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Background: Stomach adenocarcinoma (STAD) is a significant global health problem.

It is urgent to identify reliable predictors and establish a potential prognostic model.

Methods: RNA-sequencing expression data of patients with STAD were downloaded

from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA)

database. Gene expression profiling and survival analysis were performed to investigate

differentially expressed genes (DEGs) with significant clinical prognosis value. Overall

survival (OS) analysis and univariable and multivariable Cox regression analyses were

performed to establish the prognostic model. Protein–protein interaction (PPI) network,

functional enrichment analysis, and differential expression investigation were also

performed to further explore the potential mechanism of the prognostic genes in

STAD. Finally, nomogram establishment was undertaken by performing multivariate Cox

regression analysis, and calibration plots were generated to validate the nomogram.

Results: A total of 229 overlapping DEGs were identified. Following Kaplan–Meier

survival analysis and univariate and multivariate Cox regression analysis, 11 genes

significantly associated with prognosis were screened and five of these genes, including

COL10A1, MFAP2, CTHRC1, P4HA3, and FAP, were used to establish the risk model.

The results showed that patients with high-risk scores have a poor prognosis, compared

with those with low-risk scores (p = 0.0025 for the training dataset and p = 0.045

for the validation dataset). Subsequently, a nomogram (including TNM stage, age,

gender, histologic grade, and risk score) was created. In addition, differential expression

and immunohistochemistry stain of the five core genes in STAD and normal tissues

were verified.

Conclusion: We develop a prognostic-related model based on five core genes, which

may serve as an independent risk factor for survival prediction in patients with STAD.
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BACKGROUND

Approximately 1.4 million people die each year worldwide
from adenocarcinomas of the esophagus, stomach, colon, or
rectum (1), of which stomach adenocarcinoma (STAD) has the
third highest incidence and second highest for cancer-related
mortality, and it remains a significant global health problem (2).
In 2018, STAD was estimated to cause one million new cases and
781,000 deaths worldwide (3). Since the non-specific symptoms
in early stages of the disease, STAD is typically not diagnosed
until the disease has progressed to a more severe state, resulting
in poor prognosis due to metastasis, intratumoral heterogeneity,
chemotherapy resistance, etc. (4). This raises an urgent need
for the development of reliable diagnostic, prognostic, and
therapeutic molecular biomarkers of STAD.

Integrative bioinformatics analysis is one of the frontiers of
biological research today and can be used to identify differential
genes, screen prognostic biomarkers, and select appropriate
treatment approach (5). Research on single-gene prediction
is very concentrated, but it is not yet effective in prognosis.
Polygenic combination has been reported to possess better
predictive ability for cancer prognosis than single genes (6). For
instance, Lu et al. (7) revealed that the dysregulated expression
of the THBS family was closely related to STAD prognosis
and tumor immunity. Additionally, Liu et al. (8) demonstrated
that the SFRP family was potential targets for precision therapy
and prognostic biomarkers for survival of patients with STAD.
Although there are some polygene bioinformatics analysis
studies, most of them focus on predicting of signatures, and there
is still a lack of research on polygenic risk estimation model and
predict prognosis of STAD.

In this study, we aimed to develop a prognostic model
for the predict prognosis for patients with STAD. A large
number of mRNA expression profiles of patients with STAD
were downloaded from Gene Expression Omnibus (GEO) and
the Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-
STAD) database. Differential expression analysis was used to
identify differentially expressed genes (DEGs) between STAD-
related tissue and normal tissue. Then, survival analysis and
univariable Cox regression analysis were performed to screen
prognostic genes, and multivariable Cox regression analysis was
used to establish a prognostic risk model. Further, protein–
protein interaction (PPI) network, functional enrichment
analysis, differential expression, and structure investigation of the
core genes were performed. Finally, a nomogram that includes
age, gender, tumor TNM stage, histologic grade, and 5-gene risk
prediction model as an independent clinical factor was used to

Abbreviations: STAD, stomach adenocarcinoma; GEO, Gene Expression

Omnibus; TCGA, the Cancer Genome Atlas; DEGs, differentially expressed

genes; TCGA-STAD, The Cancer Genome Atlas- Stomach Adenocarcinoma;

PPI, protein–protein interaction; OS, overall survival; ROC, receiver operating

characteristic; AUCs, areas under ROC curves; STRING, Search Tool for the

Retrieval of Interacting Genes database; GO, gene ontology; KEGG, Kyoto

Encyclopedia of Genes and Genomes; BP, biological process; MF, molecular

function; CC, cell components; GSEA, gene set enrichment analysis; CRC,

colorectal cancer; FDR, false discovery rate.

predict the 1-, 3-, and 5-year survival rate of patients with STAD.
The detailed flowchart of this work is provided in Figure 1.

METHODS

Data Source
The GEO database (http://www.ncbi.nlm.nih.gov/geo) was used
to retrieve data with “stomach adenocarcinoma” as the keywords
and human as the species. Datasets that covered cancer tissue
and normal adjacent tissue, came from the same platform,
and contained at least 20 samples were selected, and then,
the gene expression profiles and their clinical data were
downloaded. From TCGA portal (https://tcga-data.nci.nih.gov/
tcga/), we collected the STAD RNA-seq data and related
clinical parameters.

Differential Expression Analysis
Gene level expression data were normalized and then log2
transformation is provided by the limma package of R software
(version 3.6.3). For GEO datasets, data were analyzed using the
GEO2R analysis tool, and the DEGs were identified at adjusted p
< 0.05 and |Log2FC| >1. For TCGA-STAD cohort, DEGs were
identified with false discovery rate (FDR) < 0.05 and |Log2FC|
>1 via the edge R package (9).

Prognostic Genes’ Identification
Overlapping DEGs were screened based on the p-value
and fold change (FC)/log(FC), and the top 50 genes were
selected for Kaplan–Meier survival analysis. Log-rank p-
values for Kaplan–Meier plots were calculated using an
R package for survival analysis. Then, we screened genes
with log-rank p < 0.05 as prognostic-related genes for
subsequent analysis.

Construction and Validation Prognostic
Model of STAD
To establish the prognostic model of STAD, univariable and
multivariable Cox regression analyses were performed on the
prognostic-related genes by the survival R package (10). Owing
to the lack of survival information on GEO, we randomly
divided the patients with complete survival information in
TCGA-STAD dataset into training set and validation set, fit
the model in the training set, and assessed its performance in
the validation set. Then, the prognostic model was established
based on corresponding coefficients of the prognostic genes
of STAD.

Risk score =

n∑

i=1

β×Expi

Further, the training set was divided into high- and low-
risk groups according to the median value of risk score.
Kaplan–Meier survival analysis was performed to estimate
overall survival (OS) between the two groups by the
survival R package. Time-dependent receiver operating
characteristic (ROC) curves were plotted by time ROC R
package, and the areas under ROC curves (AUCs) were
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FIGURE 1 | Flowchart of this study.

calculated to test the efficiency of the prognostic model
(11). Univariable and multivariable Cox regression analyses
were applied on clinical data (including age, gender, TMN

stage, and histologic grade) and risk scores to assess whether
the risk model was an independent prognostic factor of
clinical parameters.
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PPI Network Construction and Functional
Enrichment Analysis
Interaction network analysis was obtained by employing
STRING v11.5 database (http://string-db.org/), keeping default
parameters. The topological properties of the PPI network
included average shortest path length, betweenness centrality,
closeness centrality, degree, eccentricity, neighborhood
connectivity, radiality, stress, and topological coefficient.
Molecular complex detection (MCODE) analysis was applied
to the prognostic-related gene network to identify densely
connected subnetwork modules. Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis were performed to identify significant pathways via
the “cluster Profiler” package in R (12). The items of biological
processes were further analyzed by GO classifications. The
adjusted p < 0.05 was considered to indicate a statistically
significant difference. In addition, gene set enrichment analysis
(GSEA) was utilized to determine the core gene-related signaling
pathways by the “cluster Profiler” package in R. Results with
absolute value of normalized enrichment score > 1, FDR < 0.25,
and adjust p < 0.05 were considered statistically significant. 1D
linear domain structures and 3D structures of proteins were
visualized using cBioPortal (http://www.cbioportal.org/).

Prognostic Gene Expression Investigation
in STAD and Nomogram Construction
Differential expression of the prognostic genes between
normal and STAD-related tissues was verified. Additionally,
immunohistochemistry staining of the prognostic genes in
STAD and normal tissues was acquired from the Human Protein
Atlas database (https://www.proteinatlas.org/). According to the
results of univariate and multivariate Cox regression analyses, a
nomogram was created using the rms and survival package of R
(13). Additionally, a calibration plots were generated to validate
the nomogram.

RESULTS

Differential Expression Analysis
The clinical data of GSE27342, GSE63089, and TCGA-STAD
were shown in Table 1. We found 474 DEGs in GSE27342
profile (287 upregulated and 187 downregulated, Figure 2A),
732 DEGs in GSE63089 profile (622 upregulated and 110
downregulated, Figure 2B), and 5,494 DEGs in TCGA-STAD
cohort (2,659 upregulated and 2,835 downregulated, Figure 2C).
Subsequently, a total of 229 overlapping DEGs (159 upregulated
and 70 downregulated) were screened among the three datasets
(Figure 2D and Additional File 1).

Prognostic-Related Genes’ Identification
We selected the top 50 overlapping DEGs (cutoff: p < 0.05 and
|Log2FC| >1.75) as candidate genes. According to log-rank p <

0.05 by Kaplan–Meier survival analysis, 11 genes (ADAM2, BGN,
COL10A1, MMP1, MMP7, MFAP2, CTHRC1, P4HA3, SFRP4,
TNFRSF11B, and FAP) were screened as prognostic-related genes
for following research, and the Kaplan–Meier plots were shown
in Figure 3.

TABLE 1 | Clinical or characteristics of patients with STAD in different datasets.

Characteristic TCGA data (n, %) GSE27342

(n, %)

GSE63089

(n, %)

Platform Illumina HiSeq2000

RNA sequencing

platform

Affymetrix

Human Exon

1.0 ST Array

Affymetrix

Human Exon

1.0 ST Array

Samples 407 (100.0%) 160 (100.0%) 90 (100.0%)

Normal 32 (7.9%) 80 (50.0%) 45 (50.0%)

Tumor 375 (92.1%) 80 (50.0%) 45 (50.0%)

Survival status 377 (92.6%) NA NA

Death 145 (35.6%) NA NA

Survival 232 (57.0%) NA NA

Age 366 (89.9%) 77 (48.1%) 70 (77.8%)

<=65 155 (38.1%) 59 (36.9%) 51 (56.7%)

>65 211 (51.8%) 18 (11.3%) 19 (21.1%)

Gender 380 (93.3%) 80 (50.0%) 70 (77.8%)

Female 137 (33.7%) 27 (16.9%) 25 (27.8%)

Male 243 (59.7%) 53 (33.1%) 45 (50.0%)

Stage 356 (87.5%) 80 (50.0%) NA

I 55 (13.5%) 4 (2.5%) NA

II 112 (27.5%) 7 (4.4%) NA

III 150 (36.9%) 54 (33.8%) NA

IV 39 (9.6%) 15 (9.4%) NA

T classification 372 (91.4%) NA 70 (77.8%)

T1 20 (4.9%) NA 12 (13.3%)

T2 84 (20.6%) NA 16 (17.8%)

T3 168 (41.3%) NA 25 (27.8%)

T4 100 (24.6%) NA 17 (18.9%)

N classification 362 (88.9%) NA NA

N0 113 (27.8%) NA NA

N1 99 (24.3%) NA NA

N2 76 (18.7%) NA NA

N3 74 (18.2%) NA NA

M classification 358 (88.0%) NA NA

M0 332 (81.6%) NA NA

M1 26 (6.4%) NA NA

TCGA, The Cancer Genome Atlas; NA, not available; T, primary tumor; N, regional lymph

nodes; M, distant metastasis.

Construction and Validation Prognostic
Model of STAD
Since the expression value of ADAM2 was zero in half of the
samples, it was impossible to group by the median. The results of
the univariate and multivariate proportional hazards regression
analyses of the 10 prognostic-related genes associated with
clinical outcomes are shown in Table 2. Multivariate regression
analysis revealed COL10A1, MFAP2, CTHRC1, P4HA3, and FAP
as the risk factor, and the risk score formula for OS was as follows:

Riskscore = (−0.0013× COL10A1Exp)+ (0.2709

×MFAP2Exp) + (0.1869× CTHRC1Exp)+ (0.1649

×P4HA3Exp) + (9e− 04× FAPExp)
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FIGURE 2 | The results of differential expression analysis. (A) The heatmap and volcano plots visualizing the DEGs in TCGA-STAD. (B) The heatmap and volcano

plots visualizing the DEGs in GSE27342. (C) The heatmap and volcano plots visualizing the DEGs in GSE63089. (D) Venn diagram showing the overlapping DEGs in

the three datasets.
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FIGURE 3 | Kaplan–Meier curves of 11 gene with prognostic value.
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TABLE 2 | Univariate and multivariate Cox regression analyses.

Characteristics Total (N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

COL10A1 (high vs. low) 370 1.434 (1.030–1.996) 0.033 0.999 (0.595–1.676) 0.996

MFAP2 (high vs. low) 370 1.593 (1.140–2.226) 0.006 1.311 (0.851–2.021) 0.220

CTHRC1 (high vs. low) 370 1.559 (1.118–2.174) 0.009 1.206 (0.708–2.052) 0.491

P4HA3 (high vs. low) 370 1.511 (1.084–2.107) 0.015 1.179 (0.740–1.878) 0.488

FAP (high vs. low) 370 1.415 (1.017–1.970) 0.039 1.001 (0.598–1.676) 0.997

BGN (high vs. low) 370 1.326 (0.954–1.844) 0.094

MMP1 (high vs. low) 370 1.187 (0.855–1.648) 0.305

MMP7 (high vs. low) 370 1.084 (0.781–1.504) 0.631

SFRP4 (high vs. low) 370 1.267 (0.913–1.758) 0.157

TNFRSF11B (high vs. low) 370 1.341 (0.966–1.862) 0.080

FIGURE 4 | Development of prognostic model in the training set. (A) Expression heatmap of five core genes. (B) ROC curves for survival risk predicted by risk score

for 1-, 3-, and 5-year follow-ups. (C) Survival curves of high- and low-risk groups separated by risk score.
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FIGURE 5 | Invalidation of prognostic model in the invalidation set. (A) Expression heatmap of five core genes. (B) ROC curves for survival risk predicted by risk score

for 1-, 3-, and 5-year follow-ups. (C) Survival curves of high- and low-risk groups separated by risk score.

In addition, the patients of TCGA-STAD dataset were divided
into training set and validation set. Training set consisted of
186 STAD cases whereas validation set consisted of 185 STAD
cases. Patients with STAD were divided into high- and low-risk
subgroups according to the median value of risk score (cutoff
= 14.9). In the training set, the survival analysis showed that
the OS rates in the high-risk group were significantly lower
than those in the low-risk group (p = 0.0025, Figure 4C). The
time-dependent ROC curves offered a survival prediction that
the AUCs were 0.576 (1-year OS), 0.733 (3-year OS), and 0.887
(5-year OS). Result showed that the risk model had a good
ability to predict long-term prognosis of STAD (Figure 4B). The
heatmap showed that the expression levels of five core genes
were higher in patients with STAD with high-risk scores than

those with low-risk scores (Figures 4A, 5A). Meanwhile, data
in the validation set showed the similar results: OS rates in the
high-risk group were significantly lower than those in the low-
risk group (p = 0.045, Figure 5C); the time-dependent ROC
curves (Figure 5B) predicted that the AUCs were 0.530 (1-year
OS), 0.599 (3-year OS), and 0.702 (5-year OS). Moreover, using
multivariate Cox regression analysis, the prognostic model was
identified as an independent predictor for patients with STAD (p
= 0.008, Table 3).

PPI Network Construction and Functional
Enrichment Analysis
The PPI network of the five core genes was shown in Figure 6A.
The topological properties of the PPI network for each gene were
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TABLE 3 | Univariate and multivariate Cox regression analyses for risk score of patients with STAD.

Characteristics Total (N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age 370

≥65 213 Reference

≤65 157 0.607 (0.430–0.856) 0.004 0.538 (0.369–0.785) 0.001

Gender 370

Male 237 Reference

Female 133 0.789 (0.554–1.123) 0.188

T stage 362

T1&T2 96 Reference

T3&T4 266 1.719 (1.131–2.612) 0.011 1.410 (0.894–2.226) 0.140

M stage 352

M0 327 Reference

M1 25 2.254 (1.295–3.924) 0.004 2.489 (1.337–4.634) 0.004

N stage 352

N0&N1 204 Reference

N2&N3 148 1.650 (1.182–2.302) 0.003 1.517 (1.060–2.172) 0.023

Histologic grade 361

G1&G2 144 Reference

G3 217 1.353 (0.957–1.914) 0.087 1.399 (0.956–2.048) 0.084

Risk score 370 1.036 (1.012–1.062) 0.004 1.037 (1.010–1.065) 0.008

shown in Additional File 6. Highly interconnected subcluster of
the five core genes was shown in Figure 6B, and the subcluster
consisted of 53 nodes and 305 edges (score = 11.731), which
represented relatively stable of protein in the network.

The results of GO enrichment analysis (Figure 7A) showed
that the five core genes significantly focused on extracellular
matrix organization, extracellular structure organization
(biological process, BP); extracellular matrix structural
constituent, dipeptidyl-peptidase activity (molecular function,
MF); and collagen-containing extracellular matrix, collagen
trimer (cell components, CC). Meanwhile, we found that in
terms of biological processes, the genes were mainly focused
on extracellular matrix, cell cycle, and Wnt signaling pathways.
According to the p-value, the top five items from the three
categories were selected to plot a histogram (Figure 7B). KEGG
enrichment analysis (Figure 7A) indicated that prognostic genes
were significantly enriched with arginine and proline metabolism
and protein digestion and absorption, etc.

Gene set enrichment analysis was applied to determine
their related signaling pathways (Figures 7C–G). COL10A1
was significantly enriched with olfactory transduction and
nitrogen metabolism pathways, etc. CTHRC1 was significantly
enriched in olfactory transduction and metabolism of
xenobiotics by cytochrome p450 pathways, etc. MFAP2 was
significantly enriched with olfactory transduction and fatty
acid metabolism pathways, etc. P4HA3 was significantly
enriched with ribosome and nitrogen metabolism pathways,
etc. FAP was significantly enriched in nitrogen metabolism and
metabolism of xenobiotics by cytochrome p450 pathways, etc.

Themutation site and structure of the five core genes were shown
in Figure 8.

Prognostic Gene Expression Investigation
in STAD and Nomogram Construction
Differential expression of the prognostic genes between
normal and STAD-related tissues was verified. Results
demonstrated that COL10A1, MFAP2, CTHRC1, P4HA3,
and FAP were significantly upregulated in STAD-related tissues
compared with normal tissues (Figure 9A). Additionally,
immunohistochemistry staining of five core genes in STAD
and normal tissues was acquired from the Human Protein
Atlas database, which showed that differential expression of
protein was consistent with gene expression (Figure 9B).
However, the immunohistochemical images of COL10A1 were
not found. Then, a nomogram (Figure 10A, including TNM
stage, age, gender, histologic grade, and risk score) was created
to predict the survival rate of patients with STAD at 1, 3, and 5
years. It was found that high total points predicted low 1-, 3-,
and 5-year survival rates; however, a low total points did the
opposite. The nomogram calibration plots (Figure 10B) indicate
that the nomogram was well-calibrated, with mean predicted
probabilities for 1- and 3-year OS close to observed probabilities.

DISCUSSION

The genetic background of STAD is complicated. Mining genes
related to the prognosis of STAD from the genetic and molecular
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FIGURE 6 | PPI network construction. (A) PPI for the five core genes in 229 overlapping DEGs. (B) Important modules including the five core genes in the PPI network.
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FIGURE 7 | Enrichment analysis for the five core genes. (A) GO and KEGG enrichment analysis. (B) Biological process enrichment analysis. (C–G) GSEA for

COL10A1 (C), CTHRC1 (D), MFAP2 (E), P4HA3 (F), and FAP (G).

level is of great significance for the treatment and prognosis
prediction of STAD. Bioinformatics analysis based on large
databases has pointed out the direction for tumor research. In this
study, we downloaded gene expression profiling and clinical data
from the TCGA and GEO databases, identified DEGs, screened
the prognostic-related genes, and then constructed a prognostic
model based on five core genes (COL10A1, MFAP2, CTHRC1,
P4HA3, and FAP).

COL10A1 is amember of the collagen family involved in tissue
architecture and acts as a barrier to the migration of epithelial
cells under normal conditions (14). Necula et al. (14) identified
a significant increase in COL10A1 plasma level in patients
with STAD and concluded that COL10A1 shows an elevated
expression from the beginning of carcinogenesis, in the early

stages, and its increased level remains elevated during gastric
cancer progression. Aktas et al. also found that COL10A1 is
abnormally upregulated in gastric cancer and its high expression
can be used as a diagnostic and/or prognostic biomarker (15). It
has been reported thatMFAP2 is upregulated in STAD, negatively
correlated with OS, and can be used as a prognostic biomarker
of STAD (16, 17), which is consistent with our results. Further,
Yao et al. revealed that MFAP2 is overexpressed in gastric cancer
and promotes motility via the MFAP2/integrin α5β1/FAK/ERK
pathway (18). CTHRC1 is a cancer-related gene that can
promote cancer recurrence or metastasis via diverse signaling
pathways, including TGF-β, MEK/ERK, and PKC-δ/ERK (19).
Ding et al. (20) found that CTHRC1 promoted STAD metastasis
through HIF-1α/CXCR4 signaling pathway, which can be used
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FIGURE 8 | Structural and functional in of the five core genes. (A) COL10A1, (B) CTHRC1, (C) MFAP2, (D) P4HA3, and (E) FAP.

as a biomarker for STAD, and is consistent with our results.
Moreover, CTHRC1 was demonstrated that overexpressed in
hepatocellular carcinoma tissues significantly correlating with
poor survival rate, which can be used as a prognostic marker for
liver cancer (21). Consistent with the results of this study, P4HA3
has been repeatedly reported to be overexpressed in STAD and
is related to the poor prognosis of STAD (22). Song et al. found
that P4HA3 can be apparently activated by Slug in STAD tissues,
of which imbalance and metastasis were related to poor survival

rates (23). FAP is a fibroblast activating protein, which has
found to be involved in the growth and formation of a variety
of cancers. Research revealed that FAP promoted the growth
of intrahepatic cholangiocarcinoma through the recruitment of
myeloid derived suppression cells (24). Additionally, the high
expression of FAP in colorectal cancer is related to angiogenesis
and immune regulation (25).

In this study, we established a polygene risk factors model
for predicting prognostic of STAD, which is more rational than
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FIGURE 9 | Expression investigation of five core genes. (A) Differential expression of the five core genes between normal and STAD-related tissues. (B)

Immunohistochemistry staining and their mRNA expression in normal and STAD-related tissues based on The Human Protein Atlas. ***p < 0.001.
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FIGURE 10 | Nomogram predicted the 1-, 3-, and 5-year survival rates of patients with STAD. (A) Nomogram predicting the 1-, 3-, and 5-year OS rates of patients

with STAD. (B) Calibration plots for the 1- and 3-year OS nomogram.
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single-risk factor. However, there are potential limitations to
our analysis. First, this study has limitations inherent to a
bioinformatics analysis. The construction of prognostic model
is based on the TCGA and GEO database analysis and lacks
clinical or cellular or animal functional experimental verification.
Second, due to some patients with incomplete details are
excluded, there may be selection bias in this study.

CONCLUSION

We developed a prognostic model for patients with STAD
based on COL10A1, MFAP2, CTHRC1, P4HA3, and FAP, and
a nomogram to predict the survival rate of patients with STAD
at 1, 3, and 5 years. The evidence from this study comes from
bioinformatics, as with other studies of a similar nature. It is still
necessary to conduct further experiments to verify these findings.
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