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Abstract

Objective: Polysomnography (PSG) is unique in diagnosing sleep disorders, notably obstructive sleep apnea (OSA). Despite
its advantages, manual PSG data grading is time-consuming and laborious. Thus, this research evaluated a deep learning-
based automated scoring system for respiratory events in sleep-disordered breathing patients.

Methods: A total of 1000 case PSG data were enrolled to develop a deep learning algorithm. Of the 1000 data, 700 were
distributed for training, 200 for validation, and 100 for testing. The respiratory events scoring deep learning model is com-
posed of five sequential layers: an initial layer of perceptrons, followed by three consecutive layers of long short-term mem-
ory cells, and ultimately, an additional two layers of perceptrons.

Results: The PSG data of 100 patients (simple snoring, mild, moderate, and severe OSA; n= 25 in each group) were selected
for validation and testing of the deep learning model. The algorithm demonstrated high sensitivity (95% CI: 98.06–98.51) and
specificity (95% CI: 95.46–97.79) across all OSA severities in detecting apnea/hypopnea events, compared to manual PSG
analysis. The deep learning model’s area under the curve values for predicting OSA in apnea-hypopnea index≥ 5, 15,
and 30 groups were 0.9402, 0.9388, and 0.9442, respectively, showing no significant differences between each group.

Conclusion: The deep learning algorithm employed in our study showed high accuracy in identifying apnea/hypopnea epi-
sodes and assessing the severity of OSA, suggesting the potential for enhancing both the efficiency and accuracy of auto-
mated respiratory event scoring in PSG through advanced deep learning techniques.
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Introduction
Obstructive Sleep Apnea (OSA) stands as a widely preva-
lent chronic disorder necessitating comprehensive, interdis-
ciplinary management owing to its characteristic recurrent
episodes of complete or partial upper airway obstructions
during sleep.1–3 The pathophysiological ramifications of
OSA, including sleep fragmentation, heightened sympa-
thetic nervous system activity, hypoxemia, and hypercap-
nia, are intricately associated with the onset of
OSA-related symptoms and complications.4–6 These mani-
festations range from excessive daytime sleepiness and
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morning headaches to severe outcomes such as hyperten-
sion, coronary artery disease, insulin resistance, stroke,
and an increased risk of malignancies.7–11 Consequently,
the prompt and accurate diagnosis of OSA is imperative
when clinical suspicion arises.

Polysomnography (PSG), a cornerstone in the evaluation
of sleep disorders, plays a pivotal role in diagnosing sleep dis-
turbances by monitoring and recording an array of biological
signals. Critical among these are the respiratory bio-signals;
oral and nasal airflow, respiratory effort, snoring, and
oxygen saturation signals, as well as the electroencephalo-
gram (EEG), electrooculogram (EOG), electromyogram
(EMG), electrocardiogram (ECG), body positions, which
are all instrumental in identifying respiratory events during
sleep.12 Airflow measurements, utilizing oronasal thermal
sensors and nasal pressure transducers, pinpoint respiratory
disruptions including apneas and hypopneas.13 Respiratory
effort, gauged through chest and abdominal movements,
helps differentiate between central, mixed, and obstructive
respiratory disturbances.14 Furthermore, oxygen saturation
indices provide insights into blood oxygen levels, aiding in
the detection of significant desaturations.15 This comprehen-
sive suite of data, manually scored by trained technicians
and reviewed by sleep physicians, adheres to the American
Academy of Sleep Medicine’s guidelines.16

OSA diagnosis aligns with the International Classification
of Sleep Disorders, third edition, based on specific diagnostic
criteria.17 These include the manifestation of at least one
symptom or comorbidity alongside a minimum of five
obstructive respiratory events per hour of sleep, quantified
as an Apnea-Hypopnea Index (AHI) of 5 or higher, or the
presence of at least 15 obstructive events per hour irrespective
of symptomatology.17 The severity of OSA is further categor-
ized by the AHI, with a threshold of 30 events per hour delin-
eating severe OSA.17

While PSG is invaluable in diagnosing various sleep dis-
orders, the manual scoring of PSG data is labor-intensive
and subject to inter-scorer variability, highlighting the
need for a more streamlined approach.16 Recent advance-
ments in the detection and diagnosis of OSA emphasize
the critical role of AI, particularly deep learning.18 The
automation of PSG data scoring, propelled by deep learning
algorithms, has emerged as a field of intense research within
medical informatics and sleep medicine.18–21 Recent
reviews emphasize the need to bridge research findings
with clinical applications, advocating for standardized man-
agement of OSA.22,23 Another study demonstrates the
effectiveness of convolutional neural networks for OSA
detection, promoting automation in diagnostics.24 Further
exploration into various AI methods suggests their integra-
tion into clinical settings, broadening the scope of diagnos-
tic frameworks.25 Innovations with a deep attention
network that leverages multi-temporal data enhance detec-
tion accuracy and showcase the potential of AI to
improve traditional diagnostics.26

Although there have been recent papers that suggest and
develop the use of AI technology to automatically score
PSG-produced data.27–35 However, there is a crucial gap in
the previous literatures; the number of investigations to accur-
ately detect and score the severity of OSA are very limited to
date, which the previous studies have only utilized deep learn-
ingmodels thatwere trainedwith only a limited number of bio-
signals, rather than including all essential respiratory-related
biosignals recorded in the PSG.34,35 Therefore, our goal is to
assess the effectiveness and precision of a newly developed
deep learning algorithm intended for automated analysis of
respiratory events to detect, and to categorize the severity of
OSA in people with suspected sleep-disordered breathing.

Materials and methods

Ethical declaration

The research protocol of this study was reviewed and
approved by the Institutional Review Board (IRB) of
Soonchunhyang University Bucheon Hospital (Investigation
number: SCHBC 2020-06-012). The research was conducted
in accordance with the ethical principles outlined in the
Declaration of Helsinki. The authors adhered to the directions
provided by the IRB and executed the study under consistent
supervision from the IRB. The IRB granted an exemption for
informed consent since the present investigation was based on
a validation study that used retrospectively gathered data
devoid of personally identifying information.

Study subjects

The present work used a deep learning algorithm that was
created using a dataset consisting of 1000 PSG records. These
records were randomly picked from a larger database of adult
patients who had undergone PSG between October 2017 and
December 2019 at the clinic of the corresponding author. All
patients who underwent PSG sought medical attention at a ter-
tiaryuniversityhospital’sotorhinolaryngologyclinic, presenting
symptoms such as excessive daytime drowsiness, snoring, or
sleep apnea. Patients who did not have a complete overnight
level I PSG, patients who had PSG at other clinics, and patients
under 19 were excluded from the retrospective analysis.

Sleep-oriented history taking, physical examination, and
level 1 PSG were conducted on all participants. The PSG was
performed in a laboratory environment, with the presence of a
technician, and included comprehensive monitoring of several
physiological channels throughout the night. The PSG data,
together with fundamental clinical data like the age, gender,
and body mass index (BMI) of each participant, was acquired.

PSG and PSG-derived parameters

All individuals had a typical full-night level I PSG utilizing
a computerized PSG system (Embla N7000; Natus Medical
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Inc., San Carlos, CA, USA). The PSG parameters included
a six-channel EEG, a two-channel EOG, EMG recordings
from the submental and leg muscles, measurements of
airflow using a thermistor and pressure transducer, assess-
ment of respiratory effort by monitoring chest and
abdomen movement, measurement of oxygen saturation,
detection of snoring, monitoring of body posture, and
recording of the ECG. Throughout the entirety of the
PSG procedure, a sleep technician who possessed the
necessary certification continuously observed and assessed
the signals of each participant. This involved manually
scoring various aspects of the data, including respiratory
events, arousals sleep stages, and other relevant informa-
tion. The scoring process adhered to the guidelines outlined
in The American Academy of Sleep Medicine Manual for
the Scoring of Sleep and Associated Events: Rules,
Terminology and Technical Specifications, version 2.6.16

The PSG data that were evaluated manually underwent a
comprehensive examination by the senior author (J.H.C),
a sleep expert with several board certifications.

The concept of sleep efficiency has been defined as the
proportion of the duration spent in a state of sleep (referred
to as total sleep time) relative to the overall duration of time
that was measured from the point of initiating sleep
(referred to as lights out) to the point of awakening (referred
to as lights on), including the whole recording period.
Arousal is operationally defined as a sudden and distinct
change in the frequency of the EEG, which persists for a
minimum duration of three seconds, preceded by a period
of at least ten seconds of steady sleep. In order to accurately
assess arousals during stage R sleep, it is necessary to see a
simultaneous increase in submental electromyogram activ-
ity that persists for a minimum duration of one second or
longer. The arousal index was operationally defined as the

ratio of the total number of arousals to the entire duration
of sleep, expressed in hours. Apnea is operationally
defined as an occurrence characterized by a reduction in
amplitude of at least 90% and a duration of at least 10 s.
The apnea index was operationally defined as the ratio of
the total number of apneas to the entire duration of sleep,
expressed in hours. Hypopnea is operationally defined as
an occurrence characterized by a reduction in amplitude
of at least 30% and a duration of at least 10 s, accompanied
by a fall in oxygen saturation of at least 3% or an arousing
event. The hypopnea Index is operationally defined as the
ratio of the total number of hypopneas to the entire duration
of sleep, expressed in hours. The apnea-hypopnea index
(AHI) is a metric that quantifies the frequency of apnea
and hypopnea events per hour of total sleep duration. The
minimum SaO2 was operationally defined as the lowest
recorded value of oxygen saturation throughout the sleep
period.

Algorithm for automatic respiratory event scoring

In this investigation, we used SOMNUM, an AI diagnostic
program developed by Honeynaps Co. Ltd in Seoul,
Republic of Korea. This deep learning algorithm-based
software was employed to automatically assess and rate
sleep-related respiratory episodes in the sleep recordings
of the patients included in our study. In order to identify
instances of sleep apnea and hypopnea, input data consist-
ing of nasal pressure, thermal flow, SpO2, chest belt, and
abdominal belt signals were used.

To briefly describe details on data processing (e.g., noise
filtering) and model tuning (e.g., hyperparameters turning
and strategy), The use of a bandpass filter is employed as
a means to eliminate extraneous external noise, as outlined
in the previously mentioned Routinely Recorded Filter set-
tings, as each hyperparameter value is further elaborated in
Table 1.

In order to construct a deep learning system, a total of
1000 case PSG data were used in the study. Out of the
dataset consisting of 1000 data sets, 700 data sets were
designated for training purposes, while 200 data sets were
allotted for validation. Additionally, 100 data sets were
set aside for both validation and testing. In detail, the
study sample was selected as follows. Initially, a random
sample of 1000 patients was selected and classified based
on their AHI scores. Subsequently, a random selection of
25 patients was made from each of the four groups. The
reason for selecting the proposed deep learning model ran-
domly in two stages is to compare its performance based on
the AHI index.

The selection of the deep neural network (DNN) archi-
tecture was informed by a multi-faceted approach.
Initially, a review of architectures previously successful in
related studies was conducted to guide the selection
process. Subsequently, several candidate architectures

Table 1. The KNHIS database search criteria and processes for
patients with each condition.

Hyperparameters Values

Learning Rate 0.01, 0.001, 0.0001, 0.00001

Drop-Out 0, 0.2, 0.4, 0.6, 0.8, 0.9

Batch Norm Yes

Filter Size of CNN (3× 3), (5× 5), (7× 7)

# of Look Back steps in LSTM 3,5,10,20,30,

# of Hidden Units in LSTM 100, 200, 400, 800, 1000, 2000,
4000

# of Layers in LSTM 1, 2, 3, 5, 7, 9, 15

Abbreviations; CNN, convolutional neural network; LSTM, long short-term
memory.
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were identified, taking into account the unique characteris-
tics of our dataset and the inherent complexity of the
problem. These candidates were then subjected to a rigor-
ous evaluation using cross-validation techniques to assess
their performance and computational efficiency. The archi-
tecture that demonstrated superior performance across these
criteria was ultimately selected for implementation in our
study.

The deep learning model construction framework used
in this study was PyTorch 1.5, while the monitoring of
deep learning training was carried out using TensorBoard.
Briefly, the architecture of the respiratory event scoring
model has five layers, namely, an initial layer of percep-
trons, followed by three sequential layers of long short-term
memory (LSTM) cells, and ultimately, two further layers of
perceptrons. The first layer of perceptrons is comprised of
individual perceptrons that produce a linear combination
of all the characteristics. In an LSTM layer, there are N
cells, with N/2 cells propagating their internal values in
the forward direction to subsequent epochs, while the
remaining cells propagate values in the reverse way.
Ultimately, the N values generated from the final LSTM
layer undergo processing via a perceptron layer consisting
of N/2 neurons. Subsequently, these values are further pro-
cessed by a final layer of two neurons, each corresponding
to the probabilities of respiratory event classes. The activa-
tion functions used in the study were mostly sigmoid,
except for the last layer, which utilized a softmax activation
function. The Deep learning models we have adopted are
composed of DCNN for down sampling layer and feature
extraction, in addition to the Skip LSTM for classifier
(Figure 1).

Statistical analysis

Four groups were stratified based on the degree of OSA,
which was determined by the AHI derived from
manually-scored PSG data. These groups were the severe
OSA group (AHI≥ 30), moderate OSA group (30 >AHI
≥ 15), mild OSA group (15 >AHI≥ 5), and simple
(primary) snoring group (AHI < 5). A comprehensive ana-
lysis of the clinical, demographic data and PSG-derived
parameters was conducted and afterward given for each
of the four groups. An analysis of variance (ANOVA)
test was conducted, followed by a Bonferroni post-hoc
test, in order to examine the notable disparities in demo-
graphic and PSG data among four distinct groups
(Supplementary Table 1).

The manually assessed respiratory event figures were
regarded as the “benchmark” or “reference standard”. The
analysis focused on comparing the scoring of respiratory
events, namely apnea or hypopnea events occurring
within a 30-s epoch, between the deep learning algorithm-
based AI diagnostic software (referred to as SOMNUM)
and the human-scored PSG report. The accuracy of

identifying apnea or hypopnea episodes was assessed
based on the stratification of OSA severity into four
groups. The study categorized participants into four
groups based on the severity of OSA: severe OSA (AHI
≥ 30), moderate OSA (30 >AHI≥ 15), mild OSA (15 >
AHI≥ 5), and simple (primary) snoring (AHI < 5). The
researchers compared the sensitivity and specificity of the
deep learning-based model with the manually scored
outcome within each group. The sensitivity and specificity
were used to compute a receiver operating characteristic
(ROC) curve and determine the area under the curve
(AUC). This was done to assess the concordance between
the automated scoring results for respiratory events and
the human scoring results. In order to assess the statistical
significance of the variations in diagnostic accuracy
metrics, the researchers used a McNemar test. The study
reported the median values of sensitivity and specificity,
together with their corresponding 95% confidence intervals
(CI).

The statistical analyses were conducted using R
version 3.6.3 (The R Foundation for Statistical
Computing, Vienna, Austria) and SPSS Statistics
version 26.0 (IBM Corp., Armonk, NY, USA). A signifi-
cance level of p less than 0.05 was used to determine stat-
istical significance.

Results
In the process of developing a deep learning AI model, a
dataset consisting of 1000 patients’ PSG records was
used. Out of these, PSG data from 692 patients were
employed for training the algorithm model, while PSG
data from 200 patients were reserved for validation pur-
poses. Additionally, PSG data from 100 patients were spe-
cifically utilized for validation tests. At the outset, the
algorithm model training was intended to use PSG data
from 700 patients. However, eight participants were subse-
quently omitted from the training dataset due to insufficient
PSG data. The PSG data from three individuals was elimi-
nated owing to the inability to identify breathing move-
ments and respiratory signals caused by patient
movements. Additionally, the PSG data from five patients
were excluded because there was no recorded data during
some periods as a result of unstable sensor connections.

In our investigation, a sample size of 100 participants
was included for the purpose of validation and testing.
The participants had a mean age of 50.59 years with a
standard deviation (SD) of 14.01 years (Table 2). Out of
the total participants, 55 were males and 45 were women.
The participants also had a mean BMI of 26.30 kg/m2
with a SD of 3.98 kg/m2. The validation and assessment
of PSG data included a sample of 100 individuals. This
sample was divided into four groups: simple (primary)
snoring (n= 25), mild OSA (n= 25), moderate OSA (n=
25), and severe OSA (n= 25). No notable variations were
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seen in the gender distribution among the four groups strati-
fied based on the severity of OSA. However, a notable dif-
ference was observed in age and BMI, indicating that as the
severity of OSA rises, there is a corresponding increase in
age and BMI (Table 1). The PSG parameters were assessed
for sleep efficiency (%), arousal index (events/hour), AHI
(events/hour), and minimal SaO2 (%), yielding mean±
SD values of 83.32± 11.34, 25.67± 15.53, 22.26± 22.80,
and 84.31± 7.87, respectively. Despite the absence of
notable variations in sleep efficiency among the four sub-
groups, a noteworthy disparity in the characteristics asso-
ciated with OSA was detected. This discrepancy was
evident in terms of heightened arousal levels and the occur-
rence of apnea or hypopnea episodes, with all p-values
being less than 0.001.

The study demonstrated the efficacy of the deep learning
algorithm used in our research for categorizing the severity
of OSA and distinguishing the PSG data of patients with
main snoring exclusively. The performance metrics, sensi-
tivity and specificity, are shown in Figure 2. The sensitivity
of simple snoring, mild OSA, moderate OSA, and severe
OSA were 98.06 (95% CI 96.64–99.53), 98.12 (95% CI
96.68–99.87), 98.23 (95% CI 96.75–99.72), and 98.51
(95% CI 96.2–95.91), respectively. The study found that

the specificity (95% CI) for simple snoring, mild OSA,
moderate OSA, and severe OSA were 97.79 (92.84–
99.95), 96.84 (93.6–99.95), 96.7 (93.32–99.59), and
95.46 (93.71–99.08), respectively.

The study used a deep learning algorithm to accurately
detect the occurrence of apnea or hypopnea. The researchers
presented ROC curves to illustrate the performance of the
system in relation to the severity of the AHI, as shown in
Figure 3. Furthermore, the AUC in the ROC curve serves
as a measure of the ability of a deep learning algorithm to
accurately distinguish between individuals with OSA and
those without. In this study, the AUC values for predicting
OSA in groups with AHI values greater than or equal to 5,
15, and 30 were reported as 0.9402, 0.9388, and 0.9442,
respectively (Figure 3). There were no statistically significant
differences seen among the three AUC values, as shown by all
p-values being more than 0.05. Hence, irrespective of the
extent of OSA as indicated by the AHI, our research demon-
strated that the deep learning model used had a discerning
capability to identify the existence of each OSA severity
level with an accuracy above 93%.

Figure 4 presents the Bland-Altman plot illustrating the
comparison between the automated scoring of AHI using
the deep learning algorithm and the human assessment of

Figure 1. Architectural diagram of the deep learning models used in the current investigation; DCNN for down sampling layer, DCNN for
feature extraction, and skip LSTM classifier.
Abbreviations; DCNN, diffusion-convolutional neural networks; LSTM, long short-term memory; SELU, scaled exponential linear unit; TANH,
hyperbolic tangent.
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Table 2. Demographics of OSA patients and controls.

All Patients
(n= 100)

Primary Snoring
(AHI < 5) (n= 25)

Mild OSA (15 > AHI
≥ 5) (n= 25)

Moderate OSA (30 >
AHI≥ 15) (n= 25)

Severe OSA (AHI
≥ 30) (n= 25)

p-Value
*

Demographic factors

Age 50.59± 14.01 42.96± 12.17 52.08± 14.34 52.36± 12.71 54.98± 13.68 0.0001

Sex (M:F) 55:45 12:13 13:12 15:10 15:10 NS

BMI (kg/m2) 26.30± 3.98 24.02± 2.41 25.62± 3.55 27.60± 3.73 27.98± 4.58 <0.001

Polysomnography
parameters

Sleep efficiency (%) 83.32± 11.34 84.45± 13.48 84.03± 10.57 82.89± 9.99 81.91± 10.85 NS

Arousal index
(events/h)

25.67± 15.53 14.03± 6.38 19.90± 8.37 25.46± 8.61 43.07± 17.52 <0.001

AHI (events/h) 22.26± 22.80 1.89± 1.46 9.52± 2.93 22.05± 3.95 55.57± 19.12 <0.001

Minimum SaO2 (%) 84.31± 7.87 91.78± 2.71 86.14± 3.81 82.28± 5.22 77.08± 9.05 <0.001

Data are presented as mean± standard deviation. * p-value calculated with analysis of variance followed by Bonferroni post-hoc test. p < 0.05 was considered
as statistically significant. Abbreviations; AHI: apnea-hypopnea index, OSA: obstructive sleep apnea, M: male, F: female, BMI: body mass index, SaO2: arterial
oxygen saturation, NS: non- significant.

Figure 2. The sensitivity and specificity of the deep learning algorithm model to correctly score the respiratory-related events in the
polysomnography (PSG) of patients in main snoring, mild, moderate, and serious obstructive sleep apnea (OSA).
The sensitivity and specificity of the deep learning method model used in our investigation to stratify OSA severity and distinguish PSG data
from simple (primary) snoring are depicted. Simple snoring, mild OSA, moderate OSA, and severe OSA had sensitivity (95% confidence
interval (CI)) of 98.06 (96.64–99.53), 98.12 (96.68–99.87), 98.23 (96.75–99.72), and 98.51 (96.2–95.91). The specificity (95% CI) of simple
snoring, mild OSA, moderate OSA, and severe OSA were 97.79 (92.84–99.95), 96.84 (93.6–99.95), 96.7 (93.32–99.59), and 95.46 (93.71–
99.08), respectively.
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AHI using PSG. The Bland-Altman analysis is used to
measure the level of concordance between two evaluation
methods, namely in our research, the deep-learning model
derived automatically scored PSG results and the
humanly evaluated PSG data. A graphical representation
of the disparities between the outcomes obtained via deep
learning-based automated scoring and those obtained
through manual scoring is illustrated in Figure 4. The
y-axis represents the plot of these discrepancies, while the
x-axis represents the mean values of the deep learning-
based automatic scoring results and the humanly scored
results. The diagnostic bias between the two modalities
was quantified by an AHI of 1.66 per hour, with a mean dif-
ference of −1.66. The limits of agreement demonstrated a
narrow range of −3.70 to 0.36, indicating a substantial
level of concordance between the deep learning models
and manually scored PSG data in identifying sleep-related
breathing events and associated disorders.

Discussion
Sleep apnea and main snoring are often seen as sleep-
breathing problems in the clinical practice of sleep medi-
cine.22,23 Despite the availability of several screening and

diagnostic methods for identifying and evaluating sleep disor-
ders and sleep-related breathing problems, in-laboratory PSG
is widely acknowledged as a well-validated and influential
diagnostic tool.23,36 The PSG is a comprehensive diagnostic
tool used to detect and assess various sleep disorders.37 It
involves the collection of multiple bio-signals from an indi-
vidual during sleep, including breathing and ventilation,
hypoxia, sleep staging assessments, cardiac rhythm and rate
assessments, peripheral limb movements, motion detection
during sleep, and vocalization or snoring assessments.37 By
incorporating all these measurements into a single test, the
PSG allows for the identification and evaluation of numerous
sleep disorder conditions. Therefore, PSG is now used and
implemented in many sleep medicine labs.22,38

Nonetheless, the process of analyzing and interpreting
the unprocessed PSG data requires a substantial amount
of manual effort and may be a time-intensive task. The
raw PSG data comprises sequentially recorded biosignals
from various channels connected to a patient for either
the whole sleep duration or a significant percentage of the
total sleep period, often exceeding 4 h.39 Furthermore, the
examination of the unprocessed PSG data needs the expert-
ise of a trained specialist proficient in scoring and interpret-
ing such raw PSG data.19 It is important to acknowledge

Figure 3. Area under the receiver operating characteristic (ROC) curve of a deep learning algorithm model for predicting obstructive sleep
apnea (OSA).
The depicted ROC curves show how well the deep learning algorithm model correctly identified apnea and hypopnea events based on the
severity of OSA. The area under the curve (AUC) of this deep learning model for predicting OSA in groups of apnea-hypopnea index (AHI) >
5, 15, and 30 was 0.9402, 0.9388, and 0.9442, respectively, indicating its discriminating performance of more than 93%, regardless of the
OSA severity. There were no significant differences in the AUC values among three groups (p > 0.05).
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that the interpretation of these raw data findings may be
subject to potential biases arising from inter-observer and
intra-observer variations.33 Therefore, the utilization of an
automated logic or software device with a high level of
accuracy and precision in scoring and interpreting raw
PSG data could potentially offer significant advantages in
addressing the primary challenges associated with manual
scoring conducted by a proficient PSG specialist, as previ-
ously discussed.

The advancements in AI technology in many sectors of
society have facilitated a decrease in the need for human
labor while simultaneously guaranteeing precise and reli-
able execution of designated duties.40 Extensive research
is now being conducted in medicine and medical informat-
ics about the automated scoring of human bio-signal
data.31,41–44 The present study is being undertaken by
researchers from several medical specialties. With the
increasing prevalence of OSA worldwide and the growing
recognition of its substantial impact on various cardiovas-
cular comorbidities, there is a growing need among
doctors and healthcare workers for an effective approach
to screen and diagnose OSA.11,25 Consequently, there is
growing interest and demand for PSG and home-based
polygraphy.38 However, the significant quantity of human
effort and time required presents a challenge in adopting
these diagnostic modalities as useful tools for diagnosis or
screening.24 The authors aimed to assess the accuracy and
precision of a newly developed deep learning system in

scoring respiratory episodes in individuals with sleep
breathing disorders. The system’s primary function was to
detect the presence and determine the severity of sleep
apneas, as well as differentiate patients with OSA from
those with simple snoring. Despite the availability of
more accessible and time-efficient equipment such as
pulse oximeters or ECGs, PSG continues to be widely
regarded as a standard diagnostic approach for identifying
and categorizing severe OSA, as well as detecting other
sleep disorders.45

Recent reviews and studies highlight the expanding role
of AI in diagnosing and understanding OSA, which are
detailed in Table 3..26,46–54 Research emphasizes the need
for bridging gaps between clinical practices and new
knowledge in sleep-disordered breathing, while also offer-
ing a standardized framework for OSA management that
reflects an international consensus.22,23 Advances in AI
are promising, detailing how convolutional neural networks
can be optimized for detecting OSA and reviewing broader
AI applications in sleep apnea diagnosis, discussing both
potentials and challenges.24,25,45 Further advancements
introduce a multi-scale object detection approach for
precise localization of apnea events in polysomnography,
showcasing the enhancement of diagnostic accuracy, and
exploring deep learning techniques that adapt across differ-
ent patient datasets and utilize respiratory signals, marking
significant improvements in predictive accuracy and clin-
ical utility.47,48,50 These developments indicate a trend

Figure 4. Bland-Altman plot of apnea-hypopnea index (AHI) analyzed between a deep learning algorithm (automated scoring) and
polysomnography (PSG) (manual scoring).
The Bland-Altman plot visualizes the discrepancies between automatically scored AHI using a deep learning algorithm model and manually scored
AHI outcomes. The AHI differences are depicted on the y axis, whereas the means of the AHI are depicted on the x axis. The deep learning
algorithm models and manually scored PSG data agreed well in detecting sleep-related breathing events and disorders, with a mean difference of
AHI of 1.66 per hour, in addition to a narrow range of AHI discrepancy of −3.70 to 0.36 per hour. Abbreviations; SD, standard deviation.
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Table 3. Comparative overview of most-recent AI-based methods for PSG scoring and diagnosis of sleep apnea.

Author name(s)
Published
year Data Used Methodology Key Findings Advantages & Merits

Ji et al.50 2024 Respiratory
effort signals

Multi-scale object detection via
Dual-modal Feature Learning

Accurate localization of
sleep apnea and
hypopnea events
with 91.9%

Enhanced precision
with accurately
capturing
capability of each
event

Du et al.48 2023 Respiratory
effort signals

Deep domain adaptation module
with a LSTM-CNN

Accuracy, sensitivity
and specificity to
detect OSA as
86.46%, 86.11% and
93.17%, respectively.

Improved model
adaptability and
generalization
across datasets

Barroso-García
et al.47

2023 Respiratory
effort signals

2D-Convolutional Neural Networks High accuracy to
predict OSA of
94.98%, especially
higher accuracy to
detect CSA of 99.74%

Demonstrates clinical
utility in severity
prediction using
respiratory
biosignals,
especially in CSA

Jiao et al.26 2024 Single-lead
ECG signal

Deep Attention Networks with
Multi-Temporal Information
Fusion

High accuracy in sleep
apnea detection of
91.06% accuracy and
93.06% precision

Utilizes complex
temporal patterns
for improved
detection

Zarei et al.54 2022 Single-lead
ECG signal

CNN, LSTM, and LSTM-CNN Accuracy of 97.21% in
per segment
classification

Improved AI-based
ECG-based OSA
detection

Erdenebayar
et al.49

2019 Single-lead
ECG signal

6 deep learning models: DNN, 1D
CNN, 2D CNN, RNN, long
short-term memory, and
gated-recurrent unit models

The 1D CNN and GRU
models had accuracy
and recall of both
99.0%

Improved accuracy
detecting sleep
apnea events than
previous studies

Wang et al.53 2019 Single-lead
ECG signal

Time window ANN Outperformed
traditional models in
sleep apnea
detection

Focuses on
optimizing
time-sensitive
features

Alvarez-Estevez
et al.46

2016 Heart rate
and timing
features

Heart Timing (HT) as the source
signal

Screening sleep apnea
patients with AUC
value of 0.88

Novel study using HT
to screen sleep
apnea events

Sharma and
Sharma52

2016 Single-lead
ECG signal

Convolutional networks (Alex-Net,
VGG16, VGG19, ZF-Net),
Recurrent networks (LSTM,
bidirectional LSTM, Gated
recurrent unit), and Hybrid
convolutional-recurrent
networks

Best detection
performance
achieved with hybrid
deep models;
accuracy, sensitivity,
and specificity of
88.13%, 84.26%, and
92.27%, respectively.

Multiple algorithm
comparison for
robust validation to
detect OSA

(continued)

Park et al. 9



towards more sophisticated, data-driven approaches in the
diagnosis and management of sleep apnea, potentially
leading to more personalized and efficient patient care.

The proposal has been put up to use AI technology for
the automated evaluation of data produced by PSG, align-
ing with this idea.24,25,45 Several recent scientific papers
have focused on examining and documenting the diagnostic
accuracy and validity of the issue being investi-
gated.26,34,35,47,48,50,55 In their studies, Nikkonen et al.
observed a rate of agreement between their artificial convo-
luted neural network and manual scoring, which was found
to be 88.9% on an epoch-wise basis.35 In a similar vein,
Pittman and colleagues demonstrated a concordance rate
of 94.9% between their automated scoring method and
the humanly assessed findings obtained from PSG.55 In par-
ticular, the assessment of respiratory episodes in Nikkonen
et al.’s research demonstrated a notable level of agreement,
with a concordance rate of 93.9% and a kappa coefficient of
0.92.35 In addition, the neural network exhibited a signifi-
cant level of concordance in detecting AHI, apnea, and
hypopnea events, as shown by an intraclass correlation
value of 0.985 (95% CI 0.978–0.990) for AHI, 0.971
(95% CI 0.955–0.981) for apnea, and 0.966 (95% CI
0.943–0.979) for hypopnea.35 The Bland-Altman plot
revealed that the error magnitude for AHI was 3.0 events
per hour, for apnea was 2.0 events per hour, and for hypop-
nea was 2.9 events per hour.35 These findings collectively
indicate a high level of agreement and a minimal degree
of error in the algorithms developed for automated
scoring of respiratory events in PSG. Similarly, the magni-
tude of inaccuracy in the AHI observed in our investigation
exhibited a value of 1.66 per hour, which demonstrated a
little decrease compared to the findings reported in their
study.

In our study, we observed the accuracy of an
automatic-respiratory events scoring software employing
a deep learning algorithm, which demonstrated a notable
level of validity compared to manually scored PSG data.

This validity was evident in accurately identifying sleep
apneas, distinguishing adult patients with OSA from those
with simple snoring and evaluating the severity of OSA.
Irrespective of the degree of OSA as indicated by the
AHI, both sensitivity and specificity have shown a value
over 96% in properly assessing the occurrences of respira-
tory episodes during sleep. The results of this investigation
show some degree of similarity and divergence when com-
pared to the research conducted by Nikkonen et al..35 The
findings of the study demonstrated that the severe OSA
group exhibited the greatest detection accuracy, with a
score of 92.3% for AHI. In comparison, the moderate and
mild OSA groups achieved accuracies of 81.5% and
81.0%, respectively.30 Nevertheless, the non-OSA group
had a high accuracy rate comparable to the severe OSA
group, with a rate of 92.3%.30 In contrast, our research
found that our deep learning algorithm model has greater
sensitivity in persons with severe OSA and higher specifi-
city in the simple snoring (non-OSA) group. This suggests
that the deep learning algorithm employed in our study
exhibited a stronger ability to differentiate severe OSA
cases and accurately identify those without OSA.
Moreover, the AUC value in the ROC curve values
ranging from 93% to 94% in our research, independent of
the AHI, provides an accuracy validation for the algo-
rithm’s acceptable performance, compared with previously
created deep-learning based algorithms employed in prior
literatures.35,55,56

The findings of this work have the potential to enhance
the precision and practical implementation of the deep
learning algorithm in automatically assessing respiratory
episodes, therefore enabling the detection and classification
of the severity of OSA using raw PSG data. Despite the
relatively high sensitivity, specificity, and diagnostic accur-
acy shown in this study for accurately scoring sleep-related
apneas and hypopnea episodes, the authors acknowledge
several limits and shortcomings in our research. Initially,
the deep learning system was taught using the raw PSG

Table 3. Continued.

Author name(s)
Published
year Data Used Methodology Key Findings Advantages & Merits

Mashrur et al.51 2021 Single-lead
ECG signal

signal transformation workflow
based on EMD and CWT /
Scalogram based CNN

Per-segment
classification for
apnea detection:
accuracy, sensitivity,
and specificity of
94.30%, 94.30, and
94.51%, respectively

High accuracy with
CNN focusing on
time-scale
transformations

Abbreviations; AUC, Area Under the Curve; CNN, Convolutional Neural Network; CSA, Central Sleep Apnea; CWT, Continuous Wavelet Transform; DNN, Deep
Neural Network; ECG, Electrocardiogram; EMD, Empirical Mode Decomposition; GRU, Gated Recurrent Unit; HT, Heart Timing; LSTM, Long Short-Term
Memory; LSTM-CNN, Long Short-Term Memory-Convolutional Neural Network; OSA, Obstructive Sleep Apnea; PSG, Polysomnography; RNN: Recurrent Neural
Network; SVM: Support Vector Machine.
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data of 1000 people, with a subset allocated for validation
and validation testing. While the dataset consisting of
1000 patients’ PSG data is rather large, it is necessary to
enhance the characteristics associated with the accuracy
of apnea and hypopnea detection by using a greater
number of raw PSG data inputs during the training of an
algorithmic model. Furthermore, it is worth noting that
the distribution of male and female participants in our
study was generally balanced. However, after examining
the raw PSG data of adult patients, we saw that the
average age was 50 years, with the majority falling within
the range of 40 to 55 years. The study’s findings are
limited due to the lack of age variety in our PSG raw
sample, since the rising incidence of sleep apnea among
both senior patients and younger patients aged 20 to 40 is
not well represented. Furthermore, the research design did
not include PSG data from children. The occurrence of
OSA in children is often attributed to the growth of tonsillar
and adenoid structures throughout childhood. However, it is
important to note that the diagnostic criteria and features of
apneas or hypopnea events in children vary from those seen
in adults, since the underlying pathophysiology exhibits
variations between the two age groups.

Therefore, it would be a compelling area of research to
explore the development of a deep learning model for
automated scoring, with the aim of identifying and diag-
nosing OSA in pediatric patients. In conclusion, it
should be noted that our research included all 1000
patients who had PSG and were ultimately diagnosed
with either OSA or primary snoring. However, it is
important to acknowledge that our study did not specific-
ally exclude individuals who may have had overlapping
central sleep apnea (CSA) or mixed sleep apnea,
whereby OSA episodes occur subsequent to the onset of
CSA. Despite the potential benefits of identifying CSA
or mixed apneas, we were unable to address this issue
in our research owing to its complexity. Furthermore, it
would enhance the validation of our results to test the
current model using an open PSG dataset, allowing us
to more accurately assess its sensitivity and specificity.
Additional examination of a larger number of patient
cohorts and various biosignal inputs is necessary to con-
struct an algorithm model capable of determining the
existence of these apnea types. Hence, the authors
propose that this issue should be addressed in the next
investigation.

Conclusion
The deep learning algorithm used in our study demonstrated a
significant level of precision in identifying apnea/hypopnea
occurrences and then classifying the severity of OSA. The
results of our investigation possess the capacity to improve the
applicability and accuracy of deep learning algorithms used
for the automated assessment of respiratory events in PSG.
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