabolized by a second
sub-population (Helling et al, 1987; Rosenzweig et al, 1994;
Rozen and Lenski, 2000; Kinnersley et al, 2009). A related
example of niche diversity is a ‘fast switch’ (FS) phenotype
that was found to evolve in minimal media containing both
glucose and acetate (Friesen et al, 2004; Spencer et al, 2007,
2008). The FS phenotype switches to metabolizing acetate
faster than the ancestor when glucose is exhausted (diauxic
switch). However, this comes at the cost of slower growth in
glucose. In this scenario, the FS strain is able to stably coexist
with a non-FS phenotype through frequency-dependent selec-
tion. Finally, ALE resulted in the development of stability of a
syntrophic mutualism in which Methanococcus maripaludis
fed on hydrogen produced in the fermentation of lactate by

Desulfovibrio vulgaris. The consumption of hydrogen by
M. maripaludis benefited D. vulgaris by providing the
thermodynamic driving force for the fermentation of lactate
that is necessary for growth (Hillesland and Stahl, 2010).

ALE studies have demonstrated that evolving populations
often exhibit dynamics that are more complicated than the
clonal replacement model suggests would occur. Furthermore,
the discovery of stable diverse bacterial populations within a
single niche due to frequency-dependent selection or mutua-
listic interactions has challenged the competitive exclusion
principle (Hardin, 1960). While further characterization of
diversity within chemostat and serial passage populations is
of interest, most ALE studies using WGS have focused on
sequencing clonal samples of the population. Recent work has
described a detailed tracking of genetic diversity in a serial
passage population throughout adaptation (Barrick and
Lenski, 2009), and advances in sequencing technology may
soon allow high resolution measurements of population
diversity on a genome scale.

Conclusions

Experience from microbial ALE experiments under a variety of
selective pressures is accumulating rapidly. Here, we have
reviewed what has been learned from ALE experiments about
the genetic basis of adaptation, regulatory changes, optimality
in evolving populations, and population dynamics. Impor-
tantly (1) The genetic basis of adaptation can now be
determined by next-generation sequencing technologies and
can be reconstructed using allelic replacement. Epistasis is
frequently observed between multiple reconstructed mutants
and may indicate either compensatory effects for the earlier
mutation or a dependence of the fitness benefit of the allele on
the cellular growth rate. (2) Broad-acting mutations to
regulatory hubs, including the RNAP itself, are often highly
beneficial. (3) The target phenotype of an evolving population
is likely guided by principles of optimality. Models based on
methods such as FBA and cost-benefit analysis can predict
aspects of these target phenotypes. (4) Diversity in evolving
populations is related to the mutation rate, the fitness effects of
beneficial mutations, and the size of bottleneck involved. The
minimization of diversity through clonal replacement is more
common in serial passage experiments than in chemostat
experiments.

Mutations selected for in ALE experiments that cause broad
expression changes can be thought of as systemic perturbation
variables. For instance, a mutation that is found to increase
tolerance to a toxic end product represents a particular change
in the DNA that has a very particular systemic effect on
network functions that is selected for. Biological function
can be studied through combinations of environmental and
genetic perturbations. The field typically considers pertur-
bation variables to be environmental (chemical) or genetic
(gene knockout). Dual perturbation experiments are used
to discover gene function (Nichols et al, 2011). A collection
of systemic perturbation variables resulting from ALE, that
Figure 1 basically represents, gives the field of systems biology
its own perturbation variables to work with. These pertur-
bation variables, singly or in combination, confer some
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Figure 3 Simulation of the evolution dynamics of an rpoC mutant. Exponential
growth in the number of cells N at time t is given by the function N(t)¼N0e

kt

where N0 represents N at t¼0 and k represents the growth rate. (A) The fraction
of the population represented by an rpoC mutant (krpoC¼0.43) in an otherwise
wild-type population (kwt¼0.27) and which initially exists at a ratio of one rpoC
mutant cell per 2� 108 wild-type cells is shown. (B) The scenario in this graph is
the same as before, except initially the one rpoC mutant (blue) cell exists in
a population of 108 cells that is 95% wild-type and 5% glpK mutant (red,
kmut¼0.35). This situation results in a situation of clonal interference between
two beneficial alleles.
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optimality property on network functions that become known
through the selection process implemented in ALE. Thus, they
may be used to study gene function or as raw material for
‘accelerated evolution’ (Wang et al, 2009).

The frequent mutation of transcriptional regulators is
consistent with recent evidence showing that regulatory
networks evolve faster than other networks, such as genetic
networks, protein interaction networks, and metabolic net-
works (Shou et al, 2011). Therefore, tools to improve under-
standing of changes to the regulatory network are of high
priority. Omics measurements have shown great value for
providing complete systems-level determination of changes in
the state of the regulatory network. Yet, these data sets are
impossible to analyze fully without a genome-scale context. As
discussed earlier, use of genome-scale metabolic reconstruc-
tions as a scaffold has yielded insight into changes in the
expression state of evolved populations (Lewis et al, 2010).
Currently, progress is being made toward a comprehensive
transcription regulatory network (TRN) for E. coli (Cho et al,
2008) reconstructed from genome-scale data sets. The
comprehensive TRN will enable detailed analysis of transcrip-
tion changes. Another form of genome-scale context is
provided by fitness profiling (Goodarzi et al, 2010). This
method determines the fitness change associated with a large
increase or decrease in expression of a single gene, therefore,
providing clues to changes in gene expression that are
important for the mutant phenotype.

In addition to academic interest, ALE studies have a number
of important practical applications. In the field of metabolic
engineering, ALE is useful both for improved product yields in
growth-coupled designs and for the study of tolerance to the
strenuous conditions often implicit in industrial-scale growth
(heat, pH, and toxic levels of alcohols) (Hughes et al, 2007;
Atsumi et al, 2010; Horinouchi et al, 2010; Kishimoto et al,
2010). ALE studies can simulate the development of antibiotic
resistance and drug sensitivity within the laboratory, thus
indicating mechanisms by which dangerous drug-resistant
bacterial strains can arise (Friedman et al, 2006). Other studies
of adaptive evolution are moving beyond the laboratory and
studying the evolution of bacteria within a human host
(Zdziarski et al, 2010). Therefore, the coming years promise
practical knowledge and applications to come from ALE
experiments, in addition to important biological insights.
Some of these insights will come through systems biology and
the identification of systemic perturbation variables.
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